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Abstract
Internet of Vehicles (IoV) is developed by integrating the intelligent 
transportation system (ITS) and the Internet of Things (IoT). The goal of 
IoV is to allow vehicles to communicate with other vehicles, humans, 
pedestrians, roadside units, and other infrastructures. Two potential 
technologies of V2X communication are dedicated short-range 
communication (DSRC) and cellular network technologies. Each of 
these has its benefits and limitations. DSRC has low latency but it 
limits coverage area and lacks spectrum availability. Whereas 4G LTE 
offers high bandwidth, wider cell coverage range, but the drawback 
is its high transmission time intervals. 5G offers enormous benefits to 
the present wireless communication technology by providing higher 
data rates and very low latencies for transmissions but is prone to 
blockages because of its inability to penetrate through the objects. 
Hence, considering the above issues, single technology will not fully 
accommodate the V2X requirements which subsequently jeopardize 
the effectiveness of safety applications. Therefore, for efficient V2X 
communication, it is required to interwork with DSRC and cellular 
network technologies. One open research challenge that has gained 
the attention of the research community over the past few years is the 
appropriate selection of networks for handover in a heterogeneous 
IoV environment. Existing solutions have addressed the issues related 
to handover and network selection but they have failed to address 
the need for handover while selecting the network. Previous studies 
have only mentioned that the network is being selected directly for 
handover or it was connected to the available radio access. Due to 
this, the occurrence of handover had to take place frequently. Hence, 
in this research, the integration of DSRC, LTE, and mmWave 5G is 
incorporated with handover decision, network selection, and routing 
algorithms. The handover decision is to ensure whether there is a 
need for vertical handover by using a dynamic Q-learning algorithm. 
Then, the network selection is based on a fuzzy-convolution neural 
network that creates fuzzy rules from signal strength, distance, vehicle 
density, data type, and line of sight. V2V chain routing is proposed 
to select V2V pairs using a jellyfish optimization algorithm that takes 
into account the channel, vehicle characteristics, and transmission 
metrics. This system is developed in an OMNeT++ simulator and the 
performances are evaluated in terms of mean handover, handover 
failure, mean throughput, delay, and packet loss.
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The goal of IoV is to allow vehicles to communicate 
with other vehicles, humans, pedestrians, roadside 
units, and other infrastructures. Such communications 
are classified into five categories that are referred to as 
V2X communication (X: vehicles, RSU, infrastructure, 
humans, and pedestrians). The vehicles transfer both 
safety and non-safety data at different data rates. 
Safety data as an accident, road traffic, and others, 
while non-safety data such as video streaming, 
gaming, and so on. Integration of IoV with advanced 
wireless communication technologies such as 5G 
makes it a heterogeneous network (Ndashimye et al.,  
2020). It composes of Wi-Fi, Long-Term Evolution 
(LTE), and others. In general, vehicle communication 
is supported for both safety and non-safety data 
transmissions. The vehicles use dedicated short-
range communication (DSRC) which enables low 
latency communication for short-distance vehicles.

In IoV, vehicles use DSRC for communication; 
however, due to its shorter range and bandwidth 
limitations, it is not suitable for long-distance commu
nications and bandwidth greedy applications. 
Hence, IoV integrates with 5G to provide high data 
rates for communication. However, it suffers from 
blockage issues as it is unable to penetrate through 
obstacles (Choi et al., 2018). Besides, LTE also 
provides long-distance communication because of 
its coverage range, and high bandwidth features. 
Each radio access technology has its benefits and 
limitations.

Vehicles are equipped with multiple antenna 
terminals that enable to access different radio access 
network (RAN). Due to the use of different RAN in 
a network, a network introduces the process of 
vertical handover (VHO) (Sheng et al., 2018). 5G 
comprises different radio access technologies due 
to the presence of different cells such as microcell, 
femtocell, and nanocell. Each cell will be having more 
than one RAN and hence, requires selection of the 
best network (Jubara, 2020). Several multi-criteria 
decision-making algorithms have been proposed for 
network selection. In general, this type of algorithm 
takes into account multiple parameters and computes 
them for decision-making. The TOPSIS is one of the 
decision-making algorithms. This type of multi-criteria 
decision algorithms is popular in the selection of 
networks. IoV enables allowing data transmission of 
the highway and urban roadways in an autonomous 
vehicle (Storck and Duarte-Figueiredo, 2019). If there 
is an increase in the vehicle density, then the number 
of requests from the vehicles for vertical handover will 
also gradually increase.

The vehicle is built with more than one antenna 
terminal. The support of different RAN technologies 

requires selecting a network when one or more RAN 
is present in the coverage range.

The network selection process is also performed 
using optimization, reinforcement learning methods, 
and access network discovery and selection function 
(ANDSF) (Ndashimye et al., 2020). Q-learning is an 
algorithm that can decide concerning the environment. 
In IoV, vehicles move at very high speeds with change 
in topology and connectivity, the data transmission 
relies on routing (Ndashimye et al., 2020). Routing 
is the process of transferring data from source to 
destination through relay vehicles (Ndashimye et al., 
2020). In routing, the vehicles in a route are preferred 
by taking into account the vehicle-based metrics like 
traffic, vehicle capacity, reliability, mobility, and others. 
As per the estimation of the metrics, a route or path is 
identified and packet forwarding is performed in that 
route. The process of routing is subjected to some 
challenges as topology changes, time consumption 
in route selection, and so on. The algorithms and 
methods are proposed to solve these challenging 
issues.

