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Abstract: This review presents a comprehensive and systematic study of the field of bacterial plant
biostimulants and considers the fundamental and innovative principles underlying this technology.
Plant biostimulants are an important tool for modern agriculture as part of an integrated crop man-
agement (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants
contain substance(s) and/or microorganisms whose function when applied to plants or the rhizo-
sphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency,
tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained
substantial and significant heed worldwide as an environmentally friendly alternative to sustainable
agricultural production. At present, there is an increasing curiosity in industry and researchers about
microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth
and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play
plausible roles to promote/stimulate crop plant growth through several mechanisms that include
(i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn),
organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the
action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic
stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals
by using different modes of action; and (v) plant defense induction modes. Presented here is a
brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current
food crisis.
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1. Introduction

The global environment is changing continuously and the incidence of global warming
caused by extreme climatic events is also on the rise, consequently disturbing the world
ecosystems, including agro-ecosystems [1]. Such extreme changes in climate can affect
the quality and quantity of crops severely by inducing various environmental stresses
to crops, threatening food security worldwide [2]. An increase in global temperature,
atmospheric CO2 level, tropospheric O3, and acid rains can cause multifarious chronic
stresses to plants, reducing their capability to respond in case of pathogen attacks [3].
Among these stresses, drought, water scarcity, and soil salinization are the most problematic
and complicated factors of agricultural losses resulting from human-induced climate
changes [4]. Fluctuations in temperature and rainfall variations are key indicators of
environmental stresses [5]. Elevated temperatures lead to an amplification of the rates of
respiration and evapotranspiration in crops, a higher infestation of pests, shifts in weed
flora patterns, and reduction in crop duration [6]. Water scarcity is also considered one
of the prime global issues that have direct effects on agricultural systems and according
to climate projections, its severity will increase in the future [7]. Water scarcity piercingly
influences a crop’s gaseous exchange capacity, causing the closure of stomata [8]. This
leads to the impairment of the evapotranspiration and photosynthetic activities of plants,
affecting overall biomass production [9]. Impaired evapotranspiration reductions also
affect the nutrient uptake ability of plants [8]. In semi-arid and arid climatic zones where
rainfalls are already less intense and sporadic, the damages caused by drought stress can
be exacerbated due to excessive accumulation of salts in soil [10].

Furthermore, the liberal use of inorganic fertilizers and pesticides to increase crop
productivity and meet the food requirement of the ever-growing human population, which
is projected to reach 9.7 billion by 2050, has severely affected the health of agro-ecosystems
and human beings. Confrontational challenges of improving agriculture production with
limited arable land rely on sustainable technologies. Several technical advances have been
suggested in the past three decades to increase the productivity of agricultural production
processes by reducing toxic agrochemical substances such as pesticides and fertilizers. An
emerging technology tackling these critical problems includes the creation of novel plant
biostimulants and successful methods for their application [11–15]. Plant biostimulants
differ from other agricultural inputs such as fertilizers and plant protection products
because they utilize different mechanisms and work regardless of the presence of nutrients
in the products. They also do not take any direct action against pests or diseases and
therefore complement the use of fertilizers and plant protection products. According to the
latest European Regulation (EU 2019/1009), a biostimulant is an EU fertilizer that seeks
to promote processes for plant feeding, regardless of the product’s nutrient quality, solely
to boost the following plant or plant rhizosphere characteristics: (i) increased nutrient
utilization efficiency, (ii) abiotic stress alleviation/tolerance, (iii) quality traits, and (iv) soil
or rhizosphere supply of stored nutrients [16,17]. Over the past decade, microbiome
research has changed our understanding of the complexity and composition of microbial
communities. The intense interest of industry and academics in biostimulants based on
live microbes has increased due to the reason that the growth and development of a plant
can be improved under field conditions more effortlessly than other biostimulants [18,19].
Biostimulants are not nutrients, but encourage the utilization of nutrients or help foster
plant growth or plants’ resistance/tolerance to various types of stresses [9,20]. Beneficial
plant fungi and bacteria can be considered the most promising microbial biostimulants [21].
The recent trend has underscored the fact that plants are not autonomous agents in their
environments but are associated with bacterial and fungal microorganisms, and that many
external and internal microbial interactions respond to biotic and abiotic stresses [22,23].
Therefore, biostimulants are gradually being incorporated into production systems to alter
physiological processes in plants to maximize productivity [24].

Bacterial plant biostimulants (BPBs) comprise a major category of plant biostimulants.
Plant growth-promoting rhizobacteria (PGPR) that colonize the plant rhizosphere are the
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most prominent group in this category [24]. These PGPR improve plant growth, control
plant pathogens, improve nutrient and mineral uptake in plants, and increase plants’ resis-
tance to various types of biotic stresses and tolerance towards abiotic stresses (Figure 1).
The representative beneficial groups of PGPR-based BPBs include nitrogen-fixing Rhizo-
bium, Azotobacter spp., Azospirillum spp., Pseudomonas spp., and Bacillus spp. [25,26]. The
present review describes the recent knowledge concerning beneficial BPBs and their role in
improving crop health through various mechanisms. The article concludes by highlighting
the main findings of an in-depth analysis of research articles published between 2015 and
2020, sorted using different databases such as Google Scholar, Science direct, Pub Med,
Web of Science, etc.
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2. Global Market for PGPR-Based Biostimulants

Biostimulants are emerging as an essential component in sustainable agricultural
practices. Instances of environmental hazards and soil contamination from injudicious
and excessive application of chemical-based products on crops have been a key issue for
the industry in recent times. The global biostimulants market size was estimated at USD
1.74 billion in 2016, and projected to expand at a Compound Annual Growth Rate (CAGR)
of 10.2% from 2017 to 2025. A rising focus on enhanced productivity, coupled with rapid soil
degradation, is likely to drive the market over the forecast period. The global biostimulants
market size was estimated at USD 2.30 billion in 2019 and is expected to reach USD
2.53 billion in 2020. The global biostimulants market is expected to grow at a compound
annual growth rate of 10.2% from 2017 to 2025 to reach USD 4.14 billion by 2025 [27].
Although not all biostimulants are biological in nature [28], the bacteria are ancestral
companions of a plant in all conditions. Moreover, according to the currently available
literature, less than 25% of the commercial products of biostimulants are microbial based [9].
Table 1 provides a list of some popular PGPR-based commercial biostimulants [29–31].
Although some formulations contain fungal associations, the preparations are mainly based
on PGPR.
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Table 1. Examples of commercial PGPR-based plant biostimulants [29–31].

