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Abstract - The explosion of dust particles poses significant risks to the health and safety of humans 
working in process industries such as mining, energy, and manufacturing. A dust explosion is the 
rapid deflagration of particles in a large volume of air or gaseous oxidants. Since industrial dust 
explosions can occur in any plant equipment or environment, it is crucial to identify, examine and 
highlight the highly probable sources and risk areas for dust cloud formation and ignition along with 
damage control measures. Therefore, the paper presents a concise review of the various combustion 
classifications of dust along with the mechanisms of dust explosion, ignitability factors, and severity 
characteristics, explosibility testing methods, and damage control measures. Dust is broadly 
classified according to its explosive value, which indicates that its moisture, particle size, dust 
concentration, oxidant concentration, and turbulence are crucial to a dust explosion. Furthermore, 
the dust explosion mechanism reveals that dust particles undergo explosion when confined and or 
mixed oxidants, ignition sources or heat as described in the "explosive pentagon" concept. To 
address the risks posed by dust explosions, reduce ignitions and the severity of these hazards, 
numerous testing methods have been proposed or developed. The most notable characteristics of 
explosion severity are the maximum explosion overpressure (Pmax), maximum rate of pressure rise 
(dp/dt) max, dust deflagration index (Kst), and minimum explosibility concentration (MEC). 
Likewise, the measures for containing, isolating, suppressing, and venting the effects of dust 
explosion were also highlighted in detail. In conclusion, the review highlighted the role of the 
particles and dust clouds and the need to identify and highlight the sources of dust explosion that 
pose risks to human health and safety in the industry. 

Keywords: Dust Explosion; Ignitability; Explosibility; Explosion Severity; Damage Control.  

1.  Introduction 
The term dust is described as any finely divided solid materials or substances that have a diameter of below 
420 μm. Dust can also be defined as particles that originate from numerous sources including the air, soil, 
wind or processes such as explosions. The term explosion is a thermochemical process in which flammable 
materials undergo rapid combustion; thereby generating suspended particles in the air [1]. Therefore, dust 
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explosion can be defined as the rapid combustion of particles suspended in a large volume of air or other 
gaseous oxidants [2]. It is also considered as the deflagration of materials or substances in an unreacted 
medium at rates below the speed of sound [3]. Typically, dust explosions in the industry occur in plant 
equipment such as mills, dryers, mixers, classifiers, conveyors, storage bins and hoppers [4], which pose 
significant risks to human health, safety, and the environment. In addition, dust explosions pose severe 
hazards to processes in industries such as mining, energy, and manufacturing among others [5]. Hence, 
extensive research and technological developments have been performed on the nature, severity, 
mechanisms, and damage control for dust explosion. Numerous methods have also been proposed to predict 
the process, parameters (such as dust particle size and turbulence), and consequences of dust explosions.  

The characteristics of dust particles are determined through various standards such as British Standards 
Association (BS EN 14034-3, 2006), ASTM Standard E1226 (ASTM, 2010b), Japanese Industrial 
Standards (JIS) [6]. The IEC (International Electrotechnical Commission) standard method implemented 
through the Hartmann cylindrical tube 1.2 L and other explosion chamber devices are also widely used in 
dust particle characterisation [7]. The Hartmann tube and other devices such as the 20 L aspheric or 1 m3 
vessel using suitable capacitor-discharge devices have been successfully used to determine the minimum 
ignition energy (MIE) [8, 9]. As the ignition source is stronger than the chamber volume, the possibility of 
explosion is high, which results in an overestimation of the maximum overpressure and deflagration index 
(Kst) [1].  

The different methods for determining dust explosion characteristics also contribute to different values 
of the same type of dust and equipment. Likewise, numerical simulation models have been designed to 
mitigate or prevent dust explosions for practical applications[10]. Hence, the physics and chemistry of cloud 
generation and combustion of dust requires detailed theoretical and experimental studies to prevent 
inconsistencies in the reliability of data. However, the relationship between the laboratory test conditions 
and actual industrial conditions is not always straightforward, although laboratory testing can provide 
quantitative data on various hazards associated with dust explosions [11].  

Kumar et al. [12] showed a good agreement in determining the maximum explosive overpressure of 
coal dust and corn starch in a 10.3 m3 cylindrical vessel compared with the smaller vessel. Büschgens and 
Pikhard [13] reported that the characteristic explosion values for icing sugar particles are below 0.063 mm 
in diameter with maximum explosion pressure of 9 bar, severity index of 140 bar m/s, and lower explosion 
limit of 60 g/m3. Other factors that influence the characteristic explosion values are the physical properties 
such as particle size and concentration of the dust. Furthermore, the authors revealed that the maximum 
particle size of icing sugar that can cause an explosion is 0.4 mm at 15 kg/m3 concentration. To initiate an 
explosion, the concentration of sugar must be at least 750 g/m3 at a particle size of 0.4 mm or 60 g/m3 at a 
particle size of 0.063 mm. If the particle size of the icing sugar bulk density is 0.8 g/cm3, a dust layer that 
is greater than 0.075 mm could be critical. As the concentration of the dust increases, the effect of particle 
size on the dust explosion process will diminish [13].  

Therefore, this paper seeks to provide a concise overview of the classifications and categories of dust 
based on the various combustion classes that exist in the literature. The mechanisms of dust explosion 
comprising the dust cloud formation and ignition processes will also be highlighted in detail. Furthermore, 
the various factors that impact on the severity and ignitability of dust explosion are presented. The paper 
will also identify, examine, and highlight the various testing methods in the literature used to test the 
explosibility of dust particles during the explosion at the laboratory or small scale setups. Lastly, the paper 
presents the various defining characteristics of explosion severity, along with the measures devised by the 
industry and academia to control the real and potentially damaging effects of dust explosion. 