The goal of this paper is to minimize the number 
of unnecessary handovers when there is a need for 
high bandwidth while the data type changes. This 
research builds a learning-based method to decide 
whether there is a need for handover and then it 
selects a network for handover. In this way, we can 
reduce the number of unnecessary handovers. Then, 
V2V routing is established to minimize the number of 
re-transmissions. A poor selection of transmission 
routes causes route failure that leads to an increase 
in the number of re-transmissions. To solve this 
issue, an optimization algorithm is used. The two 
main contributions of our proposed work are to 
perform handover using network selection and data 
transmission via the best route.

The rest of this paper is organized as follows: the 
second section presents the previous research works 
and methods, the third section gives a particular 
problem description, and the fourth section discusses 
the proposed algorithms of handover, network 
selection, and routing. The fifth section discusses the 
simulation results, and the sixth section depicts the 
conclusion with future research directions.

Related work

Prior works on handover

Handover (HO) in the vehicular network is challenging 
to perform since the mobility of vehicles changes. 
Many research works have studied this issue and 
performed handover without any degradation in 
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network metrics. In the study of Chang et al. (2019), 
a cluster-based handoff, and dynamic edge-backup 
node (DEBCK) is proposed where the vehicles on 
the road lane were clustered, and the backup node 
provides handoff. Here, the cluster head performs 
the handoff and the backup mobile edge vehicle. 
The three main parameters that were taken into 
account for handoff are storage, communication, 
and energy. The main drawback of this work is 
poor handoff performance of backup mobile edge 
and cluster head, and failure to perform handoff 
whenever there is a need. In the study of Jubara 
(2020) a procedure for HO was proposed with the 
aim of minimization of delay in HO. A cross-layer 
protocol in an adaptive L4 HO procedure begins 
to estimate signal strength and if the quality of the 
signal was poor, then the link between user and 
base station disconnects. Then the Stream Control 
Transmission Protocol (SCTP) is assigned to the 
new IP and it is updated to the layers. However, 
the signal strength was not the only significant 
metric to make HO decisions. Due to the mobility 
of the vehicle and moving pattern on the road 
lane, HO of moving vehicles was proposed (Choi  
et al., 2018). According to the idea of this work, a 
group of users consists of a mail leader, sub-leader, 
and follower. The sub-leader was selected based 
on the maximum number of connections. In case 
if more than one vehicle has similar characteristics 
then, a sub-leader was selected at random. Initially, 
the vehicle computes reference signal received 
power (RSRP), reference signal received quality 
(RSRQ), link quality, and is reported for HO decision. 
A decision tree was built for HO decision-making 
using RSRP measurement. But the vehicles HO 
in a group requires frequent computation in the 
group, as well as measurement, and hence the 
computation will be higher in this work. The network 
layer-based L2 extension HO scheme was proposed 
(Naeem et al., 2019) and the architecture consists 
of an access router (AR), roadside unit (RSU), and 
vehicles. This work defines two HO schemes as 
inter-AR HO and intra-AR HO. The key goal of this 
scheme was to minimize latency and improve the 
packet delivery ratio. A fuzzy logic model and Elman 
Neural Network (ANN) was designed to decide 
along with the assurance of QoS (Naeem et al., 
2019). For HO decisions, the parameters that are 
taken into account as cost, transmission range, 
velocity, load, and capacity. Even though this work 
performs better, the time for HO decision consumes 
time which increases the delay in the HO that may 
cause packet drop and degrades packet delivery 
ratio. The paper (Singh et al., 2020) concentrates on 

handover as well as routing. A handoff protocol was 
proposed that computes link expiration time (LET) 
for detecting the connectivity between vehicles. 
The partner selection protocols enable a selection 
of optimal partner nodes (PN). Initially, the route 
was determined from GPS information and then the 
partner in the routes was selected from the vehicular 
LET using the traffic information. The vehicle with a 
high LET will be selected as the optimal PN in the 
route. In this work, only a single metric was taken 
into account for selecting a route between source 
and destination. However, if an opposite moving 
vehicle with high LET cannot be selected as PN 
and hence it requires considering other parameters 
too. In the study of Leu et al. (2019), and enhanced 
Access Network Discovery and Selection Function 
(ANDSF) was presented to perform a BS selection in 
the network. This algorithm combines with multilayer 
perceptron (MLP). The parameters were load, signal 
strength, throughput, and delay. The traditional 
workflow of the ANDSF is illustrated in Figure 1.

The ANDSF was equipped within the EPC which 
was started to be used in 3G and also on advanced 
radio access networks. This server was employed to 
discover information, manage policies, select policies, 
manage rules, and others. The user equipment can 
be a sensor, vehicle, or any other device that can 
access radio technology. The server first discovers 
the device and then performs a change in the 
connectivity. The procedure works by the developed 
set of rules and policies.

