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Abstract: Since the use of the most stable Pb-based materials in the electronic industry has been
banned due to human health concerns, numerous research studies have focused on Pb-free materials
such as pure tin and its alloys for electronic applications. Pure tin, however, suffers from tin whiskers’
formation, which tends to endanger the efficiency of electronic circuits, and even worse, may cause
short circuits to the electronic components. This research aims to investigate the effects of stress
on tin whiskers’ formation and growth and the mitigation method for the immersion of the tin
surface’s finish deposited on a copper substrate. The coated surface was subjected to external stress
by micro-hardness indenters with a 2N load in order to simulate external stress applied to the coating
layer, prior to storage in the humidity chamber with environmental conditions of 30 ◦C/60% RH up
to 52 weeks. A nickel underlayer was deposited between the tin surface finish and copper substrate
to mitigate the formation and growth of tin whiskers. FESEM was used to observe the whiskers and
EDX was used for measuring the chemical composition of the surface finish, tin whiskers, and oxides
formed after a certain period of storage. An image analyzer was used to measure the whiskers’ length
using the JEDEC Standard (JESD22-A121A). The results showed that the tin whiskers increased
directly proportional to the storage time, and they formed and grew longer on the thicker tin coating
(2.3 µm) than the thin coating (1.5 µm). This is due to greater internal stress being generated by the
thicker intermetallic compounds identified as the Cu5Sn6 phase, formed on a thicker tin coating. In
addition, the formation and growth of CuO flowers on the 1.5 µm-thick tin coating suppressed the
growth of tin whiskers. However, the addition of external stress by an indentation on the tin coating
surface showed that the tin whiskers’ growth discontinued after week 4 in the indented area. Instead,
the whiskers that formed were greater and longer at a distance farther from the indented area due to
Sn atom migration from a high stress concentration to a lower stress concentration. Nonetheless, the
length of the whisker for the indented surface was shorter than the non-indented surface because
the whiskers’ growth was suppressed by the formation of CuO flowers. On the other hand, a nickel
underlayer successfully mitigated the formation of tin whiskers upon the immersion of a tin surface
finish.

Keywords: immersion tin coating; tin whiskers; micro-hardness indentation; copper substrate;
JEDEC Standard JESD22-A121A; nickel underlayer

1. Introduction

The urge to use lead (Pb) or lead-based alloy-free materials in electronic packaging
has become a serious problem among manufacturers since the European Union RoHS
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(Restriction of Hazardous Substances) regulated the minimum content of lead in products
starting from 1 July 2006 [1–3]. Therefore, countless research has been devoted in the past
two decades to replace lead in solder and surface finish materials for electronic packaging.

The most critical design for the printed circuit board (PCB) structure is the surface
finish deposited on the bare copper surface. Common surface finish deposition methods
are electroless nickel/electroless palladium/immersion gold (ENEPIG) [4], electroless
nickel/immersion gold (ENIG) [5], immersion silver (IAg) [6], immersion tin (ISn) [7],
and the method most widely used by the industry is the hot air soldered levelled (HASL)
method [8]. Even though HASL is the most popular method, it still uses lead in a signifi-
cantly large portion [9]. To completely remove lead from the surface finish, pure tin plating
has become the most popular option due to its good solderability and lower cost [10–12].

However, a major problem arises when the pure tin surface finish is used. The problem
is mainly due to the formation of tin whiskers that potentially cause a short circuit if they
come into contact [13–16]. Capacitors, diodes, and transistors with tin finishes are the most
common electronic components that suffer from tin whiskers’ formation as discovered in
the nuclear power plant [16], automotive [17] digital communication [18], and air force
infrastructure [19] fields. An incident related to the shutdown of a nuclear reactor in 2005
revealed that tin whiskers were found on one of their PCB surfaces and were connected to
each other, which created an electrical shortage to the components [20]. In another case
related to the automotive industry in 2009, a car manufactured by Toyota was reported to
have a problem on its pedal assembly [21]. The investigation conducted on the accelerator
pedal position sensors (APP) of the car by Sood et al., 2011, revealed that the formation
and growth of tin whiskers were actually the main cause for the electrical short circuit of
the APP board [22].