2.  Classification of Dust 
Dust can be classified in numerous ways based on its explosive value. According to Vijayaraghavan [14], 
all explosive dust is flammable but not all combustible dust is explosive. There are very explosive powders 
such as gun powder and dynamite that are easily burned without oxygen [15]. However, materials like 
anthracite and graphite have a high calorific value of heat combustion, these do not explode easily. 
According to the classification of the HM Factory Inspectorate of the United Kingdom (UK) Department 
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of Employment [16], group A is classified as dust that propagates flame when ignited in the test device. 
Meanwhile, Group B is used for dust that does not propagate flames in the test device. These are suitable 
for dust that approaches or is near atmospheric temperature (25 °C) at the ignition time [16]. Dust that is 
ignitable but not explosive may detonate when combined with fuel-based dust. For example, fly ash may 
explode when spiked with pulverised coal or petroleum coke [17]. Dust can also be categorised into the 
following combustion classes (CC) as shown in Table 1. 
 

Table 1. Classification of dust base on combustion class [18]. 

Combustion Class Description 
CC1 No ignition; no self-sustaining combustion 

CC2 Short-time ignition and fast extinction; local combustion 

duration is short. 

   

CC3 Local combustion or glowing without spreading; Continuous 

local combustion but no propagation. 

   

CC4 Glowing flame spread; spread smouldering combustion 

CC5 Spread fire; spread open flames 

CC6 Explosible burning; explosive combustion. 

 

The classification is based on the measured ignitability and combustibility of the dust layer along with 
the behaviour of the dust pile. However, the classification is limited when subjected to a gas flame or hot 
platinum wire [18, 19]. The classification of dust based on combustion grade is more advantageous as it 
does not depend on temperature because different specks of dust have different minimum ignition 
temperatures. 

3.  Mechanism of Dust Explosion 
The inertial forces in dust clouds can produce fuel concentration gradients unlike in the case of premixed 
gases [20]. Fundamentally, dust explosions can occur when dust particles/layers are distributed in the air 
such that the concentration of dust falls inside the explosive range. Typically, the requirement for a dust 
explosion is described based on the "explosive pentagon". The concept submits that dust explosion occurs 
due to the confinement and mixture of combustible dust, oxidants, ignition sources or heat [21]. Although 
confinement is a prerequisite for dust explosion, the pressure generated from a rapid reaction in the cloud 
of dust is greater than the pressure dissipated at the cloud boundary. Hence, a highly damaging explosion 
will take place in open-air [22]. In practice, the swift oxidation of fuel-based dust particles through either 
deflagration or detonation causes a significant increase in temperature and pressure. Deflagration is defined 
as a combustion event in which the resultant flame spreads slowly compared to the speed of sound. 
Conversely, during the detonation process, the flame is propagated faster (flame speeds as high as 1200 
m/sec) than the speed of sound. The standard explosion-proof systems can contain deflagration events 
without explosion because the system maintains fast response times [23]. Therefore, the assessment of 
hazards in industries that are susceptible to dust explosions requires identifying major events. Zhi [24] 
identified some significant events, besides the five primary pentagon factors, that indirectly result in the 
explosion of dust. These typically depend on a variety of factors including the design, operational, and 
management deficiencies. For example, dust accumulation could be due to inefficient ventilation systems 
resulting from sub-factors such as equipment failure [25]. Poor housekeeping can also cause dust to 
accumulate in the system. However, in some process industries such as silos, dust accumulation is 
considered a normal operating condition. Therefore, hazards should be determined based on the 
characteristics of individual processes. 
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3.1.  Dust Cloud Formation Processes 
According to Du et al. [26], explosions occur as a result of the swift evolution of heat and gaseous oxides 
when fuels undergo chemical reactions with oxygen. Dust with a 1 mm layer and density of 500 kg/m3 on 
the floor can generate a cloud with an average concentration of 100 g/m3 if distributed evenly in a room of 
5 m in height [1]. The explosion is triggered during a primary explosion that typically happens in process 
vessels such as cyclones, hoppers, filters and bucket elevators. According to Eckhoff [10], the primary 
explosion of dust can generate a secondary explosion before the flame by entrainment of the deposits and 
layers of dust in a separate vessel. The occurrence of an entrapped dust layer in a long tube caused the 
propagation of dust explosion along a tube that could be attributed to the explosion in the second vessel. 
This could be experimentally deduced depending on the type of ventilation in the second vessel. Other 
notable factors include the severity of the primary explosion, pipe diameter, and any blockages in the 
connecting pipe [27]. However, the cracking of the primary explosion in the containment system may cause 
the dust layer to disperse into the air resulting in a secondary explosion. In some cases, depending on the 
thickness of the dust layer and the area occupied by the dust layer, the severity of the secondary explosion 
may be greater than the initial explosion [28]. 

3.2.  Ignition Processes 
The ignition of combustible dust clouds can only occur in the presence of a flame source or adequate heat. 
Typically, the ignition is triggered in various ways from low energy to high energy ignition sources [29]. 
However, the ignition source differs in energy, power, and temperature. Due to the exothermic reaction, 
potential dust may explode by self-heating. In selected cases, the layer or deposited dust generates high 
temperatures, which result in internal combustion. In addition, the porous structure of the dust layer permits 
the permeation of oxygen in the particle surface, which reduces the thermal conductivity of the layer [30]. 
Contaminants such as oil, water or wood present in combustible dust mixtures may also contribute to self-
heating. The storage of dust in large quantities at high initial temperatures may also cause combustible dust 
explosions because of the high surface area and sufficient air circulation [1, 28]. The slow heating of dust 
deposits is called a smouldering nest. Previous studies have shown that even if the temperature is much 
higher than the minimum ignition temperature (MIT) of the dust cloud, the smouldering nest does not ignite 
most of the combustible dust. However, it is capable of igniting sulphur clouds at temperatures of 700-800 
°C [19]. A powerful trigger for ignition creates an open flame due to welding, cutting flames or smoking. 
The excess oxygen it provides may result in the sensitivity and severity of the explosive properties and is 
likely to occur in primary explosions [11]. Explosions could arise from thermal processes such as welding 
and cutting, along with hot surfaces such as lamps, steam pipes, heaters. Other sources include unintentional 
hot surfaces created by equipment moving parts such as engines, blowers, mills, and bearings. Hot surfaces 
are also believed to increase the temperature of the dust layer due to the thermal insulation, which increases 
the explosive strength of the dust cloud. Other dust explosion triggers are electrical and static sparks, 
lightning and shock waves [28]. 