Commercial Products
(Manufacturer) PGPR Strains Target Crops for Use Target of Function

FZB24®fl
Rhizovital 42®

(ABiTEP GmbH, Germany)

Bacillus amyloliquefaciens and
B. amyloliquefaciens sp. plantarum

Ornamentals, vegetable
field crops

Phosphate availability and
protection against pathogens

Inomix® Biostimulant,
Inomix® phosphore, and

Inomix® Biofertilisant
(IAB (Iabiotec), Spain)

B. subtilis (IAB/BS/F1) and B.
polymyxa (IAB/BP/01);
Saccharomyces cerevisiae;

B. megaterium and P. fluorescens; and
Rhizobium leguminosarum,

Azotobacter vinelandii,
B. megaterium, and

Saccharomyces cerevisiae

Cereals
Plant growth promotion
increases root and shoot

weight, strong root system

BactoFil B10®

(AGRO.bio Hungary Kft.,
Hungary)

Azotobacter vinelandii,
Azospirillum lipoferum,

P. fluorescens, B. circulans, B.
megaterium, and B. subtilis

Dicotyledons (potato,
sunflower, rapeseed)

Soil amelioration; produce
plant growth-promoting

hormones auxin, gibberellins,
and kinetin; N2 fixation; a

biocontrol agent

Bio-Gold
(BioPower, Sri Lanka)

Pseudomonas fluorescens and
Azotobacter chroococcum

All agricultural and
horticultural crops

Growth promotion via
nitrogen fixation, drought

tolerance, control of root rot
and wilt diseases, phosphorus

solubilization

Cedomon®

(Lantmannen BioAgri AB,
Sweden)

P. chlororaphis Barley and oats
Highly effective against

various types of
seed-borne diseases

Rhizosum N
Liquid PSA

(Mapleton Agri Biotec Pty
Limited, Australia)

Azotoformans (N2-fixing bacteria)
and Pseudomonas sp Wheat

Phosphate availability,
N2 fixation, plant
growth promotion

BactoFil A10®

(AGRO.bio Hungary Kft.,
Hungary)

Azotobacter vinelandii, Azospirillum
brasilense, P. fluorescens, B. polymyxa,

and B. megaterium

Monocotyledons
(cereals)

Increased soil nutrient content
that results in plant
growth promotion

Micosat F® Uno;
Micosat F® Cereali

(CCS Aosta Srl, Italy)

Agrobacterium radiobacter AR 39,
Streptomyces sp. SB 14, and B.

subtilis BA 41

Fruits, vegetables,
and flowers Increased nutrient and water

absorption, increases stress
tolerance and enhances ISRPaenibacillus durus PD 76, B. subtilis

BR 62, and Streptomyces spp. ST 60

Cereals, soybeans,
beet, tomatoes,
and sunflowers

Bioscrop BT16
(Motivos Campestres,

Portugal)
Bacillus thuringiensis var. kurstaki

Deciduous fruit trees,
horticultural brassicas,

cotton, citrus,
cauliflower, olives,

pepper, banana,
and tomato

Protection against
pests (beetles)

Amase®

(Lantmannen Bioagri,
Sweden)

Rhizobium, Azotobacter, Pseudomonas,
Bacillus, and Chaetomium

Cucumber, lettuce,
tomato, pepper,

eggplant, cabbage,
and broccoli

Growth promotion, quick
production of the large and

strong root system, and
increases stress tolerance

PGA®

(Organica technologies, USA)
Bacillus sp. Fruits and vegetables Improved biomass

accumulation, stress tolerance
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Table 1. Cont.

Commercial Products
(Manufacturer) PGPR Strains Target Crops for Use Target of Function

Nitroguard®

Azorhizobium caulinodens NAB38,
Azospirillum brasilense NAB317,
Azoarcus indigens NAB04, and

Bacillus sp.

Cereals, rapeseed,
and sugar

Growth promotion via
nitrogen fixation

TwinN®

(Mapleton Agri Biotec
Pty Ltd. Australia)

Azospirillum brasilense NAB317,
Azoarcus indigens NAB04, and A.

caulinodens NAB38
Beet, sugarcane, and

vegetables

Helps with nitrogen fixation
and phosphorus solubilization

and produces
growth-promoting hormones

Symbion®-N,
Symbion®-P, and

Symbion®-K
(T. Stanes &

Company Ltd., India)

Rhizobium, Azotobacter,
Azospirillum, Acetobacter;

B. megaterium var. phosphaticum; and
Frateuria aurantia

Promotion of plant growth,
improved root and shoot

weight, and a
stronger root system

Ceres®

(Biovitis, France)
Pseudomonas fluorescens Field and

horticultural crops
Biocontrol agent

against pathogens

Gmax® PGPR
(Greenmax AgroTech, India)

P. fluorescens, Azotobacter,
and phosphobacteria Field crops

Nitrogen and phosphatic
nutrition, disease prevention

and helps in plant
growth promotion.

3. Bacterial Plant Biostimulants, Beneficial Effects, and Mode of Action

Bacteria are known to interact with plants in all possible ways [32], including (i) con-
tinuum of symbiosis; (ii) bacteria niches extending from the substrate to the interior of cells,
which are called intermediate locations for rhizosphere and rhizoplane; (iii) associations
that are transient or lifelong; and (iv) functions that affect lots, including engagement in
biogeochemical cycles, the supply of nutrients, increased nutrient consumer efficiency,
induction of resistance, increased stress tolerance, plant growth regulators, and morpho-
genesis control. In this regard, a large amount of work presented in recent literature has a
sharp emphasis on potential applications of the bacterial association of plants largely as
agents for promoting plant growth and maintaining soil and crop health [33–36]. Plant
growth-promoting bacteria are generally associated with numerous (if not all) crop plant
species and are habitually present in varied environments. The most extensively inves-
tigated category of PGPB is the plant growth-promoting rhizobacteria (PGPR) primarily
colonizing the surfaces of roots and closely adhering to the soil interface, namely, the
rhizosphere. As overviewed by recent reviews [37–39], several PGPR can enter the root
interior, thereby establishing endophytic associations. Some of them can even surpass
the endodermis barrier, transcending from root cortex to vascular system, and afterward
thrive as endophytes (inside stem, tubers, leaves, and other organs). The extent of the
endophytic associations of host plant tissues (and/or organs) reflects the capability of these
bacteria to selectively acclimatize to various specific ecological niches [40,41]. As a result,
such intimate bacterial associations with host plants are formed with no damage to the
plant [42,43]. In regard to taxonomic, functional, and ecological diversity in developing
agriculture biostimulants, PGPR seize the most prominent place.