The combination of certain factors such as an external force or stress, the interface
morphology, temperature and humidity, residual stress, oxidized layer, and intermetallic
compound (IMC) formation may influence the formation of tin whiskers. For example, the
different morphologies and surface roughness of a Cu substrate can influence the behavior
of tin whiskers’ formation and growth [23]. In another study, Gedney et al. found, on
the other hand, that the behavior of IMC growth resulted in compressible stress being
generated, thus promoting the whiskers’ growth [24]. The most common IMCs found
were Cu6Sn5 and Cu3Sn, which form within the tin layer and the Cu substrate [9,24–26].
A detailed characterization of the Cu6Sn5 phase formation during heat treatment was
reported by Johan et al. using 3DXRD [27]. Therefore, it is clearly understood that the tin
layer itself can become a site for tin whiskers’ formation and growth to relieve further the
stress. Possible mechanisms for tin whiskers’ formation and growth, such as dislocation,
recrystallization, grain boundary diffusion, and interface fluid flow, have been proposed
by researchers [24]. However, there is still uncertainty concerning the exact mechanism of
tin whiskers’ formation due to the multiple factors that affect its behavior.

Several efforts have been devoted to mitigating the formation and growth of tin
whiskers, such as reflow, post baking, annealing, conformal baking, and the most expensive
method, metallic underlayer coatings [28–30]. On top of that, the reduction in metallic
interdiffusion between the Cu lead frame and the surface finish has shown a promising
outcome for mitigating the formation of tin whiskers [31].

Since all the electronic industries have moved towards lead-free electronic products,
the most preferred alternative materials to Sn-Pb alloy are pure tin and tin-based alloys, and
this is where tin whiskers become a major problem to the electronic packaging system. The
idea that IMC formation generates internal compressive stresses at the interface between the
tin layer and Cu substrate, thus resulting in whiskers’ growth out of the tin surface, which
is a stress-free region, has motivated Moriuchi et al. to create a method to investigate tin
whiskers’ behavior using external compressive stress [32]. They found that the mechanism
of tin whiskers’ formation on a binary alloy of an Ag-Sn surface finish is due to the phase
changes of β-Sn to α-Sn when an external force is loaded on the surface finish. This is one
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of the generation mechanisms of whiskers when a limited solid solubility alloy system
consisting of two or more solid phases at room temperature is used for the surface finish.

Due to the potential of solid phase changes in the binary alloy system, among the lead-
free surface metallurgies, pure tin plating has received greater attention in the industry
owing to its single-phase at room temperature despite the excellent solderability and
availability. The deposition of a tin surface finish using the electroplating process has been
widely used because it is less expensive compared to the high-performance coatings such as
chemical vapor deposition (CVD) and physical vapor deposition (PVD) [33]. Nonetheless,
the recent development of a compact electronic packaging system showed the drawback of
the electroplating process, where the minimum thickness is limited to 7 µm. The immersion
process, however, has outperformed the electroplating process due to its capability to
achieve a coating thickness as thin as 0.3 µm. Many of the previous studies on whiskers’
behavior have focused on the electroplating process of the tin surface finish and almost
none have used the immersion process.

Therefore, the aim of this study is mainly to investigate and understand the tin
whiskers’ behavior for the immersion tin surface finish by applying external stress through
indentation, as well as the effectiveness of this method to mitigate whiskers’ formation and
growth with a nickel underlayer.

2. Materials and Methods

The copper substrate is a print circuit board uniformly coated with a 20 µm copper
layer supplied by GG Circuits Industries Sdn. Bhd., (Johor Bahru, Malaysia). The tin
plating was deposited using the immersion process on the copper substrates. The copper
substrates were pre-treated before the tin plating as follows:

1. Grinding with silicon carbide paper (800 grit) and rinsing with distilled water to
remove the oxide layer.

2. Immersing in 2-Butoxyethanol solution at 70–90 ◦C for 5 min and rinsing with distilled
water to remove the dirt.

3. Soaking in a NaOH solution at 60 ◦C for 3 min and rinsing with distilled water for
surface degreasing.

4. Etching in a 10% H2SO4 solution for 1 min and rinsing with distilled water to deoxi-
dize the surface.

5. Immersing in palladium chloride solution for 3 min and rinsing with distilled water
to activate the surface.

Table 1 shows the chemical composition for tin plating [34]. The plating durations
were 12 and 20 min to produce a coating thickness less than 2 µm and more than 2 µm,
respectively. The temperature used during the plating process was 75 ± 1 ◦C controlled by
a plating bath. Chen et al. [9] stated that after a deposition time of 10 min, the thickness
of the tin coating is about 0.7–2 µm, which is considered to be a sufficient thickness to
promote whiskers’ formation.

