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Abstract
Accurate representation of precipitation over time and space is vital for hydro-climatic studies. Appropriate selection of gridded
precipitation data (GPD) is important for regions where long-term in situ records are unavailable and gauging stations are sparse.
This study was an attempt to identify the best GPD for the data-poor Amu Darya River basin, a major source of freshwater in
Central Asia. The performance of seven GPDs and 55 precipitation gauge locations was assessed. A novel algorithm, based on
the integration of a compromise programming index (CPI) and a global performance index (GPI) as part of a multi-criteria group
decision-making (MCGDM) method, was employed to evaluate the performance of the GPDs. The CPI and GPI were estimated
using six statistical indices representing the degree of similarity between in situ and GPD properties. The results indicated a great
degree of variability and inconsistency in the performance of the different GPDs. The CPI ranked the Climate Prediction Center
(CPC) precipitation as the best product for 20 out of 55 stations analysed, followed by the Princeton University Global
Meteorological Forcing (PGF) and Climate Hazards Group Infrared Precipitation with Station (CHIRPS). Conversely, GPI
ranked the CPC product the best product for 25 of the stations, followed by PGF and CHRIPS. Integration of CPI and GPI
ranking throughMCGDM revealed that the CPC was the best precipitation product for the Amu River basin. The performance of
PGF was also closely aligned with that of CPC.
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1 Introduction

Precipitation is one of the key components of the global hy-
drological cycle (Roca et al. 2019; Tapiador et al. 2017). Any
variation in the amount of precipitation received in an area can
result in significant changes to precipitation extremes, with
severe consequences to water resources, agriculture and eco-
system services as well as an increase in hydrological hazards
(Ahmed et al. 2016; Khan et al. 2019; Mukherjee et al. 2018;
Wu et al. 2013). Precipitation is therefore regarded as one of
the most important factors affecting the economic develop-
ment of a region. Precipitation can generally be measured
using in situ rain gauges, satellite sensors and weather radar
(Shen and Xiong 2016; Sun et al. 2018). Gauge-based mea-
surements are considered to be both the most important and
the most reliable for collecting this data (Guo et al. 2020).

Long-term, consistent and accurate precipitation records
are required for hydro-climatic studies and for other applica-
tions (Tan et al. 2020). Acquiring accurate and reliable gauge
records can be a challenge, especially in areas of complex
terrain and in developing nations (Jiang et al. 2016; Kidd
et al. 2017; Li et al. 2018; Musie et al. 2019; Tan et al.
2020; Yang et al. 2020). As a consequence, long-term rainfall
records from homogeneously distributed gauges are not avail-
able in most areas around the globe. Data availability issues,
and the common issue of unsuitable spatial and temporal res-
olutions of any data which is available, significantly influence
the outcome of hydrologic studies (Beven and Westerberg
2011). In many cases, gridded climatic data are used to fill
this information gap. High spatiotemporal resolution gridded
datasets have been developed, and these are widely used as a
proxy to overcome any data availability issues (Bai et al.
2018; Duan et al. 2016; Guo et al. 2020; Liu et al. 2017;
Rashid et al. 2019; Yang et al. 2020). Even though the use
of GPDs is essential for hydro-climatic studies conducted in
data-sparse regions, the appropriate selection of gridded prod-
ucts from the global climate data pool is also a challenging
task (Nashwan and Shahid 2019; Salman et al. 2019). The
selection of the most appropriate data products must consider
the spatiotemporal resolution required for detailed hydro-
climatic investigations (Gampe et al. 2019). A major draw-
back is the uncertainty associated with many gridded climate
products so it is important to examine the performance and
reliability of the chosen gridded products before use in any
specific application. (Gampe and Ludwig 2017; Musie et al.
2019).

A number of studies have been undertaken to evaluate the
performance of gridded precipitation products. Conventional
statistical methods such as the use of the coefficient of deter-
mination (R2), root mean square error (RMSE) and mean bias
error are mostly employed. The selection of gridded precipi-
tation datasets is primarily based on their ability to replicate
extreme precipitation days and dry spells and to provide

