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Abstract: The Malaysian Government has set a target of achieving 20% penetration of Renewable
Energy (RE) in the energy mix spectrum by 2025. In order to get closer to the target, Ocean Thermal
Energy Conversion (OTEC) aligned with solar PV, biogas and biomass energy sources must be
evaluated and comprehended. Hybrid OTEC systems consisting of energy and water production
are currently under research and validation. Therefore, for the construction of a commercial OTEC
plant, 1 MW or 2.5 MW, the choice of a strategic location or potential site is vital. In this paper,
oceanographic data such as seawater temperature, depth, salinity and dissolved oxygen obtained
from the Japan Oceanographic Data Center (JODC) for Semporna, Tawau, Kudat, Pulau Layang-
Layang and Pulau Kalumpang in Sabah, Malaysia, are reported. The RE available from the Exclusive
Economic Zone (EEZ) on the coast of Sabah was estimated based on the JODC data obtained.
There were no remarkable differences in temperatures between the five sites, which were reported
as approximately 27 ◦C at the surface and 7 ◦C at depths below 600 m. The surface salinities below
100 m at those sites were slightly lower than the deeper waters, where the salinity increased up to
approximately 34.5 PSU. Dissolved oxygen data from the Pulau Kalumpang site showed a slight
increment to approximately 4.7 mL/L at depth intervals below 50 m, before declining steadily to
approximately 1.7 mL/L along with the depth. The temperature-salinity profiles of the Malaysian
sites were congruent with those of Palau, Kumejima and Okinawa, but not with that of Fiji, where the
salinity profile showed a distinct variation at the relative depth (below 200 m). Estimates of RE using
two different methods were used to prove the potential of OTEC in Malaysia.

Keywords: marine profile; power generation; ocean thermal resource; renewable energy; Southeast Asia

1. Introduction

Malaysia is situated in Southeast Asia and mainly consists of Peninsular Malaysia,
Sabah and Sarawak. The largest ocean around Malaysia is the South China Sea. Malaysia’s
climate is equatorial in nature, being hot and humid throughout the year. The average
rainfall is 250 cm a year [1], and it rains heavily, particularly in November and December.
The total land area of Malaysia is 329,847 km2 [2], while the total population is about
35 million. The majority of land is used for palm oil and rubber plantations [3]. The total
area of Malaysia’s Exclusive Economic Zone (EEZ) is 334,671 km2 [4], as shown in Figure 1.

In 2019, the total electricity production in Malaysia was reported to be 161 × 109 kWh,
43% of which was generated by coal, 39% by Liquid Natural Gas (LNG), 17% from hy-
dropower and the rest, 0.6%, from Renewable Energy (RE) sources such as biomass, solar PV
and wind [5]. This total electrical energy is large enough to cover the current demands
of industrialization for Malaysia. As the majority of electricity comes from fossil fuels,
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Malaysians are concerned about the ramifications of this source of energy, especially its
carbon footprint, which contributes to global warming. The key terms of the problem are
clearly “sustainable energy” and “climate change”, which are definitely similarly applicable
and of interest to all countries in the world. Under these circumstances, Malaysia and other
ASEAN countries are seriously studying the possible implementation of a RE mixture,
or rather hybrid RE, to combat these issues. Nevertheless, Malaysia has a huge capacity
for Ocean Thermal Energy Conversion (OTEC), one which is profound and comparable
with those of other tropical and subtropical countries such as Fiji [6], the Philippines [7]
and Nauru Island [8]. Many researchers have discussed the huge OTEC resources glob-
ally [9] and in other local areas such as the Atlantic Ocean [10], Western Indian Ocean [11],
Aguni Basin in Japan [12] and Florida in the USA [13]. This paper investigates the potential
of OTEC in Malaysia, especially at the present time when environmental sustainability is
vital for mankind [14].

Figure 1. Areas highlighted in light blue are the overall Malaysian Marine Region—Exclusive Economic Zone (EEZ). This
map shows 98 degrees to 121 degrees east in longitude and the equator to 10 degrees north in latitude.