Although numerous soil bacteria were documented to help plant growth promotion
and production, the mode(s) of action by which the bacteria exhibit beneficial activities are
hardly understood. The molecular basis for association processes between bacteria and
crop plants that induce/stimulate physiological modifications is starting to be understood,
primarily because of the emerging approaches to “omics.” A varied number of pathways
have been employed to aid the acquisition of plant nutrients, including improved plant root
surface, phosphorus solubilization, nitrogen fixation, production of HCN, and development
of siderophores, which are further discussed under subsections [44]. PGPR differ and have
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consequences for all facets of the plant life cycle: promoting growth and nutraceutical
values of plants, morphological and physiological development, stress responses (biotic
and abiotic), interactions of agro-ecosystems with other species forms, and enhanced
production. Numerous direct and indirect mechanisms are involved in the development of
these responses that are shown in Figure 2.
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3.1. Plant Growth Promotion and Nutrient Acquisition

The modulation of bacterial behavior has tremendous potential for the procurement of
nutrition for plants. PGPR formulations are a significant biostimulant class, as they allow
root growth, mineral availability, and efficiencies in the utilization of nutrients in the crop
rhizosphere to increase crop growth [45]. Many PGPR are known to stimulate phytohor-
mone production through a combination of various mechanisms [46–53] represented in
Table 2.
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Table 2. Beneficial effects of reported PGPR biostimulants on different crops and their modes of action.

PGPR Biostimulant Crop Beneficial Effects Mode of Action References

Bacillus sp. Lettuce Growth, biomass, and
yield of plants

Increased production of
phytohormones and availability

of nutrients
[46]

Azospirillum brasilense,
Gluconacetobacter

diazotrophicus, Herbaspirillum
seropedicae, and

Burkholderia ambifaria

Onion
Plant growth, crop

yield, and increased
number of bulbs

Production of plant hormones and
solubilization of nutrients that

cause uptake of nutrients
[47]

Bacillus pumilus, B. mojavensis,
B. Amyloliquefaciens, and

P. putida.
Tomato Growth and production

and nutrient uptake
Synthesis of indole-3-acetic acid
N2-fixation and P solubilization [48]

PGPR (Bacillus subtilis) Tomato Improved fruit quality
Enhanced production of phenols,

flavonoids, carotenoids,
and antioxidants

[49]

Pseudomonas aeruginosa Wheat Nutrient uptake
N2 fixation involving many
reactions and synthesis of

organic acids
[50]

Azospirillum brasilense (Sp7b
and Sp245b)

Cucumber,
lettuce,

and tomato

Enhanced germination,
root length, and weight;

vigor index of
germinating seeds

Production of a substantial
amount of phytohormones such

as IAA
[51]

Bacillus pumilus and
Pseudomonas pseudoalcaligenes Rice Stimulated growth

and production

Phosphate solubilization and
production of IAA, gibberellins,

siderophores, and ACC utilization
[52]

Azospirillum brasilense
Maize, sorghum,

wheat, barley,
and legumes

Biostimulated growth
and production

Synthesis of indoleacetic acid
(IAA), nitric oxide, carotenoids,

and numerous cell
surface components

[53]

3.1.1. Phytohormone Stimulation

Auxins such as 3-Indole Acetic Acid (IAA) are involved in processes such as the germi-
nation of seeds, control processes for vegetative increase, and the establishment of lateral
or adventurous roots, and can mediate light and heavy reactions, photosynthesis biosyn-
thesis of metabolites, and stress tolerance [54]. It has been observed that PGPR produces
hormones that provide protection and wall-related transcription changes [55], induce long
roots, increase the biomass of roots, and reduce the density and dimensions of stomata [56],
in addition to activating auxin reaction genes that enhance plant development [21]. As IAA
producers, separate PGPR genera have been recognized, such as Rhizobium [57], Aeromonas
and Azotobacter [32], Bacillus [21], and Pseudomonas [58]. A great number of PGPR produce
cytokinins and gibberellins [59], although the roles of bacteria in the regulation of plant hor-
mones and the bacterial mechanism involved in their synthesis are largely not understood
yet. Some strains of PGPR can support relatively large quantities of gibberellins, which
contribute to increased growth in plants [60]. PGPR also regulate the proper amounts of
ethylene to maintain plant growth, as confirmed by previous studies [61].

3.1.2. Nitrogen

Nitrogen (N) is a very essential macronutrient needed for plant growth and devel-
opment, but it is not available to most plants due to its inertness. Atmospheric nitrogen
(N2) is converted into ammonia by PGPR by nitrogen fixation and this source of nitrogen
(ammonia) can be utilized by crop plants for productivity purposes [62]. The application of
N2-fixing bacteria as growth enhancers has become known as one of the most effective and
environmentally feasible methods and concurrently replaces the use of inorganic nitrogen
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fertilizers [63]. Biological nitrogen fixation (BNF) is accomplished by free-living microor-
ganisms such as Azotobacter, Azospirillum, Bacillus, Enterobacter, Pseudomonas, Burkholderia,
and Serratia, etc., and symbiotic or associated microorganisms such as Rhizobium, Bradyrhi-
zobium, and certain species of Azospirillum sp., which contribute fixed nitrogen to the
associated crop plants [64,65]. Moreover, a small group of woody non-legumes, known
as actinorheic plants, can also be colonized by diazotrophs belonging to the Frankia sp.,
which can induce the development of nitrogen-fixing root nodules. Leguminous inoculants
are the first example of industrial bacterial products in agriculture and are now the most
commonly used inoculants in agriculture [66]. Beginning in the early 21st century, interest
began rising around the mass production of commercial inoculants from wild, live N-fixing
bacteria, including Azoarcus sp., Burkholderia sp., Gluconacetobacter sp., and Diazotrophicus
sp. These free-living diazotrophs are more efficient in providing N to a wider variety of
crops than rhizobia. Azospirillum sp.-based commercial inoculants from small and medium-
sized businesses worldwide have improved the production yields of different cereal crops
effectively [67]. Other bacteria that do not primarily fix N2 have also shown increased N
in many plants possibly due to root growth enhancement, allowing plants to gain more
soil [68] and thus, increase the efficiency of nitrogen usage.