accurate precipitation density functions and other essential
properties (Ahmed et al. 2017; Nashwan et al. 2019b). The
selection of GPD has also been proposed based on run-off or
flood simulation applications (Nashwan et al. 2019a; Try et al.
2020), and the association of gridded products with large-
scale ocean-atmospheric phenomena (Erazo et al. 2018).
Additionally, conventional statistical metrics and different
similar measuring indices are also proposed for evaluating
the performance of gridded data (Nashwan and Shahid
2019). A major challenge seen in many studies is the incon-
sistent results obtained when using differing metrics or pre-
cipitation properties. For example, a product may be good in
replicating dry spell but may completely fail in reproducing
extreme events (Muhammad et al. 2019). Precipitation prod-
ucts may show differing results when using alternative hydro-
logical models to simulate run-off or flood events. To over-
come this challenge multi-criteria decision-making tools are
now used, with the results integrated to rank the gridded prod-
ucts (Salman et al. 2019). Machine learning algorithms such
as random forest and symmetrical uncertainty are now used to
assess the performance of gridded datasets (Nashwan and
Shahid 2019). It should be noted, however, that the various
machine learning algorithms available also produced differing
rankings in regard to the gridded climate data. This again
emphasizes the need for an MCGDM methodology as part
of the decision-making process.

Compromise programming (CP) (Zeleny 1973) is a linear
mathematical method used to analyse multi-objective prob-
lems. This has widely been used in recent years for decision-
making and is based on the outcomes of different statistical
metrics (Muhammad et al. 2019). The theory behind CP is
based on choosing a solution closest to a set of ideal points
determined by measuring the distance between a set of solu-
tions. Salman et al. (2019) employed CP when selecting the
best-gridded precipitation product for Iraq. Muhammad et al.
(2019) applied a CP methodology for ranking evapotranspira-
tion models. The method was also successfully used to rank
global climate model (GCM) datasets (Raju et al. 2017). It has
also been widely used in solving problems related to water
resources and the environment (Brahim and Duckstein 2011;
Samal and Kansal 2015; Zhang 2003).

The use of a global performance indicator (GPI) (Behar
et al. (2015) is another robust approach used for solving a
multi-objective problem. It combines different perfor-
mance indicators to provide a single, unique solution
(Behar et al. 2015). Researchers used GPI for the valida-
tion and ranking of solar radiation models (Despotovic
et al. 2015; Fan et al. 2018; Jamil et al. 2020). Recently,
Nashwan and Shahid (2020) used a GPI technique to rank
GCMs by integrating six performance measures. The ca-
pability shown in efficiently solving multi-objective prob-
lems when selecting models indicates the potential of GPI
use in the selection of GPD.
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The ranking and selection of a gridded precipitation prod-
uct at a single gauge location is a relatively simple task. The
challenge arises in deciding on the best GPDs to use based on
the results obtained at different locations within a study area.
A group decision-making approach is often taken to overcome
this problem. Salman et al. (2018) proposed a multi-criteria
group decision analysis (MCGDA) for selecting GCMs based
on their performance at different locations in Iraq. In such an
approach, each gridded precipitation product is provided with
a weight based on the rank obtained by the product at different
locations. Performance can then be measured based not only
on the first rank but also on the ranks obtained in other areas.

This study is conducted in the Amu Darya River basin in
Central Asia. The objective is to use two multi-objectives
linear programming (MOLP) methods (CP and GPI) in the
ranking of GPDs. In situ monthly precipitation data, recorded
at 55 locations scattered throughout the basin area, were also
used. The CP and GPI results obtained were integrated using
anMCGDA and the best was then selected. The AmuDarya is
the longest transboundary river in Central Asia, traversing the
countries of Afghanistan, Kyrgyzstan, Tajikistan,
Turkmenistan and Uzbekistan (Froebrich and Kayumov
2004; Mergili et al. 2013). The river provides freshwater for
multipurpose activities, such as drinking, irrigation and hydro-
power, and also supports the Aral Sea ecosystem (Kure et al.

2013; Lioubimtseva 2014). Despite the importance of the ba-
sin system, studies related to the hydro-climate is very limited,
principally due to the nonavailability of longer period high-
resolution precipitation data (Bobushev and Salnikov 2014;
Immerzeel et al. 2012). It appears that few attempts have been
made to source suitable gridded climate data for the Amu
Darya basin and surrounding regions. A brief overview of
existing studies is presented in Table 1; however, no compre-
hensive study has been conducted to assess the suitability of
gridded precipitation products for the entire basin. The selec-
tion and ranking of GPDs would assist in reliably assessing
hydro-climatic changes and impacts on water resources within
the basin.