Table 1. Chemical composition for tin plating [34].

Chemical Function Composition

Stannous chloride Source of Sn ion 20 g/L
Hydrochloric acid (37%) Base bath 37 mL/L

Sulfuric acid (50%) Base bath 50 mL/L
Sodium hypophosphite Reducing agent 16 g/L

Thiourea Complexing agent 200 g/L
Phenolsulfonic acid Bath stabilizer 5 mL/L

Temperature 75 ± 1 ◦C
Duration 12, 20 min

For the tin whiskers’ mitigation experiment, a nickel underlayer was deposited prior
to the tin plating layer using the electroless plating process. In order to test the effectiveness
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of Ni underlayers in mitigating the whiskers’ formation, two different nickel coating
thicknesses were deposited under the 1.5 µm immersion tin coating thickness. The plating
times were 10 and 20 min to produce a uniform layer of the nickel coating with thicknesses
of 2.4 and 2.7 µm, respectively. The chemical composition and parameters of the electroless
nickel plating are shown in Table 2 [7,35].

Table 2. Chemical composition and parameters of electroless nickel plating [7,35].

Chemical Function Quantity

Nickel sulphate Source of Ni ion 28 g/L
Sodium acetate Complexing agent 17 g/L

Sodium hypophosphite Reducing agent 24 g/L
Lead acetate Bath stabilizer 0.0015 g/L

Parameters
pH 4.4–4.6

Temperature 85 ± 1 ◦C
Time 10 and 20 min

The storage test was conducted at a constant temperature and humidity in the hu-
midity chamber (MEMMERT HCP 108, manufactured by Memmert GmbH, Schwabach,
Germany). The temperature and humidity were controlled at a constant value of 30 ◦C/60%
RH following the JEDEC Standard JESD22-A121A for testing the whiskers’ growth [36].
The samples were stored in the humidity chamber right after the plating process was com-
pleted. For each parameter studied, the storage test was carried out exactly the same on
the same samples with the time intervals of 1, 4, 8, 12, and 52 weeks. The characterization
and whisker’s length measurements were carried out on the sample at the specified time
interval before being restored in the humidity chamber. There were eight samples prepared
in this research as shown in Table 3.

Table 3. List of samples.

No. Coating Plating Time
(min)

Coating
Thickness (µm) Indentation Storage Time

(Weeks)

1 Sn 2 1.5 No 2, 4, 8, and 12
2 Sn 20 2.3 No 2, 4, 8, and 12
3 Sn 12 1.5 Yes 2, 4, 8, 12, and 52
4 Sn 20 2.3 Yes 2, 4, 8, 12, and 52
5 Sn/Ni 12/10 1.5/2.4 No 2, 4, 8, and 12
6 Sn/Ni 12/20 1.5/2.7 No 2, 4, 8, and 12
7 Sn/Ni 12/10 1.5/2.4 Yes 2, 4, 8, and 12
8 Sn/Ni 12/20 1.5/2.7 Yes 2, 4, 8, and 12

Many researchers [32,37–39] have reported that indentations can act as a source
of external stress that accelerates the whiskers’ growth, but none have focused on the
immersion tin surface finish in detail. In this research, the indentation was conducted using
the HMV SHIMADZU (Shimadzu Corporation, Nakagyo, Kyoto, Japan) micro-hardness
tester to induce the external stress on the tin coating. The indentation test was applied on
the fresh plated samples to study the whiskers’ growth inside the indentation and nearby
areas [25]. A 2N load was used in this study to generate the stress on the surface for the
coating thickness less than 9 µm [32]. The 2N load was used to ensure that the indenter
would penetrate through the coating to the Cu substrate. The penetration depth of the
indenter into the Cu substrate was 60% or larger from the total depth of penetration of
the micro-hardness indenter. Therefore, the effect of mechanical properties on different
thicknesses of the surface finish could be negligible. The indented samples were stored
under temperature/humidity conditions as stated above in the humidity chamber to
investigate the effects of environmental conditions on whiskers’ growth.
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The as-plated surface finish was characterized by measuring the thickness of the
cross-sectional samples using an optical microscope equipped with an image analyzer
(Nikon-Eclipse LV150 by Nikon Corporation, Shinagawa, Tokyo, Japan) and i-Solution
Lite software. The tin whiskers’ behavior and IMCs were observed using field emission
scanning electron microscopy (FESEM (Supra-35VP, by Carl Zeiss, Oberkochen, Germany)
and the elemental analysis was performed by an energy dispersive X-ray (EDX). The
measurement of whiskers’ lengths was performed by observation at the top view of the
FESEM micrograph using i-Solution Lite software following the JEDEC standard No. 22-
A121A [36]. Basically, the length of the tin whiskers was determined based on the average
length of the five longest whiskers per sample.