An OTEC plant is able to provide stable energy, and the deep effluent seawater
also has significant utility as a resource for a variety of industries [15]; deep seawater
has huge potential for fertilizing the ocean [16], while seawater air conditioning can be
used to reduce energy consumption [17] and to recover rare metals such as lithium [18].
OTEC technology can directly tackle the UN’s Sustainable Development Goals (SDGs),
e.g., goal 6, Clean Water and Sanitation; goal 7, Affordable and Clean Energy; and goal
17, Partnerships for the Goals. Avery and Wu [19] summarized the history of research on
OTEC and the types of OTEC heat engine used to convert ocean thermal resources into
electricity. An OTEC potential energy calculation method has been proposed using the
specific seawater based on the reversible heat engine [20]. Recently, multitemperature
level heat engines were developed using a nonazeotropic mixture as the working fluid and
staging cycles [21]. However, when using surface seawater, biofouling in the heat exchanger
is unavoidable. Therefore, a hybrid OTEC, which indirectly uses surface seawater in the
heat exchanger after changing it into a vapor, has been proposed to produce electricity and
fresh water through distillation [22].

The investment cost of an on-land hybrid OTEC plant, which is the proposed type for
multipurpose use, would be significantly affected by the climate, submarine topography
and social infrastructure at the projected site [22]. Therefore, it is necessary to carry
out a feasibility study by conducting a thorough desktop study of the available data
from the Japan Oceanographic Data Center (JODC) [23] before embarking on an actual
oceanographic survey. There are many institutions around the world [8] that have been
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working on the conceptual design of OTEC plants with high performance and suitability
for proposed sites. In this paper, the specific features of the Malaysian sea were analyzed
based on the data provided by JODC in order to study the potential of chosen study sites
for OTEC plant construction and to estimate the resources required to establish OTEC
systems in East Malaysia, including detailed calculations of renewable energy [24] obtained
for an OTEC plant in the Malaysian sea area.

2. Methodology
2.1. Sites of Investigation

The northwest and southeast of Sabah, Malaysia, were determined to be suitable areas
for installation of an on-land or off-shore OTEC plant and therefore a research study was
conducted in these areas, as shown in Figure 2; namely Tawau, Sipadan, Pulau Kalumpang,
Pulau Layang-layang and Pulau Banggi. The total potential area for OTEC was approxi-
mately 92,301 km2 (Figure 2). The survey of oceanic conditions included surveying for the
necessary deep ocean water of 5–7 ◦C required for OTEC plants at the given places. JODC
data confirmed that the depths of the dark blue highlighted areas were more than 1000 m.

Figure 2. Map of Sabah and Sarawak with latitude and longitude position. The solid line represents the EEZ of Malaysia,
the dark blue highlighted areas are location with seawater depths greater than 1000 m, and potential sites for Ocean Thermal
Energy Conversion (OTEC) are marked with a star. This map shows 109 degrees to 121 degrees east in longitude and the
equator to 9 degrees north in latitude.

2.2. Method of Investigation

In this study, reference data from Fiji, Palau, Okinawa and Kumejima were used.
Some of the measuring research data was obtained from the training vessel “Koyo Maru”
owned by the National Fisheries University, Yamaguchi, Japan, who provided full coop-
eration in supplying all required data and maps for Sabah, Malaysia. Other data were
obtained from JODC.

Salinity, water temperature, seawater depth and dissolved oxygen (DO) were mea-
sured using a reliable conductivity, temperature and depth (CTD) sensor (Neil Brown
Instrument system, Inc. from USA, Mark IIIB CTD Profiler CTD-O2) with the following
specifications; as shown in (Table 1).
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Table 1. Specifications of the conductivity, temperature and depth (CTD) instrument used in this
study.

Parameter Range Accuracy

Conductivity 1–65 mmho ±0.005 mmho

Temperature −32–+32 ◦C ±0.005 ◦C

Pressure

0–320 db ±0.5 db
0–650 db ±1.0 db

0–1600 db ±1.6 db
0–3200 db ±3.2 db
0–6500 db ±6.5 db

The conductivity meter had an electrode cell sensor, the temperature sensor was a
thermistor type (200 Ω at 20.0 ◦C) and the pressure sensor was a strain gauge type (350 Ω).
Salinity was obtained by comparing the electric conductivity of a KCl standard solution
at 15 ◦C at 1 atm against the conductivity ratio after having adjusted water pressure and
temperature. Water temperature rises when pressure is applied to it; therefore, potential
water temperature was used. Depth was calculated from the equations of water pressure
and depth. In order to establish the amount of dissolved oxygen, the oxygen saturation
rate was calculated by adjusting water pressure and water temperature through the use of
an electric current provided by an oxygen sensor, and then the oxygen saturation rate was
multiplied by the oxygen volume in the seawater. The coefficient needed for the calculation
of oxygen saturation rate was decided in comparison to the titration oxygen value of the
Winkler method.