4.  Factors Affecting Ignitibility and Severity of Dust Explosion 

4.1.  Particle Size 
The particle size of dust has a significant influence on the explosiveness of dust. As the particle size of dust 
decreases, there is an increase in the explosiveness [31]. Cashdollar [23] revealed that smaller particles are 
more easily dispersed, have longer airborne times, and more susceptible to combustion. Smaller dust 
particles require lower energy and will reduce the minimum concentration and the minimum temperature 
of ignition. This is because smaller particles have a larger surface area per mass [32]. Bartknecht and 
Zwahlen [2] reported that mixing a speck of coarse non-explosive polyethene dust with 5% fine explosive 
polyethene dust caused the mixture to explode. For very fine particles, the minimum explosive 
concentration (MEC) is independent of size. However, for larger sizes (> 100 μm), the MEC increases with 
particle size until it is not easily ignited. The small particle size significantly affects the maximum explosive 
overpressure Pmax and the maximum rate of pressure rise (dp/dt) max. However, as the particle size 
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increases, the optimal concentration of Pmax increases significantly [33]. Extremely fine and reactive dust 
can reach an overpressure of 26 bar, which could alter the quasi-detonative combustion transition [34]. 
When the process of devolatilization does not regulate the explosion rate, additional decreases in the particle 
size of most organic substances will no longer enhance the combustion rate [4]. Typically, small-sized 
particles yield high explosion pressure due to the large surface area and will contact with oxygen to produce 
an explosion with increasing particle size where the maximum pressure will reduce gradually. In addition, 
Kst is not a value inherent to the substance because it varies based on the shape of the test instrument, 
ignition energy, time delays, and dispersion system that affect the turbulence degree. The conditional 
constant KSt is mainly determined by the chemical nature of the dust and its reaction surface area, by 
keeping these boundaries. 

4.2.  Dust Concentration 
The dust in the air mixture is required to be within a definite range of concentration for a dust explosion to 
occur. At concentrations below the minimum levels, the heat released by the combustion of particles near 
the ignition source is inadequate to stimulate the ignition of particles. Consequently, flame propagation 
does not occur [35]. When the concentration is above the minimum level, flame propagation is favoured 
and the flame speed increases at higher the concentration of the dust. As the flame speed increases, the time 
to devolatilization declines and a lesser percentage of the volatile material is progressively accomplished 
[36]. On the whole, it is problematic to accomplish the maximum concentration of dust due to the uneven 
concentration in the whole vessel. Hence, a substantial quantity of carbon monoxide (CO) is formed at high 
concentrations and dust tends to agglomerate, which inhibits the dispersion of dust clouds [12]. Westran et 
al. [37] reported, at higher concentration of sugar dust, the maximum overpressure and higher rates of 
pressure even out as the levels of oxygen are consumed in the chamber. Many methods and equipment have 
been developed to achieve minimum explosive concentrations. Conversely, significant data exists from 
numerous researchers based on the following factors namely; dust cloud formation methods, cloud 
uniformity, and equipment [6]. The physical structure and chemical properties of dust significantly affect 
the explosiveness and ignition sensitivity. Therefore, suitable methods for proper sampling and obtaining 
chemical properties of dust are needed to accurately assess real industrial hazards [11]. Eckhoff [4] reported 
that the concentrations of organic dust required to trigger explosions as shown in Figure 1. Based on Figure 
1 range from a minimum concentration required to trigger the explosion of organic dust is from 100 g/m3 
to a few kg/m3. Conversely, the outlined range of concentration is affected by other factors including 
particles size, moisture content and mass fraction of the inert material. Moreover, the different value 
obtained to estimated minimum value to trigger dust explosion due to change the method used, the ignition 
energy and the size of the explosion device [4]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Range of explosive dust concentrations in air at normal temperature and pressure for natural 
organic dust [4]. 
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4.3.  Presence of Moisture 
Typically, the explosibility of materials decreases at higher content of moisture. Hence, the occurrence 

of moisture in dust may reduce the strength and ignition sensitivity of the dust cloud [38]. Mintz [39] 
performed an explosion test on dried and undried corn starch at particle sizes from 120 μm to 150 μm. It 
was found that the dried sample became explosive and the undried sample could not be exploded for very 
fine dust, which confirms that moisture content is an important influence. The high moisture content of the 
dust significantly reduces the ignition sensitivity of the dust [40]. The influence of moisture on the minimum 
ignition energy is very significant especially in Tapioca as shown in Figure 2 [40]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Effect of moisture on minimum electric spark ignition energy of dust [40]  

Eckhoff [11] showed that the increase in moisture content reduced the severity of corn starch as the 
moisture content increases from zero to 28%. Hence, the highest rate of pressure rise lowered by 100 (bar/s) 
for corn starch. However, the highest rate of pressure rise is between 100 (bar/s) and 200 (bar/s) for dry 
starch based on the ignition delay time. For a material with 28% moisture content, the highest pressure rise 
rate ranges from around 20 (bar/s) to slightly less than 100 (bar/s). Traoré et al. [41] studied the influence 
of relative humidity on the explosion parameters of icing sugar as shown in Figure 3. 