The top-view IMC observation by FESEM and elemental analysis by EDX was per-
formed on the Cu–Sn interface to verify the existence of IMCs between the copper substrates
and tin that developed due to the chemical reaction that occurs during the plating process.
The as-plated tin surface finish was etched in the etchant solution of nitric acid (40 g),
sulfamic acid (2 mL), fluoroboric acid (1.5 mL), and distilled water (60 g) for 5 min.

3. Results and Discussion
3.1. Characterization of Immersion Tin Coating

Figure 1 shows the cross-sectional image of (a) a tin coating (plating time = 20 min)
and (b) a tin/Ni underlayers coating (plating time; nickel = 20 min, tin = 12 min). The
results show that tin and Ni were dense and uniformly coated with the Cu substrate. The
coating thickness of the immersion tin surface finish was measured by an image analyzer,
and the thickness has been confirmed as 1.5 and 2.3 µm for 12 and 20 min plating durations,
respectively. The Ni coating thickness has been confirmed as 2.4 and 2.7 µm for 10 and
20 min plating durations, respectively.
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Figure 1. Cross-sectional images of (a) tin and (b) Ni underlayers deposited on copper substrate.

The chemical composition analysis of the tin-coated substrate was performed using
EDX equipped with FESEM on a freshly plated sample to confirm that pure Sn has been
deposited on the Cu substrate. Figure 2a shows the EDX spectra of the selected area on
the sample with a 12 min plating duration (1.5 µm tin coating thickness), the FESEM
micrograph of the scanned area, and the chemical composition results as in the table.
Spectrum A is the marked area on the immersion tin surface, which is measured by EDX.
Based on the weight percentage (wt.%) of elements presented in the table, it was clearly
shown that only pure Sn was deposited on the Cu substrate with 90.14 wt.%, and a small
amount of Cu was detected from the substrate itself.

The chemical composition of the whiskers was measured with EDX on the 1.5 µm tin
coating after 1 week in storage. Figure 2b shows the EDX spectra of the detected point
marked as Spectrum B on the tin whisker. The inserted image is a FESEM micrograph
of the whiskers sample and the chemical composition results are shown in the inserted
table in Figure 2b The results clearly show that 96.78 wt.% Sn was detected on the whisker.
Therefore, the structure is confirmed as a pure tin whisker, which is consistent with previous
work in the literature [32,40,41].
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3.2. Whiskers’ Behavior on Non-Indented Tin Coating

The effect of external stress on the whiskers’ formation and growth was studied by
observing the whiskers’ behavior for indented samples and comparing the results with the
non-indented surface finish. The indentation was made using a micro-indenter to generate
external stress on the tin surface. Figure 3a–e shows the FESEM micrographs of the tin
whiskers (solid arrows) that formed on the non-indented surface of the 1.5 µm tin coating
during 1–12 weeks of storage time. The results showed that the whiskers grew longer
with longer storage time. as the shorter tin whiskers can be seen clearly in Figure 3a while
longer tin whiskers are shown in Figure 3c,d. Several types of tin whiskers were found
on the samples, such as straight, bent, spiral, kinked, and spiral, with striations along the
circumference. The longest tin whiskers were observed in the sample after 12 weeks. The
kinked-type whiskers were identified as the most dominant type of tin whiskers formed
on the samples after 8 and 12 weeks. As explained by Donald Susan et al. [42], if the
kinked-type whiskers did not grow in diameter but did in length, and its end-tip is facing
the direction normal to the tin surface, it will continuously grow longer. In addition, after
12 weeks of storage in a controlled environment, it was found that CuO flowers formed
on the tin surface as marked by hollow arrows in Figure 3d. The enlarged image of CuO
flowers is shown in Figure 3e inside Figure 3d.