3. Results and Discussion
3.1. Temperature Profile

As shown in Figure 3, which features the vertical temperature profile, according to
JODC data, the temperature did not vary much from one site to the next. However, a closer
comparison of the sites confirms that there was a slight temperature change ranging
between 0.1 ◦C and 1 ◦C at each measured depth, and this tendency increased in the
shallower area compared to that at 700 m depth. The temperature dropped quite sharply
from 27.5–28.5 ◦C at the surface down to 7.0–7.3 ◦C at 600 m depth and we observed no
distinctive layer where surface water was mixed with water from 600 m depth, while a
remarkable change of temperature from the surface was noticeable. Deeper than 600 m,
seawater temperature showed a gradual drop down to 4.6–4.8 ◦C between the points of
1050 m and 1150 m depth. Thus, the temperature difference greater than 20 ◦C required to
operate a viable hybrid OTEC in Sabah, Malaysia, was confirmed.

Seawater temperature plays a particularly important role in the design of OTEC plants.
Especially for a hybrid OTEC plant, a temperature difference greater than 15–20 ◦C between
surface seawater and deep seawater must be assured for economic viability. Therefore,
the cold seawater pipes used to take in 7 ◦C cold seawater must be long enough to reach a
depth of at least 600 m. In cases where the OTEC plant requires 5 ◦C cold seawater, the cold
seawater pipe needs to be long enough to go down to 900 m depth (as shown in Figure 3).
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Figure 3. Deep seawater temperature and depth profiles of Tawau, Simpadan, Pulau
Kalumpang, Pulau Layang-layang and Pulau Banggi; data obtained from the online Japan
Oceanographic Data Center (JODC).

3.2. Salinity Profile

In areas with water depth less than 400 m, where the seawater temperature drops
sharply, the salinity also changes quite substantially as compared to that in areas with
water depth greater than 600 m, as shown in Figure 4. Furthermore, the salinity of surface
(between 0–100 m) seawater was found to be relatively low, between 33.0–34.3 PSU, show-
ing fairly large variation between the sites. This could be mainly because of the drastic
current flow, especially near the surface seawater. It increased as the depth increases up to
34.5–34.7 PSU at 100–200 m depth. It then decreased with increasing depth, and at 400 m
depth, it was approximately 34.4–34.6 PSU. Salinity in water deeper than 600 m showed a
slight increase as the depth increased.

Figure 4. Deep seawater salinity (in PSU) and depth profile of Tawau, Sipadan, Pulau
Kalumpang, Pulau Layang-layang and Pulau Banggi; data obtained from the online Japan
Oceanographic Data Center (JODC).
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Salinity is a key parameter to estimate transport properties, which directly affect heat
transfer, another most critical issue for designing a hybrid OTEC plant. Nevertheless,
the variation of salinity in the surface layer also shows the possibility of the contamination
of rainwater in those sites. The contamination is able to cause biofouling, which may
deteriorate the total efficiency of hybrid OTEC systems [22].

3.3. Dissolved Oxygen Profile

Figure 5 depicts the vertical profile of dissolved oxygen from JODC data of Pulau
Kalumpang, Sabah, one of the potential sites for a hybrid OTEC plant. Similar to the cases
of temperature and salinity, a fairly large variation of the dissolved oxygen in shallower
(0–25 m) waters was observed. As shown in Figure 5, it was 4.5–4.7 mL/L at the surface,
and then its value increased as the water got deeper, becoming 4.6–4.7 mL/L at 25 m depth.
It then decreased further to 3.0–3.1 mL/L at 100 m depth. Then, it decreased to 1.7 mL/L
in further depths. These data were provided by JODC.

Figure 5. Deep seawater dissolved oxygen (mL/L) and depth profile of Pulau Kalumpang;
data obtained from the online Japan Oceanographic Data Center (JODC).