2 Study area and data

2.1 Study area

The Amu Darya river headwaters are located in the high
glacier and snow-covered mountains of Tajikistan and
Kyrgyzstan, then passing through the northern parts of the
Hindu Kush, Whakhan in Afghanistan, the Kara-Kum and
Kyzyl Kum deserts and the arid plains of Uzbekistan before
discharging into the Aral Sea (Chevallier et al. 2012;

Table 1 Existing studies in Amu Darya basin and neighbouring regions using gridded data products

Author Study area Gridded data used Major findings

White et al.
(2014)

Amu Darya basin CRU TS-2.1 CRU could not provide more suitable climatic
inputs for water modelling

Törnqvist (2013) Amu Darya basin CRU temperature Uncertainties associated with CRU usage.
Increase in temperature by 2025 and 2100

Lutz et al. (2013) Amu and Syr
River basins

APHRODITE precipitation and PGMFD temperature Used as a reference for climate projection

Savoskul and
Shevnina
(2015)

Syr Darya basin CRU temperature CRU upscaled to match with GCM

Shibuo et al.
(2007)

Aral Sea
catchment

CRU precipitation and temperature as input of models Increase in evaporation due to irrigation and
water diversion

(Malsy et al.
2015)

Ob river CRU TS, GPCC, WFD, and APHRODITE precipitation GPCC and APHRODITE are better hydrological
modelling inputs

Haag et al.
(2019)

Central Asia CRU temperature and TRMM precipitation CRU has good correlation with observed
temperature

Khaydarov and
Gerlitz (2019)

Uzbekistan CHELSA precipitation and temperature CHELSA agreed with observed temperatures
and precipitation

Duethmann et al.
(2015)

Tarim River APHRODITE, GPCC, WRF, UDel and CRU precipitation APHRODITE and GPCC are capable of
providing spatial distribution data

Zandler et al.
(2019)

The Pamir region
of Tajikistan

CRU, GPCC, ERA-interim, ERA5, MERRA-2, MERRA-2
bias-corrected, PERSIANN-CDR precipitation

MERRA–2 bias-corrected and GPCC,
indicated better performance

CRU climate research units, TRMM Tropical Rainfall Measuring Mission, APHRODITE Asian Precipitation-Highly-Resolved Observational Data
Integration Toward Evaluation, PGMFD Princeton’s Global Meteorological Forcing Data, GPCC Global Precipitation Climatology Centre, WFD
Forcing Data, CHELSA Climatologies at high resolution for the earth’s land surface areas, WRF Weather Research and Forecasting, MERRA
Modern-Era Retrospective analysis for Research and Applications, PERSIANN-CDR The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks-Climate Data Record

987Ranking of gridded precipitation datasets by merging compromise programming and global performance index: a...



Ibrahimzada and Sharma 2012; Nezlin et al. 2004; White
et al. 2014). (White et al. 2014; Ibrahimzada and Sharma
2012; Nezlin et al. 2004; Chevallier et al. 2012). The river
is 2,540 km in length, with an annual average flow of about
75 billion m3 (Ahmad and Wasiq 2004). The major tribu-
taries of the Amu River consist of the Vahsh, Pandj and
Zeravshan (Normatov and Normatov 2018). Figure 1 a
shows the catchment area of the Amu Darya River basin.
Most of the basin comprises steppe land. A typical continen-
tal climate dominates the region (Jalilov et al. 2013). The
basin can be sub-divided into three unequal zones: (1) an

upstream area characterized by high mountains with an av-
erage altitude of 7495 m; (2) a midstream section with sev-
eral large irrigated oases; and (3) a downstream zone feeding
the Aral Sea in the northwest (average elevation 200 m). The
mean annual rainfall of the basin is 464 mm. The maximum
precipitation of 2000 mm occurs upstream (in Eastern Pamir)
and the minimum downstream (100 mm). Most rainfall oc-
curs during winter (November to May) while the summer
period (June to September) is relatively dry. The temperature
in summer averages 35 °C, while in winter it falls to − 8 to −
20 °C (Gaybullaev and Chen 2013).