A similar trend has been shown by the non-indented surface of the 2.3 µm tin coating
as shown in Figure 3f–i. However, the length of the tin whiskers on the thicker coating
of the immersion tin surface finish (2.3 µm) is longer than the length of the tin whiskers
on the thin coating. As expected, the thickness of the tin coating influenced the whiskers’
formation and growth. This can be explained by the excessive amount of Sn atoms in the
thicker tin coating that caused sufficient Sn supplies to form longer whiskers as compared
to the thinner tin coating, which had fewer Sn atoms.
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Figure 4 shows a schematic diagram that demonstrates the whiskers’ formation on
thinner and thicker tin coatings. The results were in agreement with previous studies [33,34]
as they reported that longer whiskers on the electroplated tin coating were found at a
tin thickness of 2 µm as compared to 1 µm. The mechanism of the whiskers’ growth has
been well discussed in the literature [11,35], where the growth has been understood to
occur at the base of the whiskers and not at the tip, since the tip remains unchanged after
the whiskers have grown longer. This is consistent with the IMC theory, which states the
formation of whiskers is due to the stress generated within the tin coating and the whiskers
grow longer when the IMCs have grown thicker over time.
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Figure 4. A schematic diagram of the whiskers’ formation on thin (a) and thick (b) tin coatings of
immersion surface finish.

3.3. Whiskers’ Behavior on Indented Tin Coating

For the indented samples, Figure 5 shows the FESEM micrographs of the whiskers in
the indentation area and stress-affected area around the indented point for week 1 through
to week 12 for 1.5 and 2.3 µm tin coatings. For the 1.5 µm tin coating, (Figure 5a–d), three
solid arrows point out exactly the same tin whiskers formed on the coating and copper
oxide, while the CuO flower structure is highlighted in yellow boxes in Figure 5c,d. From



Materials 2021, 14, 6817 8 of 16

the results, no tin whiskers were found inside the indentation point except at the edge
and outside the indentation point after 1 week of storage (Figure 5a), and the whiskers
increased in length at week 4 (Figure 5b) and remained constant after week 4 (Figure 5c,d).
Moreover, more tin whiskers were found in the region outside the indented area.
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The tin whiskers observed on the 2.3 µm tin coating in Figure 5e–h showed behavior
consistent with the whiskers formed on the 1.5 µm tin coating. The results also showed
consistent behavior of the tin whiskers formed on the 1.2 µm tin coating of the immersion
tin surface finish as reported in previous research [36]. In general, the number of whiskers
formed inside the indentation area is less than the ones outside the dented region for all of
the coating thicknesses. This is because the outer region has a lower stress concentration
as compared to the inside of the indentation area. The diamond shape of the indented
sample has higher stress concentrated at the center tip of the diamond shape and the stress
decreases towards the outer region of the diamond shape. Thus, this can be explained by
the migration of Sn atoms from a higher- to a lower-stress region to release the stress [38].

The discontinuity of the whisker’s growth is related to the creep process that occurred
in the tin surface and the formation of copper oxide, CuO. The creep process in the
tin plating contributes to the relaxation of the external stress generated by the micro-
indentation under the storage temperature, thus it causes discontinued growth of whiskers
in the indented surface. Since the melting point, Tm, of pure tin is 263 ◦C (536 K) and the
creep temperature is 0.4 Tm (214.4 K), at the storage temperature of 30 ◦C (303 K), creep
therefore dominated because it is above creep temperature. In short, the stress generated
by the indentation was gradually released during the creep process. Another reason for
the discontinuity of tin whiskers’ growth at week 8 and onwards is the formation of CuO
flowers. Based on Figure 5c, a large number of CuO flowers was observed inside the
indentation area and its surrounding areas for the samples stored under 30 ◦C/60% RH
for 8 weeks and 12 weeks. Further investigation has been conducted on the CuO flower
formation since it is believed to be one of the factors contributing to the discontinuity of
whiskers’ growth.

Based on Figure 5a, whiskers formed as early as week 1 and continued to grow up
to week 4 without the existence of CuO flowers. However, CuO flowers were observed
inside the indentation areas and its surrounding areas at week 8 and they had increased
in number and size by week 12 while the whiskers had not grown longer by week 8 and
week 12. Thus, the results proved that the formation of CuO flowers contributed to the
discontinuity of whiskers growth because of the stress released during the formation of
CuO flowers. CuO flowers have been forced to form on the tin coating surface due to the
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stress generated from the indentation. The indentation forced a fast reaction between the
copper substrate and the tin film coating. Therefore, the diffusion of copper penetrated
into the very thin film of the tin coating to react with the oxygen to form CuO flowers. This
is true as the number of CuO flowers was greater on the thinner tin coating (1.5 µm) shown
in Figure 5a–d as compared to the thicker tin coating (2.3 µm) shown in Figure 5e–h. The
formation of CuO flowers after week 4 suppressed the whiskers’ growth. The oxidation
activity of Cu from the substrate took place during the Sn atoms’ migration to form CuO
flowers instead of forming tin whiskers or extending the length of the whiskers.