The vertical HO was performed using multi-
criteria methods by taking into account the significant 
parameters such as QoS, delay, cost, and others 
(Hamurcu and Eren, 2020). Due to the consideration 
of multiple metrics for HO decision using enhanced 
Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) fuzzy logic (Embus et al., 
2020). The working of this combination of algorithm 
works as per the following steps:

•	 Step 1: creates decision matrix using the pa-
rameters that were involved for HO decision. 
The computation was executed for each avail-
able network in the coverage area.

•	 Step 2: apply the Euclidean distance formula 
for determining the normalized decision matrix.

•	 Step 3: computation of weighted normalized 
decision matrix based on the function of the 
cross product.

•	 Step 4: estimate two ideal solutions as positive 
and negative from the cost metric. Hereby a 
set of benefit-based criteria were used for pos-
itive ideal solution prediction.
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Figure 1: Workflow procedure of ANDSF (Ndashimye et al., 2020).

•	 Step 5: again use the Euclidean distance for-
mula and determine the distance value for the 
estimated ideal solution.

•	 Step 6: compute relative closeness using the 
determined ideal solution in previous steps.

•	 Step 7: at the end, the ranking was performed 
from the determined closeness for each net-
work, and based on this ranking, the best net-
work was selected for HO.

The processing steps illustrated above for en
hanced TOPSIS using fuzzy were able to overwhelm 
the problems in conventional RSS-based HO. Each 
step includes multiple criteria, these steps were not 

parallel, i.e. on each HO request, all the process 
requires to be performed and the decision was made 
after ranking.

Prior works on routing

The IoV environment that uses different types of radio 
access network due to the coverage range of each 
radio access. However, the vehicles have in-built 
DSRC for short-range data transmission, while the 
destination vehicle moves far from the source, then a 
route has to be preferred for data transmission.

Vehicles perform routing by selecting relay vehicles 
between the source and destination since the DSRC 
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range was small and hence it is not able to connect 
longer distance vehicles. In the study of Nguyen and 
Jung (2020), Ant Colony Optimization (ACO) algorithm 
is proposed with the idea of coloring vehicles. 
This algorithm presents two processes as solution 
construction and pheromone update. The idea of 
coloring was to give similar colors for the vehicles that 
have the same destination. As per the pheromone 
value, the route was selected in this work. However, 
this work failed to consider the significant parameters 
of the vehicles for the computation of the pheromone 
value that decides the transmission route. In the study 
of Al-Kharasani et al. (2020), a cluster-based adept 
cooperative algorithm (CACA) is proposed focusing on 
the QoS metrics. As per this work, clustering formation 
is done and a cluster head was selected. This work 
follows Optimized Link State Routing (OLSR) protocol 
with the Multi-Point Relay (MPR). This selection takes 
into account mobility factors, distance range, and 
quality of path (QoP). The vehicles that satisfy these 
parameters were selected as MPR and then the 
intersection vehicles were eliminated. The selection 
of MPR was not efficient, since the vehicles move 
at high speed. A protocol design was proposed, i.e. 
partner selection protocol that considers Vehicle Link 
Expiration Time (VLET) (Ndashimye et al., 2020). In this 
work the handoff means a vehicle disconnects from a 
partner node and joins a new partner node (PN), the 
partner node enables to perform data transmission. 
The only measure that was used in the selection of 
PN was not efficient since there are other significant 
metrics as signal strength which was also essential in 
node selection. A cross-layer design was proposed 
(Leu et al., 2019) that selects an optimal route based 
on the metrics forwarding probability, bandwidth, and 
link duration. The forwarding probability for the vehicle 
was formulated by considering velocity, distance, 
and communication range. The link duration was 
mathematically calculated as communication link 
lifetime that takes into account vehicle velocity, GPS 
location, and communication range. Then, the third 
parameter of bandwidth was calculated from link gain, 
noise power, and channel bandwidth.

The relay node selection was presented in the 
study of Cao et al. (2019) for relay selection using the 
estimation of curving rate. A double direction relay 
node selection was involved when the request to 
broadcast (RTB) was 1 and then it select relay from 
the estimation of curving rate, delivery ratio, one-
hop delay, and message dissemination speed. The 
curving rate was formulated from the road length and 
the range of the vehicle. The computation of each 
parameter one after the other for route selection was 
time consuming and it leads to higher packet drop.

Routing is also performed using optimization 
algorithms. In the study of Leu et al. (2019), a hybrid 
optimization algorithm is proposed combining monarch 
butterfly and gray wolf optimization for route selection. 
The parameters that were taken into account for route 
selection are different costs computed for congestion, 
collision, travel, and QoS. For QoS prediction, fuzzy 
membership functions were applied. Initially, the 
butterfly algorithm was involved and then the gray 
wolf was performed for position updates and selecting 
optimal paths. The traditional issue in gray wolf 
optimization is its poor performance, and low accuracy. 
Fuzzy logic was also used to select routes by estimating 
link quality and achievable throughput. The link quality 
was based on the position, direction, and expected 
transmission count. As per the fuzzy weight, the output 
of the selection of next hop relay was performed. 
However, this work failed to tolerate the mobility issues 
concerning vehicular communication.