Fig. 1 a Location of the Amu
Darya River basin in Central
Asia. b Location of rain gauge
stations used in this study.
Coloured circles indicate data
source

988 O. Salehie et al.



Most of the Central Asian countries are considered arid to
semi-arid and are vulnerable to climatic changes (Yadav
et al. 2019). Water derived from the Amu Darya river is
considered to of prime importance for the economy and as-
sociated livelihoods of much of the Central Asia population
(Unger-Shayesteh et al. 2013). This area is home to more
than 50 million people (Babow andMeisen 2012). While the
Amu River is predominantly fed by glacial meltwaters, the
permafrost found within the soil profile also provides more
than 40% of the river flow, especially during summer
(Dodson et al. 2015; Novikov et al. 2009; Punkari et al.
2014).

2.2 Observed precipitation data

Observed daily precipitation data was collected from the
Ministry of Energy and Water of Afghanistan (MEW-AFG)
and the official website of Global Summary of the Day
(GSOD): https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?
datasetabbv=GSODandcountryabbv=andgeoregionabbv=.
The differing data sources are marked with different coloured
symbols in Fig. 1. The precipitation records of 55 stations for
the 1979-2019 period were selected. A number of stations
adjacent to the boundary of the basin were also selected due
to the availability of longer period recorded data. Stations with
missing or only short period records were discarded. The lo-
cations of stations within and adjacent to the river basin are
shown in Fig. 1b. Most of these are centred within the east and
southeast parts of the study area, with few located in the west
and south-west. Fewer stations are located in the northwest so
data from this area is scarce. In general, there is a good distri-
bution of recording locations within the basin, though some
spatial variability is evident.

2.3 Gridded precipitation data

Seven gridded precipitation datasets were evaluated. These
include (1) Asian Precipitat ion-Highly-Resolved
Observational Data Integration Toward Evaluation V1101
(APHRODITE), (2) Climate Hazards Group Infrared
Precipitation with Station V2.0 (CHIRPS), (3) National
Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (CPC) global dataset, (4) University of
East Anglia Climatic Research Unit TS V4.03 (CRU), (5)
Global Precipitation Climatology Center (GPCC), (6)
Princeton University Global meteorological forcing dataset
for land surface modelling V3 (PGF), and (7) Centre for cli-
matic research, University of Delaware V5.01 (Udel). Table 2
summarizes the type, resolution, frequency and period of the
seven datasets. All the original data is formatted in Network
Common Data Form (NetCDF). The statistical software pro-
gramme R was used to extract the data in comma-separated
values (.csv) format for the statistical analysis. The common

period of GPDs is 1981-2015, so the performance of the
datasets is compared with observed data from the 55 selected
locations for the period 1981-2015.

The APHRODITE precipitation product is developed
using gauge precipitation data obtained from the Global
Telecommunication System (GTS) network, as well as in situ
records (Yatagai et al. 2012). The product has been developed
based on a new interpolation technique with accurate long-
term gridded orographic precipitation for Asia (Kamiguchi
et al. 2010). The data are available at http://aphrodite.st.
hirosakiu.ac.jp/product/APHRO_V1101EX_R1/APHRO_
MA/025deg_nc/.

CHIRPS is a quasi-global rainfall dataset, spanning all lat-
itudes from 50° S to 50° N. This dataset has been developed
by the Climate Hazard Group, combining the Tropical
Rainfall Measuring Mission (TRMM) Multi-Satellite
Precipitation Analysis version 7 (TMPA 3B42 v7), global
cold cloud duration rainfall estimates and several other ob-
served databases. The product is widely used in many fields,
particularly for hydrologic simulations and modelling (Funk
et al. 2015; Gao et al. 2018). The data can be downloaded
from ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.
0/global_monthly/bils/.

The CPC is an observation-based gridded precipitation
product developed by the Climate Prediction Center,
National Centers for Environmental Prediction (Tanarhte
et al. 2012). The data are available at ftp://ftp.cdc.noaa.gov/
Datasets/cpc_global_precip/. The CRU used an angular
distance weighting interpolation method to grid monthly
gauge data acquired from the World Meteorological
Organization (WMO), NOAA and other national networks.
These cover the entire global land surface apart from
Antarctica (New et al. 2000). The data is available at https://
crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/.