A comparison study on whiskers’ length was conducted by measuring the whiskers’
length on the non-indented surface as well as the whiskers’ length formed inside the
indentation area for indented samples as shown in Figure 6a. According to the graph,
for the non-indented samples, the whiskers’ length grew over time after 12-week storage
under 30 ◦C/60% RH conditions. The growth of whiskers was influenced by the IMC
formation. The IMCs formed as the tin coating was deposited on the copper substrate
and grew further over the storage time. The formation of IMCs generates stress within
the tin coating, thus resulting in the diffusion of Sn atoms towards the stress-free zone
to form whiskers. Hence, further growth of IMCs over time caused longer whiskers to
form due to the higher stress generated by IMCs. These results were in agreement with
previous studies that proved that tin whiskers were grown over longer storage times as
a result of the continuous formation of IMCs, which is Cu6Sn5 [37–40]. However, in the
case of the indented surface, the whiskers’ behavior showed a different trend. The whisker
length on the 1.5 µm tin coating at week 1 was 5.6 µm and the length slightly increased
at week 4 (6.0 µm) and remained constant after week 4 until week 12. The whisker length
on the 2.3 µm tin coating slightly increased from week 1 (thickness = 9.6 µm) to week 4
(thickness = 11 µm) and then remained constant up to week 12. From the results, it is clearly
shown that the whiskers’ growth on the indented surface was discontinued even after
4-week storage under 30 ◦C/60% RH. Even after 52 weeks of storage, the whiskers at the
indentation point showed a very small increment as shown by the graph in Figure 6b. Both
1.5 and 2.3 µm tin coatings showed a slight increment in whisker length after 52 weeks of
storage with lengths of 6.7 and 11.8 µm, respectively.
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Figure 6. (a) The average tin whisker length versus storage times for non-indented and indented
surfaces after being stored up to 12 weeks. (b) The tin whiskers’ length at the indentation points over
storage time up to 52 weeks.

3.4. Whiskers Behavior as a Function of Load Distance

In a previous discussion, it was concluded that there is no significant increase in
whisker length after 4 weeks stored under 30 ◦C/60% RH up to 12 weeks for an indented
surface. The initial whisker analysis was focused on the indentation point only for a
comparison study between the indented and non-indented surface. A further investigation
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was conducted to study the whiskers’ behavior at the area farther from the indentation
point, which is known as the stress-affected area. The whisker analysis at a specific distance
from the indentation point was conducted on the sample after 52 weeks stored under
30 ◦C/60% RH conditions.

Figure 7 shows the schematic diagram to indicate the position on the immersion tin
surface to be observed by FESEM after 52 weeks of storage under 30 ◦C/60% RH. Position
D0 is the indentation point, while positions D1, D2, and D3 are the positions at a certain
distance (D1, D2, and D3, respectively) from the indentation point, which were selected
randomly to indicate the changes in the tin whiskers’ behavior at different positions farther
from the indentation point.
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Figure 7. A schematic diagram to indicate the position on the immersion tin surface to be observed
by FESEM.

