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Abstract. In this study, polyvinylidene fluoride (PVDF) hollow fibre membrane was modified 

by adding TiO2. TiO2 presence affects the membrane structure becomes more less hydrophobic 

which makes the membrane less fouling. Membranes were made via dry-wet spinning method 

and calcined under vacuum condition by furnace (100, 300, and 500 °C). Besides, PVDF-TiO2 

uncalcined membrane were also prepared as comparison to investigated the effect of 

calcination on hollow fibre membrane’s functional groups. Fourier Transform Infrared (FT-IR) 

spectra indicated that all PVDF-TiO2 membranes have bands of OH in the TiO2 at ~1600 cm
-1

. 

Peaks of α-phase PVDF crystals appeared at ~876, ~876, and ~872  cm
-1

 for uncalcined, 100 

and 300 °C, while for 500 °C the PVDF peak only shows at 874 cm
-1

. The peaks at ~1200 cm
-1

 

represent CF2 groups. Peaks at ~1400 cm
-1

 assigned to CH2 groups, but it does not observed for 

500 °C.  Deconvolution by Fityk software that shows calcination using vacuum condition gives 

the compounds gradually decomposes. At high temperature calcination lead the CH2 peak 

extremely lost.  

1. Introduction 

Nowadays, a method for removing salt of water through a selective barrier called membrane is known 

as desalination technology. To save more energy consumption, desalination via pervaporation is 

preferred to reverse osmosis (RO) because it only requires 1 bar pressure [1-3]. Pervaporation has 

been applied for water desalination, alcohol dehydration, and volatile removal [2, 4-10].  

Pervaporation separates the mixture by partial vaporization. Polyvinylidene fluoride (PVDF) suits for 

desalination because of their high salt rejection [11]. Moreover, the hydrophobicity of membrane 

caused on fouling.  

 In the last decade, polymeric membranes immobilized with TiO2 have gained much attention due to 

specific benefits. Firstly, chemical modification cannot be happened because there is no covalent bond 

formation between polymeric and catalyst. Secondly, different chemicals show different affinities for 

polymeric membranes [12]. TiO2 was also chosen because it is inexpensive, non- toxic, and 
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commercially available. TiO2 addition within the PVDF material combination creates a new material 

that will increase the advantages such as reduce the membrane hydrophobicity and formed a less 

fouling material [13]. Because TiO2 has an anti-fouling properties [14]. Fouling has been known as a 

major problem in membrane technology field that resulting in flux reduction. Among all polymeric 

membranes, polyvinylidene fluoride (PVDF) is often used because it provides good chemical 

resistance, chemical stability, temperature stability and mechanical strength [4, 15-18]. There are 

various transitions of PVDF polymorph such as as α, β, γ, and δ and density alters[19]. One of  

common material used in hollow fibre membrane is made from PVDF [20].    

 More specifically, membrane preparation technique depends on the material used, desired structure 

and morphology. Several membrane configurations included hollow fibre, tubular and flat sheet are 

found in the membrane modules. In application, hollow fibre membrane has a better flux performance 

compare to flat sheet [21], because of their huge of square meters of membrane per cubic meter [22]. 

Hollow fibre also has high mass transfer and thermal transfer efficiency that makes it less affected by 

temperature [23-25]. In other hand, flat sheet membranes require membrane support as well as tubular 

membrane because the packing density [26]. 

Several works have investigated PVDF-TiO2 in various configuration and fabrication method. 

Previous study has developed PVDF-TIO2 flat sheets membrane [27]. Méricq, Mendret, Brosillon and 

Faur [28] reported PVDF-TiO2 preparation by non-solvent induced phase separation (NPIS) wet 

process. It resulting in finger-like macrovoid structure and hydrophilic properties. Other studies made 

a PVDF-TiO2 hollow fibre ultrafiltration membrane using a wet-spinning method. It reported a strong 

interaction between inorganic network and polymeric that led to TiO2 dispersed uniformly. A few 

amounts of TiO2 addition even increases mean pore size compare to PVDF without TiO2. It also found 

TiO2 limit the PVDF decomposition during calcination and enhances stiffness of polymer chains and 

limited their thermal action [29].  

 This aim of this work is to brings a new insight to prepare PVDF-TiO2 with various of vacuum 

calcination temperature for pervaporation via dry-wet spinning and investigated the functional groups. 

The simplicity, fast method, and able to produce asymmetric cross section structures become the 

beneficial of dry-wet spinning [30]. In addition, vacuum sintering offers a clean atmosphere and 

evaporate impurities in membrane material [31]. Deconvolution was carried out using fityk software to 

know the material’s surface area during vibration and stretching [32, 33].  

 

2. Experimental 

The fabrication of PVDF-TiO2 hollow fiber membranes followed the process on previous research 

[34]. It consist of  three stages (1) dope solution preparation to remove moisture with drying 21 wt% 

PVDF and 3 wt% commercial TiO2 at 50ºC for 24 h, (2) mixing PVDF (PVDF, kynar 760 powder 

series), commercial TiO2 with DMAC  (DMAc, QReC) as a solvent (3) spinning membrane through 

dry-wet spinning technique. The obtained PVDF/TiO2 hollow fibre membranes were calcined at varied 

temperature using furnace vacuum for an hour. Membranes were characterized using Fourier 

Transform Infra Red (FTIR). Fityk was used to deconvoluted overlapping peaks in PVDF-TiO2 

material. Schematic set up spinning hollow fibre membrane can be seen in Figure 1, as follow. 
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Figure 1. Schematic set up spinning hollow fibre membrane 