The GPCC was established in 1989 by Deutscher
Wetterdienst as the German contribution to the World
Climate Research Programme (WCRP) (Becker et al. 2012).
The product was developed by combining data from the glob-
al telecommunication system (GTS), synoptic weather infor-
mation, monthly climate monitoring reports and data from the

Table 2 List of gridded precipitation datasets used in this study

Dataset Type Resolution Frequency Period

APHRODITE V1101 G 0.25° Daily 1951–2015

CHIRPS V2.0 S 0.05° Monthly 1981-2019

CPC G 0.5° Daily 1979-2019

CRU V4.03 G 0.5° Monthly 1901–2018

GPCC G 0.5° Monthly 1891–2016

PGF G 0.25° Daily 1948-2016

Udel V5.01 G 0.5° Monthly 1900-2017

G gauge-based data, S satellite-based data
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national hydro-meteorological monitoring organizations of
190 countries around the world (Schneider et al. 2014), acces-
sible via https://psl.noaa.gov/data/gridded/data.gpcc.html.

The PGF datasets have been developed by Princeton
University by combining several global station-based datasets
with the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–NCAR)
reanalysis (Duan et al. 2016). The PGF data are available at
http://hydrology.princeton.edu/data/pgf/v3/0.25deg/daily/.

The UDel precipitation dataset has been developed by the
University of Delaware. It is based mainly on the data of
22,000 globally distributed rain gauges. The product also uses
Global Historical Climate Network data and data from the
Legates and Willmott archive of station climatology
(Matsuura and Willmott 2012). The data can be accessed via
https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_
AirT_Precip.html.

3 Methodology

3.1 Procedure

The general procedure used in achieving the objectives of this
study is as follows:

1. Daily observed rainfall records and gridded data (avail-
able only at the daily scale) were converted to monthly
values to make them consistent in terms of frequency;

2. The ability to use the gridded precipitation in replicating
observed precipitation at each station was examined via
an array of statistical metrics;

3. The data values were standardized (range of 0 to 1) to
remove the influence of the differing metrics;

4. CPI and GPI were employed to integrate the results;
5. The gridded precipitation products were then ranked

using CPI and GPI for each station point;
6. Finally, the MCGDA technique was applied to merge the

rankings of the precipitation product for the whole river
basin.

The evaluation of the quality of gridded precipitation
products is commonly performed by comparing gridded
data with the data of the nearest rain gauge (Tan et al.
2020) or interpolation of gridded data at each gauge loca-
tion (Ahmed et al. 2019). In this study, GPDs were inter-
polated at the station location using an inverse distance
weighting method and then the interpolated precipitation
was compared with the observed precipitation. Details of
the statistical indices, MOLP methods and group decision-
making methods used in the present study are described in
the following sections.

3.2 Performance assessment

Six statistical metrics were used to evaluate the accuracy of the
precipitation products. These included the coefficient of deter-
mination (R2), normalized root mean square error (NRMSE),
percentage of bias (PBIAS), Kling-Gupta efficiency (KGE),
modified index of agreement (MD), and the ratio of standard
deviation (rSD) These statistical methods are routinely used to
evaluate the performance of the differing characteristics of
observed precipitation, including the mean, variability and
association. A description of the statistical indices is provided
in Table 3. The range and optimum values of the indices are
also shown in Table 3.

3.3 Multi-objective linear programming

TwoMOLPmethods (CPI and GPI) were used to integrate the
results and to derive a single metric. The MOLPs are de-
scribed below.

3.3.1 Compromise programming

The CP is a MOLP method. A Pareto-optimal solution of a
multi-objective problem is obtained by estimating the min-
imum distance of a utopian solution (Raju et al. 2017;
Zeleny 1973. It uses statistical metrics such as R2,
NRMSE, PBIAS, MD and other metrics in the calculation
(Salman et al. 2019). CP uses 1 as the optimal value for R2

and zero for other statistical indices. The CPI is expressed
as:

CPI ¼ ∑
n

1
x1i −x

*
i

�� ��p� �1
p

ð1Þ

where i is the statistical index; x1i is normalized value of

index i for gridded precipitation dataset 1; x*i is normalized
ideal value of index i; and P is the parameter which is consid-
ered 1 for linear programming and more than 1 for non-linear
programming. In this study, the P was considered 1. The CPI
is always positive where a smaller value of CPI indicates
better performance of a gridded data.

3.3.2 Global performance indicator

GPI (Despotovic et al. 2015) is a robust MOLP that can be
used to overcome any disparities in the results derived
from the different statistical metrics. It is estimated from
the scaled values of the metrics by subtracting the value
from the median value. The GPI of a gridded product, i can
be defined as:
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GPIi ¼ ∑
n

j¼1
aj ey j−yij� �

; where a j

¼
n
−1 for R

þ 1 for all other errors ð2Þ

where ey j represents the median of the scaled values of

indicator j; yijis scaled value of indicator j for ith gridded
data and n is the number of statistical metrics. The higher
value of GPI of a gridded data indicates a better
performance.