3.1.3. Phosphorus

Phosphorus is another essential macronutrient in metabolic and physiological pro-
cesses in plants such as photosynthesis, biological oxidation, and cell division [69], and
is also an important nutrient for crop growth and productivity. Chemical phosphorus
fertilizers are subjected to chemical fixation (in soil) with some other metal cations and
are lost by leaching, and their unavailability to plants limits their ability to perform these
crucial functions [70]. The application of stimulants that contain PGPR that are capable of
solubilizing insoluble phosphate by discharging organic acids increases the accessibility
of this element to crop plants, thereby improving soil fertility and productivity [71,72].
Numerous strains among bacterial genera including Pseudomonas, Rhizobium, Bacillus, and
Enterobacter are the most potent P-solubilizers. Phosphorus solubilizing bacteria (PSB) may
facilitate plants’ access to the non-labile phosphorus reserve by liberation of its recalcitrant
form and making it more accessible to crops by secreting organic acids and/or hydrochloric
ions. Likewise, PSB-manufactured phytase can release reactive phosphates from organic
compounds [73].

3.1.4. Potassium

Potassium is another fundamentally important macronutrient required for crop growth
and improvement owing to the rhizospheric deficiency of crops and consequently has
always been a major constraint in crop production [74,75]. The shortage of the solubilized
form of rhizospheric potassium is also because it tends to form insoluble complexes when
applied as an inorganic fertilizer. However, PGPR can solubilize insoluble potassium
through secretions of inorganic acids and by making it available to crop plants, thus im-
proving the agricultural productivity and health of crops [76,77]. Hence, they offer an
attractive option as biostimulators in place of conventional fertilizers. PGPR such as Bacil-
lus edaphicus, Acidothiobacillus sp., Ferrooxidans sp., Pseudomonas sp., Bacillus mucilaginosus,
Burkholderia sp., and Paenibacillus sp. have been known to release potassium in its available
form from potassium-bearing minerals in soils [78].

3.1.5. Micronutrients

Many strains of bacteria improve Fe (iron) availability by generating siderophores
or organic acids. The commercial preparation of the genus Acidithiobacillus ferrooxidans
developed and produced by AgriLife (India) [79] solubilizes Fe through the release of
organic acids [80]. Zinc is another crucial micronutrient that is needed in smaller quantities
for the healthy growth and improved production of crops. About 96–99% of the zinc
applied to crop plants is converted into an insoluble form that depends on soil type and
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other physiological reactions [81]. Several bacteria strains increase Zn mobilization, thereby
increasing Zn uptake by plants and boosting the yield in many crops [82]. Although
the mechanisms involving Zn mobilizers still remain uncertain, they are more likely
similar to PSBs and Fe mobilizers and involve mainly the production of organic acids and
chelating agents.

3.2. Quality Improvement of Crop and Yield by Bacterial Plant Biostimulants

Plant biostimulants, which increase plant evolution, flowering, fruit forming, and crop
production, can provide a desirable and environmentally friendly agricultural moderniza-
tion [83]. A variety of living and non-living bacterial isolates such as Bacillus licheniformis,
Bacillus megaterium, Bacillus pumilus, Bacillus safensis, Microbacterium sp., Nocardia globerula,
Pseudomonas fluorescens, Pseudomonas fulva, Pseudoxanthomonas dajeonensis, Rhodococcus
coprophilus, Lactobacillus plantarum, Sphingopyxis macrogoltabida, Streptomyces sp., Bifidobac-
terium bifidus, Lactobacillus acidophilus, Lactobacillus sp., Lactobacillus buchneri, Lactobacillus
paraplantarum, Lactobacillus delbrueckii, and Lactobacillus pentosus have been reported to
increase concentrations of total carbohydrates, nutrients (magnesium, nitrogen, and phos-
phorus, etc.), pigments (such as chlorophyll, carotenoids), and antioxidant substances
and therefore improve plant quality, productivity, and yield [21,83,84]. As an example,
the impact on common bean plants cultivated under water stress shows substantial en-
hancement in the phenolic contents of the inoculated plants of four biostimulant products
with Bacillus subtilis in their formulations [84]. In addition, by inoculation of the Bacillus
subtilis CBR05 PGPR strain, the quality of tomatoes is known to improve for the carotenoid
profile (carotene and lycopene) [49]. The influence of the biopreparation containing some
bacterial species such as Streptomyces sp., Bacillus subtilis, and Pseudomonas fluorescens on
the growth enhancement of fruits through organic farming was reported as improving
the growth of sour cherry and apple trees [85]. The regulation of horticultural primary
and secondary metabolisms in microbial biostimulants culminates in the synthesis and
build-up of lipophilic as well as hydrophilic antioxidant molecules, also referred to as
phytochemicals [86,87]. Microbial biostimulant applications containing beneficial bacterial
cultures often improve fruit quality by suppressing diseases that may cause economic
loss [88].

3.3. Abiotic Stress Tolerance Induced by Bacterial Plant Biostimulants

Global climate change dictates that abiotic stresses, particularly nutrient deficiency,
salinity, drought, hypoxia, and heat stress, are responsible for 60–70% of yield deficit [14].
Under these situations, plant biostimulant application is suggested as an effective agro-
nomic method to improve tolerance to adverse soil and harsh environmental conditions
and to address the adverse effects of the suboptimal conditions on agricultural and hor-
ticulture crops [9]. Plant growth rhizobacteria (PGPR) can enhance plant reactions to
abiotic pressures (Figure 3), and promote physical, chemical, and biological activities [89]
through various mechanisms [90–100], as presented in Table 3. Much work has been done
on bacterial isolates that can be employed to promote the mitigation of abiotic stress in
various crops.
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Table 3. Influence of PGPR biostimulants on abiotic stress tolerance in various crop plants.