As observed, the moisture content increases from near zero to 0.34%. In addition, as the maximum rate 
of pressure rise increases, there is a corresponding decrease as the moisture content is increased further. 
The initial increase in the severity of the sugar explosion could be the reason for the water reaction that 
converts sucrose into fructose and glucose. Furthermore, the adsorption and desorption of interfacial gases 
are caused by the effect of humidity, which creates an oxygen-saturated “syrup” layer on the surface of the 
particles and enhances the potential for spontaneous combustion. This modified surface stimulates the 
kinetics of the combustion of the sugar particles. However, the effect of moisture is highly dependent on 
the chemical properties of the particles. Typically, moisture reduces the severity of the explosion and 
ignition sensitivity. 
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Figure 3. Influences of relative humidity on (Pmax) and (dp/dt) max of icing sugar at various dust 
concentrations [40] 

4.4.  Ignition Energy 
Dust requires stronger ignition energy than gas (10–100 mJ). However, the ignition energy required to 
initiate a dust explosion also increases with the level of turbulence especially for dust clouds [2]. The strong 
ignition used in smaller chambers could excessively energize dust explosions, thereby resulting in the 
overestimation of the overpressure and pressure rise rates [7, 42]. However, some studies have proposed 
5–10 kJ energy region for assessment of minimum ignition concentration (MIC). This is because the 
outcomes gained at the proposed energy levels are more stable and reproducible [43, 44]. The extra energy 
generated by a robust igniter increases the temperature of the explosive system, which could trigger the 
explosion of non-explosive dust [45]. Janès et al. [43] compared the MIC values measured with two 
different explosion tubes namely; the Hartmann and MIKE 3. Typically, the MIKE 3 device provides MIE 
results that are equal to or below values measured with the Hartmann device. This is especially true for 
energy ranges between 1 and 10 mJ and above 100 mJ, which is in good agreement with Lepik et al. [46]. 
However, numerous studies have determined the ignition sensitivity or severity of the explosion of icing 
sugar. Ramírez et al. [38] reported that, although, icing sugar did not H2O2 indicating it is non-oxidisable 
and requires temperatures above 270 °C for flammable volatile substances to be emitted. However, icing 
sugar is prone to self-ignition according to TG and DSC analysis. The dust for icing sugar appeared to 
present a very high risk of self-ignition, although the low melting of the product could impede its 
occurrence. 
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4.5.  Turbulence 
The explosive characteristics of dust are significantly influenced by turbulence, which poses grave anxieties 
to researchers of dust explosion [31]. The concerns are due to the lack of a comprehensive understanding 
of the variables that influence the dust explosion. Turbulence is vital due to various reasons. Pre-ignition 
turbulence occurs in dust or air suspensions due to the critical role of cloud development. Post-ignition 
turbulence in unburned clouds in front of the flame, which may be due to flow dynamics produced by 
combustion in the presence of walls, obstacles, and other confinements such as vents. Conversely, the level 
of turbulence could differ from one device to the other, which is contingent on the scattering vessel volume, 
air pressure, and the container geometry [47]. The increased rate of combustion and the corresponding 
higher rate of combustion during the explosion of dust causes an increase in turbulence which also raises 
the maximum explosion pressure and maximum pressure rise rates. Hence, the extrapolation of explosion 
data is complex, which can be empirically determined on a small scale in laboratories to large apparatus by 
cubic relations. In general, the ignitability of dust is adversely affected by turbulence, which indicates high-
energy sources of ignition are compulsory for testing the limit of flammability [48]. Abbasi and Abbasi [1] 
reported that a highly turbulent cloud would distribute dust evenly throughout it. When such a cloud is 
captured, the turbulence will produce a mill-like effect mixing the hot combustion/combustion portion of 
the cloud with the cold unburned portion, producing alternating three-dimensional hot 
combustion/combustion and cold unburned areas laminate. In short, if the latter is highly turbulent, it will 
quickly spread through the dust cloud thereby resulting in an explosion. Turbulence influences the rate of 
pressure rise far beyond the peak pressure. Conversely, when a not so turbulent cloud is burned an initial 
yet large amount of heat is released, which is locally concentrated due to its low heat dissipation rate. The 
further propagation of the generated flame in the dust cloud is completely based on the degree of dispersion 
of the dust. Hence, well-dispersed dust has a higher propensity to ignite [49]. 

4.6.  Oxygen Content of Oxidizer Gas 
The ignition sensitivity and severity of the explosion of the dust cloud is diminished with decreasing oxygen 
content of the gas distributed within the dust [50]. The oxygen content strongly affects the process dynamics 
of combustion. The maximum pressure is roughly related to the content of oxygen based on 
thermodynamics [51]. The maximum explosion pressure drops to around 16% in proportion to the oxygen 
content, whereas the maximum rate of pressure rise declines even more. Hence, the content of oxygen 
greatly affects the dust explosion process [1, 23]. For example, an oxygen concentration greater than 21% 
will increase the burning rate of the fuel. However, when the concentration is below 21%, the burning rate 
is lowered. This is because the fuel consumes oxygen during combustion, which reduces the oxygen 
concentration. Consequently, the burning speed of the dust is lowered. Eventually, the burn may disappear 
or perchance a mild explosion will take place. The fire will continue only when the concentration of oxygen 
in the air is above 10% [30]. Mittal [52] performed several experiments in different dust concentration 
ranges as shown in Figure 4.  

Based on Figure 4, the standard procedures adopted to examine the lower oxygen concentration (LOC), 
the first experiment was conducted at 21% oxygen to determine the most severe dust explosion. 
Subsequently, more tests were performed at different oxygen concentrations. In the initial experiment, the 
oxygen concentration was reduced by 3% and then 1%. The explosion characteristics with variable dust 
concentration and different oxygen levels. However maximum explosion overpressure reduced with 
reducing oxygen concentration. 
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Figure 4. Maximum explosion pressure with variation in oxygen concentration [52]. 
4.7.  Admixed Inert Dust Concentration 
The addition of inert materials to highly flammable materials reduces the ignition sensitivity of combustible 
dust [53]. When inactive substances are mixed with combustible powders, the influence of the additive can 
be noted at each step of the risk assessment process. However, inert gases could reduce the oxygen content 
of the planet's atmosphere so that no combustion occurs. Therefore, when selecting an inert gas, the 
reactivity of the dust, the strength and duration of the source of ignition are critical. In general, the evolution 
of Pmax as a function of inert solids content is characterised by a slight decrease and a sudden drop, while 
the kinetic factors are more susceptible to this addition, causing a steady reduction in (dp/dt)max [44]. 
Addai et al. [53] carried out test studies on the MIE and minimum ignition temperature (MIT) using the 
Hartmann tube 1.2 L. The tests were performed by mixing different quantities of three inert substances 
(magnesium oxide, ammonium sulphate, and sand) along with six flammable fragments of dust (brown 
coal, corn starch, high-density polyethene, niacin, stone pine, and toner). In general, the increase in the 
concentration of the inert material improved the MIE and MIT up to the verge of zero ignition was 
accomplished. The inert gas mixture allows for a minimum ignition risk range between 60% and 80%. 
Ganesan et al. [54] reported that the regular distance of the volatile particles in the MEC, energy content, 
along with the hypothetical and real inert fraction of mass essential to avert the propagation of the flame in 
the test dust is shown in Table 2. 