Problem definition

Issues concerning handover, network selection, and 
routing are discussed in this section from the previous 
research works. In the study of Ndashimye et al. 
(2020), the author proposed reinforcement learning 
algorithms. TOPSIS, K-Nearest Neighbor (K-NN), and 
AHP are proposed for handoff decisions considering 
bandwidth, network cost, preferences, connectivity 
probability, and signal to noise ratio (SNR) as the 
evaluation metrics.

•	 TOPSIS algorithm are subjected to rank rever-
sal problem that either includes or eliminates 
the order of preferences. Besides this problem, 
it performs poorly to make vertical handover 
decisions.

•	 The handover is performed by the vehicle based 
on the ranking results the vehicle. However, the 
need for handover is not evaluated. Also, if all 
the vehicles requests for handover then TOPSIS 
had to perform the handover individually since 
the parameters differs for each vehicle.

•	 The use of k-NN for handover decisions was 
not efficient, since the k-NN algorithm gives 
higher accuracy in results only when the link 
quality was better. Also while the arrival of data 
was in large amount then the algorithm slows 
down to process and hence it takes time to 
make handover decisions.

•	 The data forwarding through these two metrics 
is not sufficient, since there may be a blockage 
that causes NLOS issues. This issue was com-
mon in mmWave and hence vehicle parameters 
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are essential to be considered while making for-
warding decisions.

•	 The use of AHP was not efficient since it re-
quires training of the data and then it can select 
the best path. But here as per the current situa-
tion of the vehicles the path needs to be select-
ed and also the movement of vehicles will not 
be the same in all the regions. Also, the addition 
of new criteria was difficult in this algorithm.

Several algorithms have been proposed for the 
process of routing. Dijkstra algorithm and random 
relay selection are proposed for routing and data 
forwarding (Cao et al., 2019). QoS parameters are 
computed and estimated for the selection of routes. 
Since the movement of vehicles is dynamic and so, 
the management of the topologies is achieved by 
constructing the graphs.

The major problems identified in routing are as 
follows:

•	 The graph parameters are completely based 
on the past transmission history of the vehicles 
and the transmission of the vehicles depends 
on the channel metrics. Using these metrics, 
the graph was not able to predict the signal 
strengths with its neighboring vehicle. Conse-
quently causing frequent handover.

•	 The maintenance of graphs is complex due 
to mobility concerns, hence it needs large re-
source blocks and dynamic processing to man-
age the graph.

•	 The random selection of radio networks with 
individual parameters may leads to poor per-
formance of networks since the main con-
straints of QoS in this work is bandwidth or 
delay, i.e. it considers anyone from this, and 
hence the network selection is poor.

All of the above-highlighted gaps concerning hand
over, network selection, and routing are addressed in 
our proposed work.

Proposed system

This section is broken down into four sub-sections to 
describe the environment and expand each algorithm 
concerning handover, network selection, and routing 
in this proposed research work.

System model

The proposed heterogeneous IoV network is designed 
with vehicles consisting of a 5G base station, LTE base 

station, RoadSide Unit (RSU), and vehicles. The entities 
that participates in this system are defined below.

Definition 1: Vehicle – the vehicle moves on a 
restricted path, i.e. on-road lane in which the path 
is pre-defined in a map. The moving speed of the 
vehicle depends on the vehicle. Vehicles have in-
build GPS, using which their latitude and longitude 
information is gathered. The location of the vehicle 
and the speed of the vehicle is dynamic. Vehicles use 
DSRC and other advance Ran for data transmission. 
It transmits safety and non-safety data.

Definition 2: RSU – RSU is employed in IoV for 
performing communication with the infrastructure. 
This entity is static in the environment and also it 
enables DSRC for vehicles.

Definition 3: 5G mmWave base station (BS) – the 
BS is static and this allows to perform high speed–
short-range communication. It can solve the lack of 
spectrum issue.

Definition 4: LTE BS – this BS is also static and 
it allows long-distance communication with higher 
bandwidth and comparatively high spectrum efficiency.

The proposed system model is depicted in Figure 2, 
which composes all the above-defined entities into 
the system. The road lane has ‘n’ number of moving 
vehicles in their direction on the road. In this work, the 
handover is a decision that will be taken by the vehicle 
only when the current base station link is not good. 
But in case of sudden need in transmitting a safety 
application, it makes network selection process at that 
moments along with the consideration of data type 
as one of the parameters. Handover decision is the 
decision by which the need for handover is determined 
and it performs handover to the available network. For 
handover decision dynamic Q-learning in which the 
threshold is set as per the environment. If the handover 
has to be performed, it then selects a network from 
fuzzy-convolution neural network (F-CNN). For network 
selection, the fuzzy rules are defined and used in CNN. 
Then routing takes place by using an optimization 
algorithm called jellyfish algorithm that selects V2V 
pairs between source to destination and so, it is called 
V2V chain routing.