PGPR Biostimulants Crop Plants Type of Abiotic Stress Mode of Action References

Glutamicibacter sp. YD01 Rice Salt tolerance

Ethylene mediation, reacive oxygen
species (ROS) accumulation, maintaining

photosynthetic efficiency and ion
homeostasis, increasing expression of

stress-related genes, the activity of ACC
oxidase, and acquisition of K+

[90]

Bacillus sp., Azospirillum
lipoferum, Azospirillum

brasilense, and
Pseudomonas stutzeri

Wheat Salt stress
Production of phytohormones and
osmoregulators, and enzyme (ROS

scavenging) activation
[91]

Gluconacetobacter
diazotrophicus Pal5 Red rice Drought stress

alleviation

Increased production of Abscisic acid
(ABA), osmoprotectants (proline and
glycine betaine) and e AT-hook motif

nuclear-localized (AHLs)

[92]

Gluconacetobacter
diazotrophicus Pal5 Red rice Water stress alleviation

Increased ABA production, enhanced
chlorophyll synthesis, and increased
trehalose and α-tocopherol content

in roots.

[93]

Azospirillum spp. (Az19) Maize Water/drought
stress alleviation

Increased production of proline,
trehalose (glutamate) and

glycine-betaine
[94]

Bacillus spp XT13, XT38,
and XT110 Maize Drought stress

Increased proline content accompanied
by reduced Ascorbate Peroxidae (APX)

and glutathione reductase (GR)
activities, increased nutrient uptake

[95]
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Table 3. Cont.

PGPR Biostimulants Crop Plants Type of Abiotic Stress Mode of Action References

Pseudomonas
entomophila (PE3) Sunflower Salinity stress

alleviation
Exopolysaccharides, IAA, gibberellic

acid, and siderophores [96]

P. fragi, P. proteolytica, P.
fluorescens, P. chloropaphis,

and Brevibacterium
frigoritolerans

Bean Cold stress

Reduced chill injury, lipid peroxidation,
and ice-nucleating activity

corresponding to ROS level, and
stimulation of apoplastic antioxidant

enzyme activities

[97]

Pseudochrobactrum
kiredjianiae Wheat Cold stress Growth promotion and biocontrol [98]

Pseudomonasfluorescens Maize Heavy metal stress Production of IAA [99]

Azotobacter chroococcum Maize Heavy metal stress
Production of siderophores, ammonia,

and 1-aminocyclopropane-1-carboxylate
deaminase (ACCD)

[100]

3.3.1. Drought Stress

Recent attention has turned to the application of beneficial microorganisms that
mediate drought tolerance and improve plant water-use efficiency. These efforts have
been augmented due to technological advances in next-generation sequencing and micro-
biomics [101,102]. The application of plant growth-promoting rhizobacteria (PGPR) is con-
sidered a sustainable synergistic biological approach to cope with water deficiency in crop
production [103]. PGPR can impart tolerance to drought stress by releasing phytohormones,
volatile compounds, ACCD, exopolysaccharides, and antioxidants by regulating osmolytes
and stress-responsive genes and aggravating modifications in the roots [102–104].

3.3.2. Salinity Stress

Soil salinization accounts for more than 6% of global land, rendering 22% and 33%
of total cultivated and irrigated agrarian land, respectively, under stress that adversely
affects crop productivity [105]. By the year 2050, approximately 50% of arable area will be
under threat due to soil salinity, as it increases rapidly at the rate of 10% annually due to
numerous reasons including implausible irrigation practices, irrational fertilization, poor
drainage, and climate change [106,107].

PGPR can alleviate salinity stress in plants through many synergistic mechanisms
including osmotic regulation by prompting accumulation of osmolytes and signaling of
phytohormones, increasing nutrient uptake and attaining homeostasis of ions, and reducing
oxidative stress through enhanced antioxidant activity, volatile organic compounds (VOCs),
and photosynthesis amelioration [108,109].

3.3.3. Heat Stress

The prime alarming effect of climate change is the rise in global temperature and is
directly linked to crop productivity. High temperatures increase respiration and transpira-
tion rates, alter the allocation of photosynthates, and affect photosynthesis (particularly
C3 plants), thereby influencing plant physiology [110]. Intense heat can cause plant cell
protein denaturation or affect cell wall and membrane permeability [111]. PGPR help
mitigate the heat stress in plants through properties such as the production of osmolytes
and the reduction of carbon flux [112]. They can secrete several polysaccharides involved
in biofilm formation, covering root nodules that enhance the water retaining capability
of plant roots. PGPR, especially the heat-tolerant/evolved strains, possess the ability to
enhance the production of lipopolysaccharides (LPS) and exopolysaccharides (EPS) and
specific proteins known as heat shock proteins (HSPs) [113]. The application of ethylene
reducing bacteria, especially with ACC deaminase activity, can avoid the detrimental
effects of heat stress in plants [3].
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3.3.4. Cold Stress

Cold stress is detrimental to plants, as it directly affects the rate of nutrient and water
uptake, which may lead to cell starvation, desiccation, and consequent death. Reduced
metabolism, which occurs in cold tension, results in photo inhibition, inhibition of the activ-
ity of photosystem II, and destabilization of the phosphorus lipid bilayers, thereby affecting
the normal architecture of cell membranes [44,114]. In harsh environments, psychrophilic
(cold-adapted) microorganisms can thrive and have possible resistance enhancement path-
ways that benefit plants [115]. Cold-adapted PGPR belong to various genera, including
Pseudomonas, Bacillus, Arthrobacter, Exiguobacterium, Paenibacillus, Providencia, and Serra-
tia. There are several attributes of psychrotolerant PGPR that make their application as
biostimulants beneficial in alleviating cold stress. These attributes include solubilization
of nutrients, Fe-chelating compounds, ACC deaminase production, IAA, and bioactive
compounds. In plants, cold tolerance can be imparted by PGPR through the enhanced
accumulation of carbohydrates, the regulation of stress-responsive genes for modulation
of osmolytes, and increasing specific proteins, including cold shock proteins (CSPs) [113].
In addition, the application of such biostimulants with the ability to outcompete the ice-
nucleating activity of microorganisms is becoming an effective method to overcome the
losses caused by cold/frost damage [3].