Density of dissolved oxygen is a key parameter for deciding on the power requirement
of the vacuum pump used in the desalination process, in which seawater is to be fed into
the evaporation chamber for instant flash vaporing and the vapor thus produced will be
condensed to produce fresh water or drinking water in some countries [25]. A vacuum
pump is needed in the operation of this process. Furthermore, dissolved oxygen is also
quite an important resource for the promotion of aquaculture industries, such as seaweeds,
fish and shrimps [26].

3.4. Water Mass (T-S Profile)

According to the temperature-salinity (T-S) profile in Figure 6, the salinity values
for Tawau, Sipadan, Pulau Kalumpang, Pulau Layang-layang and Pulau Banggi below
seawater temperature of 5.0 ◦C were approximately 34.4–34.8 mL/L, while higher salinity
of up to 34.1–35.8 mL/L was noticeable in the waters with temperatures above 5 ◦C
and up to approximately 24.0 ◦C (or in the depths between 800 m and 100 m). The T–S
profile in waters above 24 ◦C up to the surface shows an arc-like pattern, as depicted in
Figure 6. This is probably due to the heavy rainfall each year, which should make coastal
waters relatively low in salinity. The yearly average salinity in water deeper than 250 m
is described by a similar arc-like pattern, which would indicate the characteristics and
similarity of water mass between regions.
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Figure 6. Deep seawater temperature–salinity profiles of Tawau, Sipadan, Pulau
Kalumpang, Pulau Layang-layang and Pulau Banggi were compared with those of Palau,
Fiji, Okinawa and Kumejima (contour (dotted line) represents the density (σ t) (kg/m3)).
These data were obtained from the online Japan Oceanographic Data Center (JODC).

The T-S profile confirms the characteristics and suitability of water mass in each region
for ocean thermal resources. Thus, Figure 6 also includes the T–S profile obtained from
waters in Fiji, the Republic of Palau [27], Kumejima and Okinawa for a comparison study.
The results confirm that all the T-S profiles of Malaysian sites were similar in character
with the Palau, Okinawa and Kumejima sites. However, in the areas between the surface
and 200 m depth in Fijian waters, the salinity arc became greater than for the Malaysian
and Japanese cases. Further, in the 16–18 ◦C seawater, the salinity of the Malaysian sites
was similar to those in the waters of the northern part of South China Sea territories,
such as Palau, Okinawa and Kumejima. The patterns observed in the Malaysian waters
were comparable with that of Palau, Okinawa and Kumejima, but the virtual profile of
salinity differed.

3.5. Approximation of OTEC Potential Power Production Capacity

There are no firmly established estimates of the global basis of the availability of ocean
energy for OTEC plants in the Malaysian EEZ. In the meantime, the Malaysian total volume
of electricity is about 161 × 109 kWh [5], 0.6% of which is RE and is about 94.2 × 107 kWh.
In this approximation and from the depth-temperature profile, the 7 ◦C cold seawater
required for the OTEC plant is found at depths of about 600 m. The distribution area of
7 ◦C cold seawater (AF) within the Malaysian EEZ (AEF) of 3.35 × 1011 m2 shares about
28% of the total, i.e., 9.23 × 1010 m2. Average temperature of the surface seawater was
about 27 ◦C, as shown in Figure 3. This enables the assumption that the temperature of
surface seawater is 27.0 ◦C for this approximation. Based on the data and this assumption,
the estimate of renewable energy production by an OTEC plant in Malaysian waters are as
follows. There are two methods of calculations for this estimate.
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The first one is to follow Equation (1) used by Takano [28] for the estimation of OTEC
energy. This was applied to the case study of Malaysia (EF).

EF = cp × m × ∆T = 4.2 × 9.2301 × 1010 × 600 × 1.03 × 103 × (27.0 − 7.0)
= 4.792 × 1018 (kJ)

(1)

where cp: specific heat of seawater at constant pressure (4.2 kJ/kgK); m: mass of seawater
(volume × density, i.e., 9.2301 × 1010 × 600 × 1.03 × 103 = 5.704 × 1016 kg); and ∆T:
temperature difference, where the mass of seawater (m) is the multiplication of three
factors, i.e., the usable area for an OTEC plant in Malaysia (AF = 9.2301 × 1010 m2),
the average depth of deep seawater (600 m) and seawater density (1.03 × 103 kg/m3).
Temperature difference (∆T) is the difference between the average temperature of surface
seawater (27.0 ◦C) and deep seawater at the depth of 600 m (7 ◦C).