Figure 8 shows the FESEM micrographs on whisker formation after 52 weeks of stor-
age time at a certain distance from indented points on the 1.5 and 2.3 µm tin coatings,
respectively. Based on Figure 8, the number of whiskers formed is greater and the length
of whiskers is longer at the position farthest from the indentation point. Besides that, the
number of CuO formed on the surface is greater at a position close to the indentation point
and gradually decreased at the position farthest from the indentation point. This is in agree-
ment with the fact that the CuO flower influenced the growth of the tin whiskers. However,
a greater CuO flower can be observed on the thinner tin coating, 1.5 µm (Figure 8a–d), as
compared to the thicker tin coating, 2.3 µm (Figure 8e–h).
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Figure 9 shows the graph of the average whisker length at positions D0, D1, D2,
and D3 after being stored for 52 weeks. Based on the graph, the whiskers’ length is
directly proportional to the distance from the indentation point after 52 weeks stored under
30 ◦C/60% RH conditions for both 1.5 and 2.3 µm tin coatings. The average whisker length
at the indentation point, D0, was 6.7 µm, while at D3, the farthest from the indentation
point, it was 15.53 µm for the 1.5 µm tin coating. Meanwhile, for the thicker coating,
2.3 µm, the average whisker length was 11.8 µm and 14.7 µm for locations D0 and D3,
respectively. The results have proved that the whiskers tend to form at a lower stress
region as longer whiskers formed at the farther distance, D3, from the indentation point,
D0. This is because Sn atoms move from a high-stress region to a lower-stress region to
release stress within the tin coating as critically explained by N. Muraki and G Katagiri [43].
As mentioned previously, the indentation point has the highest stress concentration, and
the stress decreases at a farther distance. However, the maximum average tin whisker
length at the farthest distance from the indentation point, D3, is still far shorter than the
non-indented surface, which is only one quarter of the average length. The normal IMC
growth generated stress, thus pushing the Sn atoms to migrate and form tin whiskers at the
surface to release the stress. However, by applying external stress, where the stress amount
is much greater than the natural stress generated by IMC growth, CuO was influenced to
form on the surface faster than the formation of the tin whiskers. The major stress generated
from the indentation was released by the formation and growth of the CuO flowers.Materials 2021, 14, x FOR PEER REVIEW 12 of 17 
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stored under 30 ◦C/60% RH for 1.5 and 2.3 µm tin coatings. Inserted figure: The schematic di-
agram of tin whiskers formed on the immersion tin surface finish at a specific distance from the
indentation point.
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3.5. Influence of Inter-Diffusion

To study the influence of inter-diffusion at the interface of the tin coating and the Cu
substrate, a Ni underlayer was deposited between the Cu substrate and the tin coating to
mitigate the tin whiskers’ formation on the tin surface finish. Different thicknesses of the Ni
underlayer, 2.4 and 2.7 µm, were deposited under the 1.5 µm tin coating, and the whisker
analysis was conducted on the 12th week of storage under 30 ◦C/60% RH conditions.

Figure 10a,b shows the FESEM micrographs of the non-indented Sn/Ni surfaces
for Sn/Ni thicknesses of 1.5/2.4 and 1.5/2.7, respectively, after 12 weeks of storage at
30 ◦C/60% RH. According to Figure 10a,b, no whiskers were observed on the tin surface
finish after 12 weeks of storage. Similar results were shown by the FESEM micrographs on
the indented surface in Figure 10c,d where no whiskers were observed on the indented
surface for Sn/Ni thicknesses of 1.5/2.4 and 1.5/2.7, respectively, after 12 weeks stored at
30 ◦C/60% RH. Therefore, both thicknesses of the Ni underlayer were effective to mitigate
the formation of whiskers, even through the external stress generated on the tin surface.
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Figure 10. FESEM micrographs of the non-indented and indented surfaces after 12-week storage
at 30 ◦C/60% RH with various coatings of Sn/Ni layer: (a) Non-indented, Sn/Ni = 1.5/2.4 µm,
(b) non-indented, Sn/Ni = 1.5/2.7 µm, (c) indented, Sn/Ni = 1.5/2.4 µm, and (d) indented,
Sn/Ni = 1.5/2.7 µm.

Since the Ni underlayer can mitigate the formation of the whiskers for up to 12 weeks
in this study, the results are consistent with previous works for the electroplated tin
surface finish as it was proposed that the Ni underlayer can delay the whiskers’ formation.
Ho et al. [44] mentioned that the growth rate of the Cu3Sn can be reduced with the presence
of a Ni underlayer. Similar findings were also shown by a study conducted by Hashim et al.
on the whisker mitigation method using a Ni underlayer, but they used a different tin
plating, which was dipped in a molten Sn bath [45]. According to Laurila et al. [46], the
reaction rate of the Ni–Sn is relatively smaller than the Cu-Sn, thus resulting in a thinner
IMC layer in the Ni–Sn. Other researchers also agreed that the reaction rate of Ni–Sn is
slower compared to the reaction rate of the Cu-Sn [47,48]. Thus, the Ni layer acts effectively
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as a barrier layer for the immersion tin surface finish to prevent the formation of Cu–Sn
intermetallics, which is believed to be the main factor for whiskers’ formation and growth.