3. Results and discussion 

The FTIR analysis was carried out to know the crystal structure of PVDF/TiO2 hollow fibre. As can be 

seen in Figure 2. Strong bands at ~1600 cm
-1

 and below 800 cm
-1

 attributed to OH area in the spectrum 

of immobilized TiO2. Bands at 876, 876, and 872 cm
-1 

could be indicated as α-phase PVDF [35] for 

uncalcined, 100 and 300 ◦C, respectively. Small difference of α-phase PVDF band become very weak 

was observed at 874 cm
-1

 for 500 ◦C. This indicates that α-phase PVDF transformation to β-phase 

PVDF has occurred along with increasing temperature during vacuum calcination. This transition 

results similar to earlier study in literature [36]. PVDF crystalline has different phases such as α, β, 

and γ depending on processing methods [37]. Specifically, there are strong peak of CF2 groups at 

~1200 cm
-1

 for uncalcined, 100 and 300 with a weak peak of CH2 at 500 ◦C. While, CH2 groups found 

at ~1400 cm
-1

. However, the CH2 peak does not appeared in 500 ◦C. (CH2-CF2)n itself is the chemical 

structure in the PVDF molecules. Solvent impurities almost completely disappeared at higher 

calcination. This condition promotes TiO2 crystallization at 500 ◦C [38].The result obtained in this 

study is same with Dzinun, Othman, Ismail, Puteh, Rahman and Jaafar [39] which fabricated dual 

layer of hollow fibre membrane. There are many overlapping peaks in PVDF. This peak can be 

deconvoluted using fityk software. 

 
Figure 2. Spectra FTIR of PVDF/TiO2 hollow fibre membranes in the region between 1800 and 700 

cm
-1

 for uncalcined; calcined at 100, 300 and 500 °C 
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To confirm the network structure is affected by calcination temperature, a quantitative analysis was 

conducted by deconvolution of the FTIR patterns using Fityk software. Figure 3 illustrated Gaussian 

bands of IR spectra of PVDF/TiO2 hollow fibre membranes which uncalcined and calcined varied 

temperature. Deconvolution method was applied to deconvolute the FTIR spectra by fitting the peaks 

until the deconvolution spectra approach the experimental data [4, 40]. The peak envelope in the range 

1600 and 700 cm
-1

 is assumed to consist of peaks components arising from the CH2, CF2, PVDF, and 

TiO2 group. It is found that there are large reductions on the areas under the 1500 to 700 cm
-1

 

wavelength after calcination process over 300 °C. The results in Figure 3 prove that the stretching β-

crystal transformed into α-crystal by the calcination. 

 

 
Figure 3. Deconvolution of the FTIR spectra of PVDF/TiO2 hollow fibre membranes in the region 

between 1800 and 700 cm
-1

 for uncalcined; calcined at 100, 300 and 500 °C 

 

The peak area value of PVDF/TiO2 hollow fibre membrane which uncalcined and calcined to high 

temperature was presented on Figure 4. The uncalcined of PVDF/TiO2 hollow fibre membrane shows 

five main peaks which consist strong TiO2, CH2, CF2 and PVDF groups. When the samples calcined at 

100-500 °C, the PVDF and both of C group gradually decomposed. The CH2 and CF2 groups 

extremely disappear at calcined temperature of 500 °C and left over the TiO2 (1.69 unit area) and weak 

PVDF groups (0.51 unit area) based on Figure 4. It is only exhibited the TiO2 group and small PVDF 

peaks. The α PVDF was transformed into β-crystal as increasing calcined temperature at 300 °C. β-

crystal is the most desired crystal structure in PVDF as TTTT configuration which produce the highest 

dipole moment [41].    
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Uncalcined hollow fibre membranes showed sharp and narrow curve at absorption band of 1400 

cm
-1

. The absorption band at 1400 cm
-1

 is referred to the in plane bending vibration of CH2 bond, 

which belongs to the PVDF chain (Figure 3). Reduced in absorbance for absorption band 1400 cm
-1

 

signified low bending vibration it is due to at 500 °C that CH2 groups are already oxidized [4, 42]. As 

observed for calcined hollow fibre membranes at 300 °C was presented the low PVDF group of 1.38 

which indicating the existence of β-crystal [41].  It concluded that PVDF/TiO2 hollow fibre membrane 

with calcination temperature of 300 ◦C was the optimized membrane in this work due to the β-crystal 

of PVDF was increased. 

 
Figure 4. represents peak area of PVDF-TiO2 

 

Conclusion 

This work shows that calcination temperature has a considerable influence on structure properties of 

hollow fibre membranes derived from PVDF/TiO2. The FTIR spectra of all PVDF/TiO2 membranes 

indicated bands of OH in the TiO2 at ~1600 cm
-1

. Peaks of α-phase PVDF crystals appeared at ~876, 

~876, and=~872  cm
-1

 for uncalcined, 100 and 300 °C, while for 500 °C the PVDF peak only shows at 

874 cm
-1

. The peaks at ~1200 cm
-1

 represent CF2 groups. Peaks at ~1400 cm
-1

 assigned to CH2 groups, 

but it does not observed for 500 °C.  Deconvolution by Fityk software that shows calcination using 

vacuum condition gives the compounds gradually decomposes. At high temperature calcination lead 

the CH2 peak extremely lost due to oxidized reaction. The highest β-crystal PVDF properties is 

necessary obtained by calcined at temperature 300 °C. It is considered that in Gaussian peak 

component are related to the different calcined temperature which allow us to design the polymer 

structure of PVDF/TiO2 based on its peak intensities. 
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