Handover decision

Handover decision by dynamic Q-learning, the dy
namic means to use threshold concerning the availa-
ble network. Dynamic Q-learning algorithm determines 
the need for handover by evaluating vehicle speed and 
signal strength. We set the threshold for signal strength 
using Shannon entropy rule as shown in the following 
equation:

S ss E P ss      



log

� (1)
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Figure 2: Proposed system model.
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where S(ss) denotes the Shannon entropy for signal 
strength that composes of ss values for DSRC, 
mmWave, and LTE that range between (−30 to 
−70 dBm). P(ss) denotes the probability of the signal 
strength (Figure 3).

Let Q(S,A) represent state S and action A based  
on the Q-values. Each state S will have two para
meters and this Q(S,A) is determined and updated 
in the rule. The temporal difference update rule is as 
follows:

Figure 3: Workflow of dynamic Q-learning.
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Q S A R Q S A Q S A Q S A, , , ,’ ’            a g � (2)

The term Q(S΄,Á ) defines next state and action 
R is the reward given by the agent, γ is the discount 
factor that is [0–1], then α is the learning rate [0–1], i.e. 
it denotes the step length to estimate the (S,A). The 
action is taken using ϵ-greedy policy where ϵ represents 
epsilon. The pseudo-code for dynamic Q-learning is 
given below to decide the decision for handover:

Network selection

Network selection is the process of selecting a 
network from the available RANs. F-CNN algorithm is 
applied for network selection. The CNN is designed 
with layers of convolution, max-pooling, and fully con
nected layers. The layers are employed with fuzzy rules 
that are defined from the metrics signal strength, the 
distance between BS and vehicle, vehicle density in 
serving BS, data type (safety or non-safety), and line of 
sight. The definition for each metric is depicted below.

Definition 1: Signal strength – signal strength 
defines the SNR which gives the number of signals. 
A channel will compose noise as well as signal, the 
high the noise, the channel is unfit for transmission. 
The SNR (Sr) is determined from signal power Ps, and 
noise PN respectively. The formulation is:

S
P

Pr
s

N

=
�

(3)

Definition 2: Distance between BS and vehicle – 
the distance between BS and a vehicle is estimated 
using Euclidean distance. This measure defines the 
stability of the link, as the distance increases the link 
will be unstable and when the distance decreases the 
link will be stronger. Euclidean distance is computed 
using the following equation:

D x x y yL LBS V( ),
     1

2

1

2

�
(4)

For computing distance, the coordinate points 
of the BS and vehicle is used. Distance D(LBS,LV) is 
determined from the BS location coordinates of (x,y), 
and vehicle location coordinates of (x1,y1), respectively. 
The location of BS is fixed and so it requires to know 
only the vehicle coordinate for distance estimation.

Definition 3: Vehicle density – the density of vehicle 
VD denotes the number of vehicles that are connected 
with that particular BS.

V N ND CL NL   , � (5)

where NCL and NNL represents the number of con
nected links and number of new links.

Definition 4: Data type – the data type in vehicles 
are two, they are safety and non-safety. In this work, 
safety is denoted as 0 and non-safety as 1. The safety 
messages will be of traffic information, high-speed 
vehicle information. This type of data has a higher 
priority in transmission than the non-safety data.

Definition 5: LoS – line of sight defines the direct 
contact between the vehicle and BS without any 
obstacles that block the signals. For transmission, 
LoS is only preferred and the signals in Non-LoS are 
not preferred.

The above five metrics involve the development of 
fuzzy rules. The fuzzy logic deals with the decision-
making by the defined rules as shown in Table 1. The 
mmWave signals will be chosen for any type of traffic, 
but only when the LoS is present since blockage 
of mmWave leads to poor performance, in case of 
blockage the vehicle selection will be 4G LTE.

The fuzzy logic method operates with the IF-
THEN rules in the interference engine. The input 
is in crisp values that are converted into a fuzzy 
set. As per the fuzzy rule, the interference engine 
constructs membership function between [0,1]. The 
fuzzy logic operations are built into CNN. Figure 4 
depicts the constructed fuzzy logic with CNN. The 
output high (H), medium (M), and low (L) denotes as  
follows:

H M L mmWave LTE DSRC, , , ,    
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Table 1. Fuzzy rules.

Input

Rule number Sr Distance VD Data type LoS Output

R1 H H H H H H

R2 H H H H L H

R3 H H H L H M

R4 H H H L L M

R5 H H L H H H

R6 H H L H L M

R7 H H L L H L

R8 H H L L L M

R9 H L H H H H

R10 H L H H L L

R11 H L H L H L

R12 H L H L L L

R13 H L L H H H

R14 H L L H L M

R15 H L L L H L

R16 H L L L L M

R17 L H H H H H

R18 L H H H L L

R19 L H H L H H

R20 L H H L L M

R21 L H L H H H

R22 L H L H L H

R23 L H L L H L

R24 L H L L L L

R25 L L H H H H

R26 L L H H L M

R27 L L H L H L

R28 L L H L L L

R29 L L L H H M

R30 L L L H L M

R31 L L L L H L

R32 L L L L L L
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A pseudo-code below is illustrated based on the 
workflow of this fuzzy-CNN algorithm:

Figure 4: Fuzzy-convolutional neural network.