An intermetallic compounds (IMCs) analysis was conducted on selected samples.
The IMC formation for the 1.5 µm tin coating after 20 weeks of storage at 30 ◦C/60%
RH was studied from the top (Figure 11a) and cross-sectional (Figure 11b) views. The
cross-sectional view of IMCs was performed by a focused ion beam (FIB) equipped on
the FESEM. The chemical composition of the IMCs was determined by EDX and the
results are shown in Figure 11c. From the top-surface observation shown by the FESEM
micrograph in Figure 11a, it can clearly be seen that the spherical shape of IMC formed
at the interface between the Cu substrate and tin coating and was greater along the grain
boundary of the immersion tin grain. This is true as the grain boundary is typically a
weak spot and easy target for chemical diffusion due to a high density of atom vacancies.
Moreover, the IMCs covered the entire surface of the copper substrate. The EDX analysis
confirmed that the IMC (marked as Spectrum C in Figure 11a,b) is Cu6Sn5 as calculated
based on the 54.45 at.% Cu and 45.55 at.% Sn composition shown by the EDX results
in Figure 11c. The thermodynamics calculation method of the Cu-Sn binary system for
determining the IMC based on the atomic percentage of elements has been discussed by
Wojcieh Gierlotka et al. [45]. According to a cross sectional image in Figure 11b, the IMC
layer formed between the tin whiskers and copper substrate. Since the results showed
that the tin whiskers formed above the IMC layer, the theory regarding IMCs generating
compressive stress within the Sn–Cu film and causing tin whiskers’ formation is proven.
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Figure 11. FESEM micrographs of IMCs on 1.5 µm tin coating from (a) top and (b) cross-sectional
views after 20 weeks of storage at 30 ◦C/60% RH. The EDX spectra of IMCs is shown in (c) with
elemental composition in the table inserted in (c).

The samples with a Ni underlayer showed no signs of tin whiskers’ formation due to
the formation of stable IMCs of Ni3P uniformly at the interface with no trace of Cu on the
surface, as explained in the literature [49,50]. All the mentioned studies have confirmed
that there were no Cu-Sn IMCs found in the Ni underlayer samples. It has been proven
that the Ni underlayer can completely prevent the fast diffusion of Cu-Sn to form Cu-Sn
IMCs, thus preventing the whiskers’ formation.
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4. Conclusions

A study on external stress and Ni underlayer effects on tin whiskers’ behavior for the
immersion tin surface finish was conducted. The samples were stored under 30 ◦C/60%
RH environmental conditions for a period of up to 52 weeks and were monitored at weeks
1, 4, 8, 12, and 52. Based on the surface morphology and intermetallic (IMC) analysis, the
conclusions are as follows:

• Increasing the tin plating thickness up to 2.3 µm causes an increase in the tin
whiskers’ length.

• The tin whiskers’ length is increased directly proportional to the storage time.
• As for the effects of externally applied stress, tin whiskers formed inside and outside

the indented area except for the center tip of the indented area, since the tip has a high
stress concentration while the other parts of the area have a lower stress concentration.
The whiskers’ length increased with the increasing distance from the indented area.

• The formation and growth of the CuO flowers on the indented surface suppressed the
growth of the tin whiskers.

• The whiskers formed as various types, including straight, bent, kinked, and spiral
with striations along its circumference.

• The Ni underlayer acted as a barrier layer, which effectively mitigated the formation
of tin whiskers since no whiskers were observed on the tin surfaces up to week 12 by
slowing down the inter-diffusion between the Cu and Sn atoms.

• The identified IMC that influenced the formation and growth of the tin whiskers that
formed at the interface between the immersion tin surface finish and the Cu substrate
was Cu5Sn6.

5. Recommendation for Future Work

This study has proven that external stress generated by indentation can promote the
formation and growth of tin whiskers, and the whiskers were successfully mitigated by a
Ni underlayer deposited between the immersion tin surface finish and the Cu substrate,
consistent with other coating methods such as electroplating [44] and hot-dip [45]. It will
be interesting to further investigate the effect of stress distribution and residual stress to
further understand the effect of external stress on the tin whiskers’ formation and behavior.
Therefore, the authors would suggest a quantitative analysis on the stress distribution
using the nano-indentation method on various tin plating methods such as immersion,
electroplating, and hot-dip methods. Measuring the exact stress distribution is important to
develop a stress-relief method for use in the manufacturing process of electronic packaging.
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