3.4 Multi-criteria group decision-making

An MCGDA was employed to rank the GPDs for the whole
Amu Darya River basin. In this proposed approach, each
gridded product provided a weight based on the position
achieved by the product at different stations to estimate an
integrated index (Ix). The weight of a product was set as an
inverse of the rank, meaning that if a product obtained first,
second and third rank at a1, a2 and a3 stations, Ix for the
product was estimated to be:

Ix ¼ a1 1=1ð Þ þ a2 1=2ð Þ þ a3 1=3ð Þ ð3Þ

A gridded product ranked lower than three at a locationwas
considered a poor performer at that location, and therefore
assigned a zero weighting. The Ix value of different gridded
products was used to provide a final ranking of the products in
the basin.

4 Results

4.1 Spatial distribution of mean annual precipitation

The average annual precipitation between the observed and
gridded data is presented in Fig. 2. This shows that the
maximum precipitation was observed in the northeast of
Afghanistan and south-east of Tajikistan while the mini-
mum in the east of the basin. The gridded products also
indicated maximum precipitation values in the northeast of
Afghanistan and south-east of Tajikistan, and over a small
part of Uzbekistan. Precipitation amounts decreased to-
wards the west and northwest parts of the basin in
Uzbekistan and Turkmenistan and over a wide area in the
north of Afghanistan. The maximum mean annual precip-
itation in the north of the basin for each method was cal-
culated as - UDel (1052 mm), CHIRPS (904.6 mm),
APHRODITE (877.2 mm), GPCC (827.7 mm), PGF (728
mm), CRU (688 mm) and CPC (428 mm) The minimum
values of annual average precipitation in the northwest
were calculated as - CPC (53 mm), UDel (67 mm),
CHIRPS (69 mm), GPCC (76.9 mm), PGF (98.72 mm),
CRU (93 mm) and APHRODITE (84 mm).

4.2 Statistical performance of gridded precipitation
datasets

The ability of the gridded precipitation products to repli-
cate the differing properties of the observed data at all
stations was evaluated using six statistical indices.
Results for the different datasets at all stations are present-
ed in Fig. 3. The upper, middle and lower lines of the box

Table 3 Statistical indices used for evaluating the performance of precipitation products in estimating observed precipitation

Statistical indices Range Optimal value

R2 ¼ ∑n
n¼1 xo−x oð Þ� xg−x gð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
n¼1 xo−x oð Þ

p 2∑n
n¼1 xg−x g

� 	
2Þ2

− 1 to 1 1

NRMSE ¼ 1
n

� 	
∑n

i¼1 xg−xo
� 	
 2 �1=2

sdv xoð Þ
0 to ∞ 0

PBias ¼ ∑N
i¼1 xo−xgð Þ
∑N
i¼1xo

� � − ∞ to ∞ 0

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þp

2 þ β−1ð Þ 2 þ γ−1ð Þ 2

β ¼ μg μo and γ ¼ σg=μg

σo=μo

− ∞ to 1 1

MD ¼ 1−∑n
i¼1 xo−xg

� 	 j

∑n
i¼1 xg−x oj jð þ xo−x g

�� ��Þ j
0 to 1 1

rSD ¼ sd xoð Þ
sd xgð Þ

− ∞ to ∞ 1

where, Xg and Xo are the gridded (g) and observed (o) precipitation, respectively; r is Pearson’s correlation; μ and σ represent mean and standard
deviation
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represent the 75th, 50th (median) and 25th percentile
values, where values of a product are closer to the optimum
value of a metric (Table 3) than the product can be consid-
ered superior. Figure 3 also shows that the median of R2 for
CPC was closest to 1 (optimum value) followed by PGF,
CHIRPS and APHRODITE. The median of KGE was close
to 1 only for PGF and CPC, while it was more or less the
same for the other products. The CPC showed good agree-
ment in terms of median of rSD, followed by CRU and
GPCC. The value closest to zero PBIAS (optimum) was
observed for CPC, while the performance of other products
was found to be similar in terms of PBIAS. The lowest
NRMSE was obtained for APHRODITE, CPC, PGF and
CHIRPS.