Based on Table 2, the distance amongst the sugar particles at MEC (30 g/m3) was about 450 μm 
calculated using the CAAQES chamber. When the distance amongst the particles is < 450 μm, deflagration 
takes place in the CAAQES compartment. Hence, it is assumed that an upsurge in the inert fraction of mass 
enhances the distance between the volatile particles, which stops the propagation of the flame. Hence, the 
inert fraction of mass improved up to the point the mean particle distance became larger than the mean 
particle distance at the MEC. An inert mass fraction whose average particle distance exceeds the average 
particle distance of the MEC is the theoretical inertness percentage necessary to avoid propagation of the 
flame. 

 



ILATOSPM 2020
Journal of Physics: Conference Series 1892 (2021) 012023

IOP Publishing
doi:10.1088/1742-6596/1892/1/012023

10

 

Table 2. Hypothetical and real inert mass essential to avoid dust deflagration [54]. 

Dust type 
 MEC Average distance  Energy  Inert mass fraction 

 

g/m3 Between particle  Content 
    

 Theoretical  Actual 
  (µm)  (J/g)  %  % 

Sugar  30 455  16575  64  47 
          

Corn starch  25 700  15630  49  48 
          

Rice flour  28 567  15765  59  50 
          

Dust XX  52 675  15395  49  47 
          

Rye flour  81 464  16590  43  49 
          

Brown rice  
72 472 

 
16640 

 
23 

 
40 

flour 
    

         
          

Wheat flour  85 564  1400  NA  NA 
          

4.8.  Degree of Dust Dispersion 
Dispersion is one of the most important characteristics of dust. It is defined as the various sized proportions 
of dust in an entire composition [55]. The degree of dispersion is characteristically contingent on how the 
dust is spread and the gradation of turbulence in the cloud of dust [56]. However, the influence of the 
distributed particle sizes on dust clouds from any specified cohesive powder varies extensively. The 
agglomerated particles in the cloud of dust could seem as separate agglomerate-sized particles during 
burning. Therefore, the sensitivity of ignition and severity of the explosion of the clouds can be 
subsequently altered. The changes take place irrespective of the original particle size before coalescence 
arises because agglomeration reduces the quantity of particles cubic meter of dust clouds to about 109 cm3 
per second. The average effective particle size will then increase to above 100 nm [57]. The degree of 
dispersion and agglomeration affects combustion, since the parameters change the effective local dust 
concentration and effective particle size, respectively.  

Hence, more evenly dispersed dust will burn more easily due to the larger surface area of finer particles 
that supports combustion. However, agglomerates have a smaller surface area and therefore have reduced 
combustion [11]. In another study, Eckhoff [58] revealed that dispersed dust may have nanoparticle 
powders that do not produce extreme ignition sensitivity and extreme explosive rates. However, there are 
two basic reasons why this is not certainly the case. First, this is due to the very strong interparticle force. 
Hence, it is hard to wholly convert the bulk nanoparticle powder into a dust cloud composed of well-
dispersed primary particles. Second, the extremely fast coagulation process in a nanoparticle cloud of 
explosive mass concentration will convert the primary particles into larger agglomerates in a fraction of a 
second in well-dispersed clouds. Therefore, it is important to understand the effectiveness of dust dispersion 
in the laboratory during ignition to assess the assumption of dust cloud uniformity and its impact on the 
data accuracy of minimum explosion concentration MEC. 

4.9.  Flammable Gases 
The incidence of combustible gas and sources of energetic ignition is needed to initiate a combustion 
reaction that risks a danger [17, 59]. The occurrence of flammable gas in the dust enhances the severity of 
the explosion since the MEC, MIT and MIE are reduced, which increases the maximal rate of pressure rise 
[60]. Therefore, the combustible gas can cause the mixture of the dust and gas to detonate at a lower 
concentration of dust compared to the lower limit of the explosion of the dust. This occurs when the gas 
concentration is lower than the normal lower explosion limit of the gas [61]. It may also cause the explosion 
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to become such a large particle size dust that would otherwise be non-explosive [1, 62]. By adding 
flammable gases, smouldering gases or solvent vapours, the explosion of dust may be influenced without 
increasing the combination of combustibles, which is referred to as a mixture of mixtures [63]. In the case 
of a mixed mixture, the maximum rate at which the explosion pressure rises become particularly higher. 
Hence, the MIE is lower than the MIE in the pure dust/air mixture. If the gas, steam or dust concentration 
is below its lower explosion limit, the mixture may be explosive [64]. 

5.  Dust Explosibility Testing Methods 
The purpose of testing for dust explosion is to reduce the explosion, prevent ignition, and reduce the severity 
in case of an explosion. The commonly used laboratory tests are categorised into two groups namely; 
severity of the explosion and the explosion sensitivity parameters. The tests are used to examine the 
likelihood of explosion severity characteristics and consequences [65]. Before determining the severity of 
the combustible dust, an explosion classification test is performed to determine if the dust/powder will 
explode as a cloud spread or not when scattered as a cloud [1, 65]. The dust explosion can be classified 
using the Kst value. Table 6 presents an example of how dust explosion class, St, classifies Kst. Based on 
Table 3 combustion, dust can be classified according to the value of severity index. Hence, dust that has a 
Kst value between 0 and 200 bar.m/s has weak to moderate explosion severity (St1), although according to 
OSHA most of the food-stuff is in class St1. If the value of Kst from 200 to 300 bar.m/s the explosion 
classified under St2 which is strong. 
  