The use of CNN will give results for multiple 
vehicles at the same time by parallel processing. The 
proposed fuzzy-CNN is composed of 32 rules, which 
are defined from five parameters. Since the CNN can 
process in parallel, the 32 rules will be processed 
in the convolution layer. According to the selected 
network, the requested vehicle will handover from the 
current network to the target network.

Optimized routing using jelly fish  
optimization algorithm

The process of routing is carried out using jellyfish 
optimization algorithm where the vehicles are formed 
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like V2V pairs, hence the name V2V chain routing. The 
routes are selected by computing the objective function 
using channel metrics (SNR (sr), link quality (lq)), vehicle 
metrics (Speed (sp), Relative direction (Rd)), and vehicle 
performance metrics (Delay (Dl), throughput (Tp)).

A time control mechanism is used to switch bet
ween active or passive movements in this algorithm. 
The time control c(t) is formulated and computed 
using the following equations:

c t
t

Max
rand

ite
   











     | , |1 2 0 1 1

�
(6)

when rand(0,1) > (1−c(t)), then passive motion:

rand(0,1) < (1-c(t)) then active motion� (7)

Here the jellyfish are assumed as vehicles and 
the ocean is assumed as road lane where the vehicle 
moves in different speed.

The ocean current direction represented as OC
� ���

 
and it is mathematically given as below:

Let:

OC
V

X e
p

c

� ���
= = -*1 m

�
(8)

Then:

OC X dff

� ���
= −∗

� (9)

where ‘Vp’ is the vehicle density. X* denotes the 
best location, μ is the mean location, and ec is the 
attraction factor, here the attraction of on destination. 
Then, the objective function is defined to select a best 
route. This function OF is formulated as follows:

OF Ms s l s R D Tr q p d l p       , , , � (10)

Ms represents a set of parameters in which the 
delay and speed must be minimum and all the other 
parameters can be a maximum value for the selection 
of the routes. Here the OF is applied for the complete 
route, since this work selects an optimal route from 
the available routes. The metrics are estimated from 
the channel:

l
P Pq

f r



1

�
(11)
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
2

2 2
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

 

� (12)

D
P
bl
L=

�
(13)

where Pf Pr represents the number of transmitted and 
the received packets in the same link between two 
vehicles, (la,ln) represents the latitude and longitude, 
(lav,lnv) represents the vehicle location, and (lanp, 
lnnp) represents the next hop location and r is the  
radius. PL, b represents packet length and bit rate, i.e. 
transmission speed in bits per second that are used 
to compute the delay estimation.

Equation 10 defines the objective function through 
which the optimal route is selected using jellyfish 
optimization algorithm.

The performance of the proposed HO, network 
selection, and routing algorithms are evaluated in the 
next section.

Simulation results

The section is split into three parts as simulation 
setup and specifications, comparative analysis, and 
result discussion. The simulation details and the 
parameters are discussed in detail in this section.

Simulation setup and specifications

The proposed work is simulated using OMNeT++. 
Table 2 shows the simulation parameters assumed in 
our proposed work.

Table 2. Simulation specifications.

Parameter Range/Value

Simulation area 2,500 m × 2,500 m

Number of vehicles 100

Number of 5G mmWave BSs 2

Number of 4G LTE BSs 2

Vehicle mobility type Linear mobility

Vehicle speed 10-40 m/s

Transmission range

  DSRC 300 m (Max)

  mmWave ~500 m

  LTE 100 km (Max)

Transmission rate 3-5 packets per second

Packet size 512 bytes

Simulation time 1,000 sec
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Comparative results

The comparative analysis gives the obtained results in 
comparative graphs. The proposed work is compared 
with previous works that use conventional RSS-
based selection, TOPSIS, ANDSF, and V2I-MoloHA 
methods relating to handover, network selection, 
and routing issues. It is a multi-criteria decision-
making algorithm that processes with more than 
one criterion. The parameters that are considered for 
the evaluation are mean handover, handover failure, 
throughput, and delay.

Mean handover and handover failure

The mean handover is the number of successful 
handovers of a vehicle from one network to another. 
Handover failure is defined as the number of 
unsuccessful handovers that happen due to poor 
decision-making.

The lesser mean handover denotes the better 
performance of the proposed algorithm as it has 
minimized the number of unnecessary handovers 
in the network. In previous work of TOPSIS, it was 
used for the selection of network that fails to perform 
proper ranking. Similarly, the use of parameters for 
the selection of network was either based on vehicle 
characteristic or environmental characteristic which 
leads to select the best target network that eventually 
increases mean handover along with the increase in 
the handover failure.

The proposed dynamic Q-learning algorithm 
can learn the vehicle environment in a particular 
surrounding. The prediction of handover requirement 
from the vehicle speed and signal strength is 
efficient. Further to the prediction, we perform a 
selection of networks using the F-CNN algorithm for 
selecting a network by analyzing the metrics of the 
particular vehicle. The process of prediction and 
network selection in this work tends to improve the 
performance of the handover-based metrics.

