Universiti Teknologi Malaysia Institutional Repository

Unsteady free convection flow of water-based carbon nanotubes due to non-coaxial rotations of moving disk

Noranuar, Wan Nura’in Nabilah and Mohamad, Ahmad Qushairi and Shafie, Sharidan and Khan, Ilas (2021) Unsteady free convection flow of water-based carbon nanotubes due to non-coaxial rotations of moving disk. Journal of Applied Science and Engineering (Taiwan), 25 (3). pp. 401-410. ISSN 2708-9967

Full text not available from this repository.

Official URL: http://dx.doi.org/10.6180/jase.202206_25(3).0005

Abstract

Nanofluid is one of the significant developments for having an efficient heat transport process. Its implementation in a non-coaxial rotating system has benefited from designing a mixer machine with two stirrer blades, cooling fan, and jet engines. This study analytically investigates the free convection of unsteady non-coaxial rotating nanofluid flow through a moving disk. The suspension of single-wall or multi-wall carbon nanotubes in water is known as the nanofluid in this study. The fluid motion is affected by the effects of rotation and buoyancy forces. Using suitable dimensionless variables, the dimensional coupled partial differential of momentum and energy equations along with their initial and moving boundary conditions are converted into the dimensionless form. The expressions for temperature and velocity profiles are obtained by solving governing equations using Laplace transform method. The validity of obtained solution is confirmed by having a good agreement when comparing present results with the published result. The results show that the insertion of CNTs particles into the rotating water causes the temperature and velocity profiles to increase. The amount of heat transferred by SWCNTs is greater than MWCNTs. Increasing CNTs particles has descended both primary and secondary skin friction but increase Nusselt number. Further analysis with the help of pictorial discussion for the fluid flows and heat transfer under the influences of nanoparticle volume fraction, Grashof number, the amplitude of disk, and time is carried out.

Item Type:Article
Uncontrolled Keywords:moving disk, nanofluid, non-coaxial rotation
Subjects:Q Science > QA Mathematics
Divisions:Science
ID Code:94786
Deposited By: Yanti Mohd Shah
Deposited On:29 Apr 2022 22:26
Last Modified:29 Apr 2022 22:26

Repository Staff Only: item control page