Table 3. Explosion characteristics of combustible dust (M < 63µm) (NFPA, 2002) 

Type of dust 
Pmax Kst Dust explosion  

(bar) (bar.m/s) class, St  
    

Sugar  9 140 1  
      

Coal  8.2 135 1  
     

Aluminium 12.5 650 3  
     

Wood dust 9.4 208 2  
     

Corn starch 10.3 202 2  
      

 

Lastly, a very strong explosion will describe explosion dust, which records severity index value more 
than 300 bar.m/s as Aluminium dust. The different equipment widely used for testing include; the Hartmann 
1.2 L vertical tube, Siwek 20 L spherical chamber, and the Pittsburgh Research Laboratory (PRL) 20 L 
near-spherical chamber. Others include the 1 m3 spherical chamber, Fike 1 m3 and ISO 1 m3 chamber [1, 
66]. In determining the MIT, a 0.27L Godbert-Greenwald furnace and a 0.35 L Bundesanstaltfür Material 
prüfung (BAM) furnace are typically used as testing equipment [67]. The Hartmann bomb has been widely 
used since 1980 [1], but many tests are performed by comparing its results using other chambers [68].  

Hartmann 1.2 L vertical tubes are typically used for pilot selection tests and to deduce the MIE [69, 70]. 
However, the Hartmann tube and other smaller chambers have a large surface area to volume ratio, which 
significantly affect the heat loss of the chamber walls. Therefore, the chamber underestimates the severity 
of the explosion [71]. This may give the wrong result for dust that is not easily ignitable with spark but only 
can be ignited by stronger ignition sources [23]. The large chamber such as the Siwek 20 L spherical 
chamber and the standard closed 1 m3 ISO chamber can largely overcome these problems, thereby yielding 
better results than the tubular tube [1]. The 1 m3 chamber yields a more realistic measurement of the 
maximum explosion pressure, the maximum rate of pressure rise and minimum explosion concentration. 
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However, it requires more dust samples to be prepared and more time to test in 1 m3 chamber than the 20 
L chamber [23]. 

6.  Explosion Severity Characteristics 

6.1.  Maximum Explosion Overpressure (Pmax) 
The Pmax is the change in the pressure at the onset of ignition under standard pressure to that of the highest 
point in the pressure-time record of exploded dust [72]. The value of Pmax is determined based on the 
maximum corrected value of the detonation overpressure across an extensive assortment of fuel 
concentrations [73]. Büschgens and Pikhard [13] examined different concentrations of icing sugar. The 
findings showed that the increase in the concentration of sugar dust results in higher values of pressure in 
the compartment. The value of the highest point of the explosion overpressure was 6.89 bar, which is called 
Pmax, and the concentration at this point was 1000 g/m3. This is called the "optimum dust concentration” 
with lower concentration limit 125 g/m3. Mintz [39] reported that the optimum dust concentrations typically 
occur at higher concentrations, as opposed to gases that typically have near-optimal concentration 
stoichiometry. The minimum value of the dust concentration at which pressure is first observed is referred 
to as the minimum explosive concentration or the lean flammability limit (LFL). 

6.2.  Maximum Rate of Pressure Rise (dp/dt) max 
The maximum rate of pressure rise (dp/dt) max is the highest rate of pressure rise from the closed explosion 
of dust. It is measured through a typical test at the optimum concentration of the dust [74]. According to 
Ramírez et al. [38] the pressure rise rate is defined as the uppermost slope (1st derivative) value on the curve 
of pressure and time recorded in a closed vessel. It is computed in the course of the detonation of a detailed 
combination of combustible gases in air or air/inert gases conducted at definite test conditions. Stahmer and 
Gerhold [75] showed how quickly destructive pressure can occur in an unexpected dust explosion. Hence, 
the approach is adopted to create various measures for explosion protection. For example, the explosion-
pressure resistance or shock-resistant devices, explosion-venting and explosion-suppression. Abbasi and 
Abbasi [1] noted that the maximum pressure rise characteristics are influenced by the vessel’s shape and 
size, ignition source type and energy, temperature, and pressure, along with turbulence. The maximum 
pressure rise is also contingent on the rate at which the particles are combusted. Hence, it is possible to 
observe the random characteristics of Kmax (particle size distribution, geometry, and characteristics of 
specific process units, possible locations of ignition sources) in an industrial environment. As shown by 
Eckhoff and Mathisen [76], for the 1 m3 vessel and the Hartmann bomb, the (dp/dt) max is considerably 
condensed as the interval between the start of dust diffusion and the increased ignition timing. The 
conceivable reason is that once the intensity of the dispersed air explosion is reduced, the degree of 
turbulence of the dust cloud will rapidly drop, causing the flame propagation speed to decrease accordingly. 
The studies by Büschgens and Pikhard [13] investigated the different concentration of icing sugar. The 
findings showed that increasing the concentration of the icing sugar dust increased the maximum rate of 
pressure rise value in the chamber. The value of the highest point of the (dp/dt) max was 39.51 bar/s based 
on the concentration of 1000 g/m3, and the Kst was 26.18 bar.m/s for small particle size 18 μm, whereas 
the large particles size such as 160 μm and 77 μm yielded fewer values of explosion parameters due to 
small surface area that is in contact with oxygen. 

6.3.  Dust Deflagration Index (Kst) 
Kst is described as the cubic, cubic root rule or the dust constant. The term "St" is derived from the German 
word for dust called “Staub”. The Kst is otherwise known as the severity index or volume normalised rate 
of maximum pressure rise [29]. The Kst value is derived from the maximum rate of pressure rise (dp/dt) 
max multiplied by the volumetric cube root of the detonating compartment. The relation is termed the cube 
root rule as presented in Equation 1. 
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The concept proposed by Bartknecht and Zwahlen [2] as standardisation to extend the maximum 

pressure rise rate to a larger volume. Similarly, the dust classification system based on Kst values was 
proposed by the author based on explosiveness as arranged below: 
 

Kst = Group St 0: Non-Explosible 

0 < Kst < 200 = Group St 1: Weak 

200 < Kst < 300 = Group St 2: Strong 

300 < Kst = Group St 3: Very strong 

 
The values indicate that the higher the value of Kst, the greater the possibility of a dust explosion. 