Figures 5 and 6 illustrate the mean handover and 
handover failure concerning the increase in vehicle 
speed. The improvement in the performances of HO 
failure rate and mean handover is due to the handover 
decisions made by dynamic Q-learning algorithm and 
appropriate selection of networks due to fuzzy-CNN. 
The mean handover in the proposed work decreases 
with the increase in vehicle speed and hence, 
suitable for large-scale environments. Besides, the 
decrease in mean handover reduces the HO failure 
counts. In general with the increase in vehicle speed, 
the handover failure occurs but as the proposed work 
uses Q-learning for predicting the requirement of 

Figure 5: Comparison of mean 
handover (Ndashimye et al., 2020; 
Sheng et al., 2018).

Figure 6: Comparison of HO failure 
(Ndashimye et al., 2020; Sheng et al., 
2018).

handover before that of the network selection it can 
take an absolute decision at the increase of vehicle 
speed. The main reasons behind the degradation of 
handover are illustrated below.

Selection of parameters to select the suitable 
network which requires considering vehicle metrics 
as well as the BS metrics:

•	 The number of handovers increases due to the 
absence of prediction of the vehicle regarding 
the need for handover. This leads to an in-
crease the number of unnecessary handovers 
which also requires large resource blocks for 
performing the computations.

The handover failure rate HOFR is computed 
mathematically based on the below equation:

HO
HO

HO HOFR
F

S F

=
+ �

(14)
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The terms HOF and HOS represents the number of 
handover failure and handover success, respectively. 
According to the count of these measurements, the 
handover failure rate is determined. The handover 
failure is caused because of the poor handover 
decision; hereby the proposed work first predicts the 
handover requirement from the vehicle request by 
learning the environment and then if the decision is to 
perform handover, it selects a target network. From 
the comparative graph, the average value of failure 
rate in proposed is 0.015, while the previous work 
achieves 0.13, 0.04, 0.07, and 0.03 in conventional, 
TOPSIS, ANDSF-HO, and V2I-MoLoHA, respectively. 
The minimization of handover failure reflects on 
absolute handover decision. Similarly, the reduction in 
the number of handover shows that the unnecessary 
handover is reduced by efficient prediction and 
network selection in proposed.

Table 3 gives a comparison on the average values 
estimated from the performance of conventional 
method, TOPSIS, ANDSF-HO, and V2I-MoLoHA in 
terms of number of handover and handover failure. 
Then the improvement percentage of handover 
efficiency is depicted in the above table. The handover 
efficiency impact on other network parameters that 
enhances overall network efficiency.

Throughput, delay and packet loss

Throughput is one of the significant performances 
metric in a network and it is mathematically computed 
using the formula as follows:

T
P

R PL
sz

tt

 
1 2

0 5

.
.

�
(15)

The throughput T is estimated from the packet 
size PSZ, round trip time Rtt and packet loss PL.

Figures 7 and 8 show the graphs for throughput, 
and delay. From Figures 7 and 8, there is an 

increase in the throughput and decrease in delay 
when compared to the existing techniques. This is 
due to the optimal selection of routes using jellyfish 
optimization algorithm. The graph shows little 
increase, and drops in the delay. The end-to-end 

Figure 7: Comparison of throughput 
(Ndashimye et al., 2020; Sheng et al., 
2018).

Table 3. Comparison of HO efficiency.

Method Average number of HO Better efficiency Average HOFR Better efficiency

Conventional 5.51 55% 0.133 90%

TOPSIS 2.15 20% 0.041 40%

ANDSF-HO 3.57 30% 0.069 60%

V2I-MoLoHA 3.03 25% 0.029 20%

Proposed 1.30 – 0.01 –

Figure 8: Comparison of end-to-end 
delay (Ndashimye et al., 2020; Sheng 
et al., 2018).
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delay is determined in terms of transmission delay 
between the relay vehicles from the source vehicle to 
the destination vehicle. The end-to-end delay (EED) is 
determined as follows:

EE
Nb N N

R N N

Nb N N

R N N

Nb N N

R N ND
n m

n m

  
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  
 
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0 1

1 2
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,

,
�…

   
� (16)

Let the vehicles in a route be represented as N0, 
N1, N2, …, Nn, Nm for which the number of bits in each 
node is denoted as Nb and the rate of transmission 
is R. The N0 is the source vehicle node, Nm is the 
destination vehicle node, while the nodes are the 
relay. In accordance to the estimation of the delay a 
better efficiency in the route selection is analyzed. In 
a route, the delay occur between every pair of vehicle 
due to the use of signal strength and hence the delay 
is predicted for each pair and end-to-end delay from 
the source to destination is determined.

The comparative results depict that proposed 
work is better than the previous conventional method, 
TOPSIS, ANDSF-HO, and V2I-MoLoHA. Among all 
the previous work, the conventional method of using 
only signal strength results in poor performance due to 
the growth of multiple challenges in data transmission 
of vehicles. Table 4 illustrates the mean value deter
mined for each work in the performance of throughput 
and delay. Based on the mean throughput and delay, 
the percentage of improvement is proposed than  
the existing works. As per the comparison, a minimum 
of 23% and a maximum of 46% is better perfor
mance than the previous methods in this network  
(Table 5).