3.3.5. Heavy Metal Stress

Heavy metal stress due to hyperaccumulation of toxic metals, including Hg, As, Cd,
Pb, and Al, greatly decreases crop productivity. Their accumulation in the soil directly
affects its texture and pH, which consequently reduces crop growth by exerting negative
effects on several biological processes [116]. In plants, heavy metal stress shows both direct
effects, including cytoplasmic enzyme inhibitions and cell structure damage as well as
indirect consequences, including oxidative stress through several indirect mechanisms
(e.g., glutathione depletion or binding to proteins—sulf-hydryl (SH) groups) or inhibiting
anti-oxidative enzymes, inducing ROS-producing enzymes (e.g., Nicotinamide Adenine
Dinucleotide Phosphate Hydrogen (NADPH) oxidases) [117]. Heavy metal-tolerant PGPR
such as Pseudomonas, Bacillus, Methylobacterium, and Streptomyces can reduce the deleterious
effects of heavy metals and improve the growth and yield of crops. PGPR biostimulants
are very effective in alleviating the toxicity of heavy metals in plants. They reduce the
translocation of heavy metals to different parts of the plant by altering their mobilization
through chelation, precipitation, complexation, redox reactions, and adsorption [118,119].
Rhizospheric bacteria also release extracellular polymeric substances (EPS) [93] such as
polysaccharides, glycoprotein, lipopolysaccharide, and soluble peptide, which possess a
substantial quantity of anion binding sites to help in the removal or recovery of heavy
metals from the rhizosphere via biosorption. However, in highly contaminated sites, the
mobilization and consequent bioavailability of heavy metals in excess by siderophores,
organic acids, or through bioleaching remains debatable.

3.4. Disease Suppression/Defense against Plant Pathogens through Antagonism

Nowadays, the biological control of pathogens is managed by the activities of several
microbiomes. Additionally, PGPR are known to develop resistance to various diseases
through various direct or indirect mechanisms [120–128], shown in Table 4. The application
of bacterial biostimulants encourages the healthy growth of crops through the suppres-
sion of different plant pathogens and pests. The PGPR inhibition of microbial/pathogen
growth occurs synergistically through several chief mechanisms, including antibiosis,
volatile organic compound (VOC) production, extracellular enzymatic lysis, bacteriocin,
and siderophore-mediated inhibition [129].
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Table 4. Influence of PGPR biostimulants on biotic stress resistance in different crop plants.

PGPR Biostimulants Crop Biotic Stress Mode of Action References

Bacillus cereus (PX35),
Serratia sp. XY21, and
Bacillus subtilis SM21

Tomato Root-knot nematodes Synergistic biocontrol [120]

Pseudomonas aeruginosa LV Tomato Bacterial stem rot
Extracellular-bioactive compounds

(phytoalexins, flavonoids, defensins,
proteins, and phenolics)

[121]

B. subtilis 26DCryChS Potato
Late blight agent and
damaged by Colorado

potato beetle larvae

Production of Cry1Ia δ-endotoxin,
stimulating transcription of jasmonate

reliant genes promoting transcription of
salicylate reliant gene (PR1)

[122]

Lactobacillus plantarum
PM411 and Lactobacillus

plantarum TC92
Strawberry

Disease prevention in
strawberry and

kiwi fruit

Antimicrobial metabolites (lactic acid)
production that disrupts pathogen’s

cell membranes
[123]

B. subtilis BS2 Tomato Tomato wilt
Production of defense enzymes such as

peroxidase, polyphenol oxidase,
chitinase, and phenylalanine

[124]

Bacillus safensis and
Bacillus altitudinis Cabbage Black rot IAA production [125]

B. velezensis,
B. mojavensis, and

B. safensis
Soybean Phytophthora root rot IAA production [126]

Bacillus cereu,
B. subtilis BSV, and

B. subtilis BSP
Ginger Blister blight 1-aminocyclopropane,1, carboxylic

acid production [127]

B. cepacia GRB35 Ginger Soft rot in ginger Fungicide production [128]

3.4.1. Antibiosis

PGPR produce antibiotics that are the most significant antagonistic agents effective
against phytopathogens. Antibiotics produced by PGPR are known to have antimicro-
bial, antiviral, cytotoxic, insecticidal, antihelminthic, and phytotoxic (against weeds) ef-
fects [130,131]. Antibiotic production usually allows better competition between microbes
and thus enhances the efficiency of beneficial PGPR associations [132]. Numerous species
of Pseudomonas produce a broad range of antifungal antibiotics, including butyrolactones,
cepaciamide A, ecomycins, 2,4-diacetylphloroglucinol (2,4-DAPG), phenazines, pyrrol-
nitrin, pyocyanin, pyoluteorin, oomycin A, rhamnolipids, N-butylbenzene sulfonamide,
and viscosinamide [133]. Bacillus species also secrete a large variety of antibiotics, in-
cluding bacilysin, bacillaene, difficidin, mycobacillin, rhizocticins, sublancin, subtilintas
A, subtilosin A, etc. They also produce numerous lipopeptide biosurfactants, such as
bacillomycin, iturins, surfactin, etc. with antibiotic activity [134].

3.4.2. VOC Antagonism

In plants, VOCs help in the biocontrol of bacteria and fungi nematodes and also act
as elicitors of the induced systemic resistance against phytopathogens [135]. Several VOC
metabolites with antagonistic activities are secreted by PGPR. These include benzene, cyclo-
hexane, 2-(benzyloxy)-1-ethanamine, methyl, dodecane, decane, 1-(N-phenyl carbamyl)-2-
morpholinocyclohexene, benzene (1-methylnonadecyl), dotriacontane, 1-chlorooctadecane,
tetradecane, and 11-decyldocosane, although their type and quantities released vary among
different species [136]. Among VOCs, HCN produced by rhizospheric bacteria is known
to play an important function in the biocontrol of phytopathogens and pests [137]. Pseu-
domonas sp. synthesizing HCN can inhibit some pathogenic fungi [138]. HCN released by
P. chlororaphis O6 is known to show nematicidal activity [139]. In addition, VOCs (acetoin
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and 2,3-Butanediol) secreted by Bacillus spp. are very effective fungal inhibitors [140]. In
addition to biological control, VOCs are associated with beneficial tradeoffs in attracting
pollinators via the mediation of communication signals [141].