Furthermore, the rule is contingent on similar geometric containers whose flame thickness is negligible 
compared to the chamber radius. In addition, the rule is valid if the rate of combustion is the same as the 
pressure and temperature function in all volumes [11]. Kst is also defined as the index of deflagration or 
the maximum pressure rise rate normalized to the volume  [29]. The severity results for an explosion are 
regularly adopted as the design reference for explosion protection and mitigation. For example, it is used 
for explosion-relief, explosion suppression, and venting exhaust, although it is completely reliant on the 
efficiency of the rule of the cube root [11, 72]. Furthermore, the effect of Kst on dust concentration of the 
corn starch/air mixture for static and turbulent flow as described in the literature by Kumar et al. [12] is 
assumed by applying the fan to turbulent conditions. The results showed that the turbulent state caused the 
Kst value of the dust to increase the dust concentration. For example, for a corn starch/air mixture of 600 
g/m3, the Kst of the turbulent state results in 180 bar.m/s, whereas the quiescent state is 70 bar.m/s. 
Presumably, the Kst value varies depending on the dynamics of the dust cloud, that is, turbulence or 
quiescent and its combustion rate. 

6.4.  Minimum Explosibility Concentration (MEC) 
The MEC or LFL is the lowermost concentration of dust clouds distributed in the air that can be propagated 
by an explosion during ignition [45, 65]. In addition to the ignition effect, the result of a pressure increase 
of 0.4 bar was considered as the MEC proposed by the IEC (International Electrotechnical Commission) 
after testing at different dust concentrations [7]. The higher the volatility, the higher the risk of dust 
explosion. Andrews et al. [77] showed different devices used to estimate MEC give different values as 
shown in Table 4. The reason for the difference in the MEC value of the different devices used in the test 
(refer to Table 4) is due to the MEC value depends on the method used, the ignition energy and the size of 
the device. However, literature values for MEC measured in the Hartmann tube are in cases not so different 
from those measured in the 1 m3 or 20 L sphere [78]. For mixed dust, there is no MEC and the inert mass 
fraction is above 50%, which means no deflagration of dust is observed during the test. The outlined results 
indicate the inactive mass fraction influences the propagation of the flame in the cloud of dust. Hence, a 
large proportion of the inactive dust constrains the flame from spreading from among other particles 
undergoing combustion which raises the MEC [54]. When the level of flammable dust concentration in the 
cloud is below the MEC, the operating and or other conditions cannot be circumvented. Consequently, 
additional safety procedures are essential to regulate the development of a dangerous cloud of dust such as 
safer housekeeping, which could diminish or wholly eliminate the occurrence of combustible sources [1].  
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Table 4: Comparison of measured MEC values [77]. 

Dust 
Hartmann  

(g/m3) 
1m3 or 20L 

(g/m3) 
1m3  

(g/m3) 
Sugar  45  60  60 

Milk powder  50  60  60 

 

30 6µm 

30 (22-29) µm   

Aluminium 6 <10 µm 30 29 µm 
40 17µm  

60 41 µm 
  

     
       

Cellulose  55 60 51 µm 60 33 µm 

Wheat Starch  45 60 20 µm  30 

Lycopodium  22  -  30 

Polypropylene  30-35 30 25 µm  30 

polyethene  30 30 <10 µm 30 <10 µm 

Sulphur  20 30 20 µm  30 

Peat  100  60-125  125 

7.  Damage Control for Dust Explosion 
According to Amyotte et al. [79], it is difficult to remove the risk of dust explosion despite the numerous 
and complex methods that exist. However, the measures required to considerably control or decrease the 
destruction resulting from the detonation or lessen the damage, trauma, process downtime [80]. The dust 
explosion damage control approach revolves around suppression, isolation, containment, and explosive 
ventilation. 

7.1.  Containment of Explosion 
When contained in a definite space, the possible destruction caused by a dust explosion to the neighbouring 
surroundings can be averted [29]. Containment is an appealing alternative due to the largely passive 
approach that evades the distress of release removal. However, the complete design of dust treatment 
equipment to withstand the pressure generated by the explosion of dust is unfeasible [81]. This is 
particularly true for large factories. For minor devices and specific equipment, it is imaginable to establish 
containment. A good example is a grinder that could be designed to be appropriately strong to endure the 
explosion of dust. The maximum pressure of explosion for much combustible dust and gaseous substances 
is in the range of 7-10 bar [82, 83]. However, the solitary principle is not static pressure as the upward 
pressure rate is great during the explosion of dust. Hence, the designed apparatus must be able to endure 
the dynamic load during some explosion stage. Furthermore, the equipment must be designed according to 
the revolving symmetry to avoid large flats and corners [84]. Specific consideration is needed at the point 
where the dust is injected or recovered from the production facility and the point of connection in the 
devices. For highly toxic powder or dust, there is a need for easily reliable restrictions [85]. 

7.2.  Isolation of Explosion 
The prevention of exploding dust from dispersing from the primary explosion location to other processing 
units is the objective of explosion-proof isolation strategies [1]. As a result of the build-up of pressure, an 
excessive turbulent preliminary and jet-initiated ignition generates very high-pressure peaks. This takes 
place in well-ventilated containers alike, which therefore needs active explosion protection in 
interconnected systems [10]. According to Ebadat [65], two techniques are generally used, namely; material 
chokes and a quick valve for shut-off. For isolation or explosion-proof that involves a rapid close-off valve, 
the valve is installed in a pipe that connects one container to another. The valve is activated by an explosion 
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detector typically fortified with sensors for optics and pressure. The first is generally chosen since the visual 
sensor could be blind. However, the sensor for pressure is unable to trace very weak pressure waves that 
the optical sensor can detect. The time required for the valve to close depends on the remote pressure or the 
distance between the flame sensor and the valve. There may also be a type of dust the valve must be closed 
or even quicker within 50 milliseconds. According to Frank [86], isolation can also be affected by material 
blockage and may be taken into consideration where dust flow between the devices is required. The two 
conventional rotary valves and worm conveyors based chokes are adopted. Amongst the outlined, a rotating 
regulator is fixed at the vertical route and operated by a motor typically aimed at hindering internal dust 
explosions even there is lack of dust. When the regulator is installed at the entrance of the hopper, then the 
hopper is completed. Furthermore, it has to be arranged to prevent the former from continuing to rotate. 
This could motivate ignition due to dust overheating or motor overload. 