Table 4 provides a summary of stations showing the
performance of the various gridded precipitation prod-
ucts (representing the number of stations at which a

product ranked first in terms of particular metrics).
APHRODITE was found to be the best at 11, 8, 1, 6
and 8 stations in terms of R2, KGE, MD, rSD, PBIAS
and NRMSE respectively. Likewise, CHIRPS was found
best at 15, 12, 16, 8, 6 and 13 stations in terms of R2,
KGE, MD, rSD, PBIAS and NRMSE respectively. At
some locations, more than one product had the same R2,
and therefore, they were given the same rank. To illus-
trate this, it can be seen that a high R2 value (0.65) was
obtained for both APHRODITE and CPC at a station
located in the northwest. Both were therefore ranked
1st in that specific location. For this reason, the total
number of locations at which different products obtained
a first rank rating is greater than the total number of
stations (55) studied.

The analysis indicates that CPC was the best performer
for the majority of the stations (stations 19, 22, 26, 16, 23

Fig. 2 Spatial distribution of
mean annual precipitation,
observed and gridded products
over Amu Darya basin
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and 18 in terms of R2, KGE, MD, rSD, PBIAS and
NRMSE, respectively). It was not possible, however, to
conclusively determine performance ability due to the sta-
tistical indices exhibiting dissimilar results when compared
with the observed data. Station elevation may also affect
product suitability. As a result, CPI and GPI were estimat-
ed for all products at each location based on their
performance.

4.3 Ranking of gridded precipitation datasets using
compromise programming

The CPI of each gridded precipitation product was estimat-
ed from the statistical metrics at each different location.
CPI values at all the 55 stations, for all seven gridded
precipitation products, are presented in Fig. 4. The values
are presented using a colour ramp where green indicates a

Fig. 3 Box andWhisker plots of R2, KGE, MD, rSD, PBIAS and NRMSE, obtained by different gridded precipitation products at 55 observed locations
in Amu Darya River basin (APH APHRODITE, CHIR CHIRPS)

Table 4 Number of stations at which different gridded datasets were ranked top in terms of various statistical measures

Statistical indices Gridded precipitation data

APHRODITE CHIRPS CPC CRU GPCC PGF UDel

R2 11 15 19 0 0 16 0

KGE 8 12 22 0 1 15 1

MD 1 16 26 0 1 15 1

rSD 6 8 16 8 7 7 7

PBIAS 6 6 23 6 4 5 7

NRMSE 8 13 18 0 0 16 1
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high value of CPI, red indicates a low value of CPI and
yellow indicates a performance result near to the median
value of CPI. Results revealed a superior performance for
PGF and CHIRPS at many of the stations. These results
indicate that, PGF and CHIRPS performed best at many
stations when they were ranked using CPI, while CPC per-
formed best at many stations in terms of different statistics.

Further evaluation of CPI performance was undertaken.
The spatial distribution of the stations where a product
achieved 1st, 2nd and 3rd rank is shown in Fig. 5. Figure 5

Fig. 4 The heat map showing the CPI values estimated for different
gridded precipitation datasets at all the observed locations in the study
area

Fig. 5 Ranking of gridded precipitation products based on CPI for all
stations over the study area ((a) is 1st position, (b) is 2nd position and (c)
is 3rd position)

Table 5 Overall rank of the gridded precipitation products for the study
area

Products Rank based on CPI Rank based on GPI MCGDM

1st 2nd 3rd 1st 2nd 3rd

APH 8 17 5 2 22 5 5.47

Chrips 12 10 12 10 12 12 6.83

CPC 20 6 6 25 7 3 9.08

CRU 0 4 7 0 3 7 1.36

GPCC 0 3 5 1 2 5 1.14

PGF 14 14 12 16 8 13 8.22

Udel 1 1 8 1 1 10 1.5
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a shows that CPCwas the best-gridded product observed, with
most locations aligned with the observed values. CHIRPSwas
also found to be a good performer at many stations, particu-
larly those located in the south. PGF gave superior results in
the central region, while APHRODITE was best at a number
of locations in the northwest. Figure 5 b shows APHRODITE
as the second-best product in the central and northern region
of the Amu Darya basin. The PGF and CHIRPS were ranked
second at many locations where they were not ranked the best.
A large heterogeneity was noticed in the 3rd ranked gridded
product. Overall, CHIRPS and PGF were ranked third at most
of the locations where they were not ranked 1st or 2nd.