One of the major reasons for the increase 
in packet losses is due to the link degradation 
problems which occur mainly due to high vehicle 
density, poor signal quality. In our work, we have 
proposed a jellyfish optimization algorithm for the 

Table 4. Comparison of throughput and delay.

Method Mean  (kbps) Better efficiency Average delay (ms) Better efficiency

Conventional 13.7 46% 39 21%

TOPSIS 35.96 23% 30 12%

ANDSF-HO 25 34% 37 19%

V2I-MoLoHA 31.89 27% 34 16%

Proposed 58.89 – 18 –

Table 5. Comparison of packet loss.

Method
Packet 
loss (%)

Better 
efficiency

Conventional 48 21%

TOPSIS 32.4 12%

ANDSF-HO 24 19%

V2I-MoLoHA 18.8 16%

Proposed 12 –

selection of routes taking into account vehicle 
metrics, channel metrics, and transmission metrics. 
Figure 9 shows the graphical plots where there is a 
decrease in the packet loss concerning the vehicle 
density due to consideration of multiple metrics for 
selecting the shortest path. From the figure, when 
there is an increase in the vehicle density, there are 
possibilities of an increase in data transmission due 
to which the packet loss can increase. However, 
in our work, the packet losses are minimized due 
to the selection of optimized routes. The previous 
works of TOPSIS, ANDSF-HO, and V2I-MoLoHA 
fails to select the best route among the available 
route between source and destination. Therefore, 
the deployment of an algorithm for selecting the 
best route minimizes packet loss. Even the vehicle 
density increases there is a reduction in packet 
loss since not all vehicles will use the route for 
transmission. That is to say, the vehicles nearby will 
not require data transmission. Due to this reason, 
the packet loss in the proposed work does not 
increase suddenly with the increase in the number 
of vehicles.
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Result discussion

In this section, the obtained results are discussed 
concerning the evaluation metrics used in this work. 
The handover-based metrics and data transmission-
based metrics are discussed.

First, number of handover and handover failure: 
handover is the process of changing the RAN 
connectivity from one network to another. In general, 
5G is a heterogeneous network that has support for 
all short-range and long-range data transmissions. 
Due to the presence of a variety of RAN, the 
process of network selection is significant in the 5G 
environment. On the other hand, the vehicles move 
at a different speeds, so the concept of handover 
is incorporated. This work proposes handover 
prediction and selection of networks, which was not 
performed in previous work.

In the existing study of the TOPSIS algorithm, 
ANDSF, and V2I-MoLoHA methods, the network 
was selected from the computation of one or more 
metrics once it receives the request from the vehicle. 
While in the proposed work, on receiving a vehicle 
request, it predicts the requirement of handover, 
and then it selects a network only if needed. The 
prediction process using dynamic Q-learning leads 
to minimizing unnecessary handover and then 
F-CNN leads to improve optimal network selection. 
Hereby 45 to 50% of the performance of handover is 
improved than the existing algorithms.

Second, throughput and delay: throughput and 
end-to-end delay are the important parameters that 
are used to measure the performance of the proposed 
work with the previous algorithms. The selection of 
routes using an optimization algorithm with vehicle 
metrics can identify an optimal route. As a result, 

Figure 9: Comparison on packet loss 
(Ndashimye et al., 2020; Sheng et al., 
2018).

40 to 45% of the throughput is improved than the 
previous methods. The improvement in throughput 
will also impact other network parameters. Then the 
end-to-end delay is 10 to 15% improved than the 
previous algorithms.

The proposed algorithms for handover decision, 
network selection, and routing have a major impact 
on the performances of the network. This work takes 
into account the most essential metrics for making 
a decision and network selection. As a result, the 
proposed work achieves better performance when 
compared with previous work of handover.

Conclusion

We have proposed three algorithms for making 
handover, network selection, and routing in the IoV 
environment due to the presence of multiple radio 
access networks. The data transmission requirement 
depends on each data type. Dynamic Q-learning 
algorithm is used for making handovers by computing 
the dynamic thresholds using Shannon entropy rule, 
and also determines the need for handover. It is clear 
from the results that using the dynamic Q-learning 
algorithm, there is a reduction in unnecessary hand
overs. Appropriate selection of network is achieved 
using fuzzy-CNN that processes multiple requests 
simultaneously and enables to considerate multiple 
parameters to select the network. Besides, a routing 
algorithm is proposed that forms V2V pairs and 
selects the best route using a jellyfish optimization 
algorithm to reduce end-to-end delay, and packet 
losses. The objective function is defined using vehicle 
metrics, channel metrics, and performance metrics. 
The simulation results have shown the superiority 
of the proposed work considering mean HO, HO 
failure rate, throughput, delay, and packet loss as  
the evaluation metrics. The evaluation of switching 
delays between multiple RAT is the future scope of our  
work.
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