7.3.  Suppressing Explosion 
For any processing facility with a dust explosion threat, a system can be placed and activated when the 
explosion begins or repressed rapidly [87]. Furthermore, proper inert material selection can prevent it from 
rejuvenation. In turn, this will significantly lessen the danger of explosion since the devices for spontaneous 
explosion suppression are created to attain this objective [26]. According to Krasnyansky [88], the systems 
designed for suppressing explosion need to meet four basic properties: 

� It needs to answer to the detonation of the smallest time delay with a quick activation. 
� It should inject a sufficient quantity in the limited time frame in a manner to counteract the 

preliminary detonation and prevent the propagation of the flame. 
� To close down the manufacturing facility. 
� To avoid the resumption of the plant until the detonation is diminished. 

 
Field [89] states that the effectiveness of the suppression system depends on the velocity at which the 

sensor responds to an emergent detonation and the system efficiency of the inhibitor injection. The last part 
must be adept at rapidly introducing an enormous amount of inhibitor and covering the entire parts of the 
threatened area. It must be capable of discharging at a high-quality rate, high discharge speed, so proper 
"throwing" an excellent angle coverage. Dastidar et al. [90] over time, powders such as proprietary mono-
ammonium phosphate (MAP) have become increasingly popular in explosion suppression systems. Due to 
the potential risk of product contamination, the MAP cannot be used in the food processing industry. 
However, water-soluble and food-grade well-matched passive agents such as powdered sodium bicarbonate 
inhibitors have been developed and effectively utilised. Two other properties linked to the suppression 
systems for dust explosion are shutting down and preventing the plant from resuming until safety is 
guaranteed. Lastly, standard equipment and control practices are adopted to link the pressure sensors. 

7.4.  Venting Explosion 
An explosion occurs when all attempts to prevent dust explosions fail. Hence, the effective prevention of 
explosion can minimise its adversative consequences [91]. Further related to poisonous dust, ventilation 
can drastically lessen the destructive possibility of a dust explosion. In the beginning glance, venting seems 
to be a reasonably easy operation [92]. If any section of the construction is predisposed to the explosion of 
dust, the pressure resistance of the remainder of the structure is considerably reduced through the use of a 
slimmer panel or can be allowed to fail in the initial phases of the blast. By properly determining the size 
of this vent, the operator can ensure that the vents operate as quickly as possible. Hence, the overpressure 
can exceed a certain safety threshold and rapidly release a sufficient amount of gas (and particulates) to 
prevent the pressure inside the protected area from reaching a destructive level [10]. For size, the venting 
location needs to understand all the elements that control the rigorousness of the exploding dust. The 
consideration includes the device’s geometry that supplies the explosive venting, preliminary turbulence, 
primary pressure, dust concentration, original temperature, and detonation source for the combustible dust 
or inert gases [93]. All the defined elements impact on the pressure of the explosion particularly in terms 
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of pressure rise rates. Furthermore, the abridged pressure of explosion along with the area, pressure, 
distribution, and panel of the vents must be considered. In addition, the inclusion of protective ventilation 
is not the most critical consideration in ventilation for dust explosion [94]. The explosive waves and flames 
that vent to the surrounding environment can be dangerous, no longer to say the risks of unburnt dust, fumes 
and soot which can have all of sudden arisen spraying from a vent in a large number of ways [95, 96]. The 
maximum dimensions of the flame cleared out of the vent could be 10 times the cube root of the ventilation 
container volume [97]. If the vents emit too much unburned flammable material, it may even be ignited by 
a ventilated flame causing a secondary explosion [98]. The task of designing the vent spreads to removing 
the dangerous effects of venting substances particularly the flames. Therefore, it is critical to reiterate the 
importance of providing safe and effective ventilation. For example, if the pipe is installed at the vent, it 
may safely discharge the ventilation quality and energy. However, the process can prevent the complete 
suppression of the explosion pressure [10, 99]. 

8.  Conclusions 
The paper presented a brief overview of the various classifications of dust along with the various 
mechanisms, severity and ignitability factors, explosibility testing method, explosion severity 
characteristics, and damage control of dust explosion. The classification analysis indicates that dust can be 
broadly categorised based on its explosive value. However, the conditions required for explosion along 
with the pressures required for explosion include; moisture, particle size, dust concentration, oxidant 
concentration, and degree of turbulence. The mechanism of dust explosion indicates that explosions occur 
when particles or layers of dust are distributed in the air such that the concentration of dust falls inside the 
explosive range. Typically, the requirement for a dust explosion is described based on the "explosive 
pentagon", which states that dust explosion occurs due to the confinement and mixture of combustible dust, 
oxidants, ignition sources or heat. The process of dust cloud formation indicates that explosions occur due 
to the rapid evolution of heat and gases when fuel particles undergo oxidation reactions. Due to the high 
risks of dust explosion to manufacturing processes along with human health, safety, and the environment, 
numerous testing methods have been proposed, developed and implemented over the years. The major tests 
adopted reducing explosions, ignitions and the severity of explosion as categorised into the severity of the 
explosion and the explosion sensitivity parameters. The review also examined the characteristics of 
explosion severity which include the maximum explosion overpressure (Pmax), maximum rate of pressure 
rise (dp/dt) max, dust deflagration index (Kst), and minimum explosibility concentration (MEC). However, 
the control measures for mitigating the damaging effects of dust explosion are aimed at the containment, 
isolation, suppression, and venting of the explosion. Overall, the review highlighted the role of dust particles 
and clouds as crucial dynamics in the fire and explosion as well as the human health and safety in the 
industry. 
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