3.4.3. Lysis by Extracellular Enzymes

Lytic enzymes produced by PGPR provide another effective mechanism for combating
pathogen attacks. Rhizobacteria release extracellular enzymes such as chitinase and β-1,3-
glucanase, which are involved in cell wall lysis, killing pathogens [142]. Since the fungal cell
wall is mainly composed of chitin and β-1,4-N-acetyl-glucosamine, rhizobacteria secreting
chitinase and β-1,3-glucanase are potent antifungals. For example, P. fluorescens LPK2 and
S. fredii KCC5 release β-glucanases and chitinases and suppress wilts caused by Fusarium
udum and F.oxysporum [133]. Bacteria with protease, lipase, and chitinolytic activities have
been reported to show insecticidal activity [143]. PGPR with ACC deaminase activity also
play a very important role in all types of stresses, including biocontrol.

3.4.4. Bacteriocins

Bacteriocins or bacterial toxins are narrow-spectrum antimicrobial peptides produced
by bacteria, including PGPR. Their production is another mechanism for eliminating
competitor strains that are narrow-spectrum, proteinaceous antibiotics that target and
kill related bacterial species [144]. Bacteriocins are produced by both Gram -negative
(colicins, S-piocins, microcins, etc.) as well as Gram -positive (nisin, helvecin, mersadicin,
etc.) bacteria [145]. The direct application of bacteriocins has shown promising results
under laboratory conditions against bacterial spot disease in tomato [146]. Typically,
bacteriocins are highly selective of their targets without affecting off-targets and provide a
safer substitute to field applications of chemicals [147].

3.4.5. Siderophores

Siderophores are the largest class of known compounds that can bind and transport,
or shuttle, iron (Fe). These low-molecular-weight coordination molecules are excreted by a
wide variety of fungi and bacteria to aid Fe assimilation [148]. Siderophore production by
PGPR is an indirect mechanism involving the reduction or prevention of destructive effects
caused by phytopathogens [149]. Siderophores possess an antagonistic effect and prevent
the escalation of other pathogenic bacteria and fungi in the plant’s rhizosphere [150]. Their
low molecular weight and ability to sequester Fe3+ ions in the rhizospheric zone makes
iron inaccessible to the plant pathogens, thus preventing their growth.

3.5. Induction of Systemic Resistance (ISR)

The first line of the defense system of plants is comprised of a precise surveillance
system that, by perceiving several elicitors, allows them to switch on plant defense mode
and reject potentially dangerous pathogens or microbes. The elicitors are small structures
referred to as pathogen/microbe-associated molecular patterns (PAMPs or MAMPs), which
are recognized by the pattern recognition receptors (PRRs) of the plant’s innate immune
system [151]. Similar to this innate mechanism, PGPR are also capable of stimulating the
defense system of their associated plants against pathogen attack through the induction of
systemic resistance (ISR) by SAR (system acquired resistance) and ISR (induced systemic
resistance) pathways [152]. Furthermore, PGPR can be exploited for the stimulation of
induced systemic tolerance (IST) against various abiotic stresses, including water scarcity,
drought, salinity, osmolyte stress, temperature extremes, heavy-metal stress, and mechan-
ical injuries [153] (Figure 4). Therefore, the application of multi-stress-resistant PGPR
biostimulants has become important for enhancing agricultural production, resolving
global climate change concerns and low annual crop yields, and combatting increasing
food demands [13].
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3.5.1. Systemic Acquired Resistance (SAR)

Systemic acquired resistance (SAR) is a mechanism of induced defense that confers
long-lasting protection against a broad spectrum of microorganisms. It is an induced
immune mechanism found in plants with a broad spectrum that is not specific to the
initial infection [154] and can be systematically expressed in all organs [155]. SAR requires
the salicylic acid (SA) signaling that accumulates within the infected plant tissues after
pathogen attack, which stimulates immune responses such as pathogenesis-related (PR)
gene expression and antimicrobial substance encoding [156]. The SA signal transduction
requires activation of PR (pathogenesis-related) genes, of which the NPR1 regulatory
(activator) protein is an essential gene that operates within the terminal of the SAR signal
pathway [157].

SAR is generally activated by pathogens or chemical stimuli; however, some PGPR are
also known to trigger the SA (salicylic acid)-dependent pathway through the production
of SA at the root surface [158]. Treatment of tomato plants with Bacillus amyloliquefaciens
(strain MBI600), which is an active component of the fungicide Serifel®, was shown to
produce antiviral action against Potato virus Y (PVY) and tomato spotted wilt virus (TSWS)
in tomato plants through the SA-dependent signaling pathway [159]. In another example,
leaf infiltration with Bacillus cereus (AR156), a PGPR was reported to enhance disease
resistance against Pst (P. syringae pv. tomato) in Arabidopsis through the activation of
a SAR pathway [160]. However, the salicylic acid released by rhizobacteria does not
necessarily need to mediate the SAR mechanism, as SA produced by rhizobacteria may
require siderophores for its assimilation [161].

3.5.2. Induced Systemic Resistance (ISR)

Induced systemic resistance (ISR) emerged as an important mechanism by which
selected plant growth-promoting bacteria and fungi in the rhizosphere enhanced defense
against a broad range of pathogens and insect herbivores [162]. ISR induction requires
components of the jasmonic acid (JA) signaling pathway followed by the ethylene signal-
ing pathway [163]. For many biological control agents, ISR has been recognized as the
mechanism that at least partly explains disease suppression. It is of significant importance
from an agronomic perspective for its effectiveness against a wide range of microbial
pathogens, nematodes, and insects that damage crops [164,165]. It was reported that the
PGPR Bacillus amyloliquefaciens induces systemic resistance in bean plants against aphids
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through the production of higher contents of jasmonic acid [166]. The attack of insect
herbivores on plant roots and leaves imposes different selection pressures on plants, which
in turn produces contrasting responses in terms of gene expression and the production of
secondary metabolites and wound hormones [167]. PGPR-triggered ISR does not involve
severe defense-related gene changes and assists the plant in the induction of resistance
against various pathogens by the production of several extracellular metabolites that act
as elicitors [153]. Several PGPR metabolites include N-Acyl homoserine lactones [168],
siderophores [169], VOCs [170], rhamnolipids [171], and cyclic lipopeptides [172]. How-
ever, most of these elicitors have been identified from strains of Bacillus and Pseudomonas
sp. and elicitors from many other species remain mostly undiscovered.