A summary of stations at which different products
achieved 1st, 2nd and 3rd rank based on CPI are given
in Table 5. The results show that CPC ranked top in
terms of CPI at most of the stations (20). This was
followed by PGF (14), CHIRPS (12) and APHRODITE
(8). The CRU and GPCC did not rank well at any loca-
tion, while Udel ranked top only at a station located on
the border of the basin in the south-central part of the
study area. APHRODITE ranked 2nd at most of the sta-
tions (17) followed by PGF (14) and CHIRPS (10). PGC
and CHIRPS were also ranked 3rd at most of the stations
(12). CPC ranked best at 20 stations and was second or
third best for only six stations.

Fig. 6 Heat map showing GPI values estimated for different gridded
precipitation datasets at observed precipitation stations in the study area

Fig. 7 Ranking of gridded precipitation products based on GPI at all
stations over the basin
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4.4 Ranking of gridded precipitation datasets using
GPI

Colour-coded GPI for all the products at all stations is present-
ed in Fig. 6. The minimum absolute value of GPI indicates the
best performance of a product.

The CPC for most of the stations indicated a performance
result near the median value. Both PGF and CHIRPS also
recorded GPI values near zero for many stations. Stations
where a product achieved 1st, 2nd and 3rd rank based on
GPI are shown in Fig. 7. The spatial pattern of the results
obtained using GPI was found to be very similar to those
obtained using CPI. CPC was the best-gridded precipitation
product, with most of the locations aligned with estimated
values (Fig. 7a). CHIRPS was found best as some locations
in the south and PGF was better at stations mostly located in
the central region. APHRODITE was the second best gridded
precipitation product at most of the locations (Fig. 7b). PGF
and CHIRPS were also ranked the 2nd best product at many
locations. PGF and CHIRPS ranked 3rd at most of the stations
(Fig. 7c).

Table 5 shows a summary of the results obtained by
GPI. This shows CPC is the best product in terms of GPI
at 25 locations, followed by PGF (16) and GHIRPS (10).
Other products were only found to be best at between
zero and two locations. APHRODITE ranked 2nd at
most of the stations (22) followed by CHIRPS (12) and
PGF (8). PGF and CHIRPS were also found to achieve a
3rd rank at most of the stations (13 and 12 stations,
respectively), followed by Udel at 10 stations and CRU
at 7 stations. CPC was best at many stations; however, it
was not good at most locations where it was not ranked
best.

4.5 Group decision-making process

MCGDA was used to select the best gridded dataset as the
results obtained from CPI and GPI were too disparate.
The results are presented in Table 5. The GPD products
were first weighted according to the number of stations
achieving 1st, 2nd and 3rd ranks, with the results then
used to derive an integrated index (last column, Table 5)
using Eq. (3). Higher values indicate a better performance
for a particular product. Table 5 shows the highest value
for CPC (followed by PGF and CHIPS) suggesting that
CPC is the best product for representing precipitation in
the Amu Darya River basin. The integrated index for CPC
and PGF were very close; it should be noted, however,
that the spatial resolution of PGF (0.25°) is higher than
CPC (0.5°). For this reason, PGF is ideal for hydro-
climatic studies where higher resolution precipitation data
is essential.

5 Conclusion

Seven gridded precipitation datasets for the Amu Darya River
basin were evaluated. The results of six statistical indices were
merged using twoMOLP algorithms. These were subsequent-
ly integrated using an MCGMA approach to rank the GPDs
products. The results indicate that CPC appears to be the most
suitable product for studying the spatiotemporal hydro-
climate characteristics of the basin. PGF also provided results
that were very close to the CPC values. The use of both
MOLP and MCGMA has provided an ability to select and
use reliable gridded precipitation products. CPC can be rec-
ommended as an ideal technique to use in hydro-climatic
studies. PGF can also be used, particularly where high spatial
resolution is required. The selection of an accurate and reliable
gridded climate product for a particular geographic region can
be a challenging task as some compromise is usually required
in regard to the ability of the product to simulate different
precipitation properties. The methodology proposed in this
study for selecting the best gridded climate product can be
employed in any region. It should be noted, however, that only
precipitation products with long recording timeframes and
higher spatial resolutions (~ 0.5°) were considered. A large
number of reliable, satellite-based precipitation products are
now available, albeit for shorter time spans, and the perfor-
mance of those products needs to be evaluated in the future to
determine suitability for use. Other multi-objective linear and
non-linear methods, as well as group decision methods, can
also be employed and should be investigated.
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