These elicitors require higher µM concentrations to activate the immune responses
compared to MAMPs, indicating that they may not be sensed through high-affinity recep-
tors [173]. Quorum-sensing molecules such as acyl homoserine lactones produced by PGPR
represent novel elicitors of biotic stress resistance in plants. In a recent study, a halotolerant
plant growth-promoting bacterium, Staphylococcus equorum EN21, triggered ISR against
Pseudomonas syringae (pv. Tomato) through quorum quenching of acyl homoserine in Ara-
bidopsis and tomato plants [174]. ISR activity of the elicitor oxo-C14-HSL was observed in
tomato and wheat against Phytophthora infestans and Puccinia graminis f., respectively [175].
In monocots (such as rice) cyclic lipopeptides released by Pseudomonas are crucial in elic-
iting the ISR. For example, cyclic lipopeptides such as lokisin, endolysin, and white line
inducing principle (WLIP) were described recently as successfully inducing resistance
against Magnaporthe oryzae [176] whereas orfamide (at 25 µM concentration) is known as
an elicitor of ISR against Cochliobolus miyabeanus [177]. Accumulation of ROS following
the inoculation of bacteria Gluconacetobacter diazotrophicus has also been observed at the
early stages of rice root colonization. This study indicates that bacterial ROS-scavenging
enzymes, glutathione reductase, and superoxide dismutase help trigger a typical ISR plant
defense response against pathogens [178].

3.5.3. Induced Systemic Tolerance (IST)

Similar to ISR against biotic stresses, the defense responses induced by different PGPR
to withstand abiotic stresses generally involve highly regulated mechanisms, including
the regulation of phytohormones, ROS accumulation, EPS (exopolysaccharide) production,
ACC-deaminase activity, the secretion of secondary metabolites, VOCs, antioxidant ma-
chinery, and the activation of defense-related genes that lead to induced systemic tolerance
(IST) and has been well documented by [153]. Such responses also involve a web of highly
coordinated plant hormones such as abscisic acid (ABA), gibberellins (GA), ethylene (ET),
auxins (indole acetic acid, IAA), cytokinins (CK), jasmonic acid (JA), salicylic acid (SA),
and brassinosteroids (BRs). These plant hormones habitually act as the key signaling
molecules triggering intricate signaling cascades that subsequently lead to the stimulation
of physiological and morphological changes, eventually leading to tolerance or resistance
of abiotic stresses [179]. Several molecular studies have described that PGPR induce stress
tolerance (biotic as well abiotic) through crosstalk between various phytohormones and
the proper signaling network [180].

Different mechanisms of IST by several elicitors stimulated by inoculation of PGPR
have been also demonstrated for the mitigation of abiotic stresses [92,93]. Under the condi-
tions of salt stress, the inoculation of tomato by PGPR Sphingobacterium BHU-AV3 showing
whole plant protection through IST was due to reduced ROS levels, increased antioxidant
enzyme activities, and the multiple-isoform expression of superoxide dismutase (SOD),
polyphenol oxidase (PPO), and peroxidase (POD) in the plant roots [181]. In wheat, IST
was elicited by a halotolerant Aeromonas sp. (strains SAL17 and SAL21) via the production
of many acyl homoserine lactones (AHLs) to mitigate salt stress [182]. During heavy
metal stress, Pseudomonas SFP1, which is a metal-tolerant species, produces IAA [183].
It also secretes many enzymes for degradation of the cell wall that include chitinases,
cellulose, protease, glucanase, lipopolypeptides, and HCN, which provide inhibition to
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plant pathogenic fungi, bacteria, and viruses, and also restrain nematodes [184]. Different
PGPR treatments known to induce systemic tolerance in wheat against abiotic stresses
including salinity, drought, heat, and cold have been well studied.

4. Conclusions

Feeding the world’s rising population is one of the biggest challenges, especially when
the agriculture system is facing a multitude of complex problems arising from changing
environments due to global climate change. This global phenomenon triggers and worsens
already existing abiotic stresses due to the shifting of normal climatic patterns such as water
budgets, resulting in frequent droughts, floods, salinization, and temperature extremes.
These problems become factors for shifting patterns of weeds and phytopathogens and
reduce the beneficial microbial population associated with plants that affect plant health
while leaving plants susceptible to biotic stress. Furthermore, to guarantee and ensure a
sufficient yield and the biocontrol of pests, agriculture is increasingly relying on chemical
fertilizers and pesticides, which unfortunately have a very negative environmental effect.
Therefore, in recent years, to establish environmentally sustainable alternatives to such
agrochemicals, the use of PGPR plant biostimulants (PBs) has attracted worldwide interest.
The PB market is rising rapidly, with an expected exponential growth rate in the near future.
PGPR-based BPBs have shown effectiveness in nutrition use, mitigation of abiotic/biotic
stress, and/or crop quality characteristics when applied to agricultural and horticultural
crop plants (fruits, vegetables, ornamental plants, and medicinal plants). PGPR make
soil elements such as iron, phosphorus, potassium, and zinc more available to plants
through the phytohormone regulation, production, and release of siderophores, organic
acids, and enzymes.

Furthermore, PGPR fight various abiotic and biotic stresses through a multitude of
mechanisms or a combination of an array of mechanisms such as phytohormone regula-
tion, signaling pathways, gene regulation and expression, secondary metabolites, VOCs,
bioactive compound enhancement, ROS enzyme activities, etc. However, detailed work
also needs to be carried out for an additional explanation of mechanisms related to plant–
microbe interactions, their bilateral “molecular dialogue,” and the “omics” approaches,
particularly under the synergistic pressures of abiotic and biotic stress under field condi-
tions. Such cognizance will expound on the development of new biostimulant formulations
and their implementation as an innovative solution to the current food crisis.
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