For continuous utilization of this energy, the energy itself must be presented in a
volume of renewable nature. This figure was obtained by dividing OTEC energy by the
factor of a period of time of seawater circulation, also known as the thermohaline circulation
cycle. Applying the 1000 years of circulation time of the ocean conveyor belt, as suggested
by Takano [28], the equation (EFR) follows:

EFR = EF/thermohaline circulation cycle (1000 years) (2)

Therefore, it will be for the case of Malaysia as follows:

EFR = 4.792 × 1018 / 3.00 × 1010 = 1.597 × 108 kW (3)

where the 1000 years of circulation time of the thermohaline cycle leads to the next equation:

(1000 × 365 + 250) × 24 × 60 × 60 = 3 × 1010 s (4)

If this total renewable energy (EFR) were converted into the net OTEC renewable
energy by applying a Rankine cycle of the OTEC system, the heat efficiency of which is
rated at 2.5% (a rather underestimated value), it comes to 3.99 × 106 kW of renewable
energy (EFO), as shown below:

EFO = EFR × (2.5 / 100) = 1.597 × 108 × 0.025 = 3.99 × 106 kW (5)

This means the government target for RE power generation by 2025, which is 3.14 ×
106 kW, can be achieved only by having a hybrid OTEC plant.

The second approach to estimate RE is based on Equation (6), which uses the heat flux
of the solar energy going into the sea from the sea surface, which then acts as a thermal
energy store; i.e., Direct Energy Conversion [29].

q =
c
π

(
h

k·T′

)(
∆T
T

)
(6)

where q: heat flux of solar energy (note that the output of q will be in W), c: solar speed
constant (1.35 × 103 W/m2), h: quantity of heat per mole for the evaporation process
(40,308.4 J/mol), k: gas constant, T: average temperature of surface seawater (27.0 ◦C),
T′: absolute temperature of surface seawater (300.15 K) and ∆T: temperature difference (if
only 1.0 ◦C).

Considering ∆T to be only 1.0 ◦C, we can acquire q = 257.3 W.
Renewable energy (EFR) is the multiplication of (q), which represents the heat flux of

solar energy going into the sea from the atmosphere, and AF is the OTEC potential sea area
with 600 m or greater depth in Malaysia. The majority of solar energy is being absorbed
near the sea surface and its thermal diffusion into the deep sea is quite small, since energy
conversion with the atmosphere takes place through such phenomena as evaporation,
radiation and heat convection. It is also being consumed for the transport of the ocean
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current. Therefore, if it was assumed to use only 2% of the total EF from the solar energy
and named as EFR, the next equation from Direct Energy Conversion [29] would be:

EFR = 0.02 × q × AF = 0.02 × q × 10−3 × 9.2301 × 1010 = 4.75 × 108 kW (7)

Energy conversion of this renewable energy (EFR) 4.75 × 108 kW by a Rankine cycle
of an OTEC plant with 2.5% rated heat efficiency (η) leads to the OTEC renewable energy
(EFO) of 1.188 × 107 kW. This means that a hybrid OTEC plant should be able to produce
about four times more than the current government target for RE power generation by
2025.

EFO = EFR × 0.025 = 4.750 × 108 × 0.025 = 1.188 × 107 kW (8)

4. Conclusions

This study analyzed the oceanographic observation data from JODC in the Malaysian
sea area, specifically near Sabah, to study the optimal design of a hybrid OTEC plant, which
not only generates power but also provides fresh water utilizing deep seawater. The two
methods used to review and estimate the renewable energy potential of waters near Sabah
have allowed the following conclusions to be drawn:

(1) With regards to seawater temperature, the Japan Oceanographic Data Center (JODC)
of Semporna, Tawau, Kudat, Pulau Layang-Layang and Pulau Kalumpang of Sabah
showed no remarkable difference between the sites. On average, the surface seawater
temperature was 27 ◦C. Deep seawater temperature at 600 m depth was approxi-
mately 7.0 ◦C.

(2) Seawater salinity in waters shallower than 600 m had greater variability than that in
waters deeper than 600 m, between 33.5 and 34.7 PSU.

(3) The dissolved oxygen profile at Pulau Kalumpang showed a similarity to the case of
seawater temperature and salinity. In the area shallower than 300 m, it had greater
variability than at further depths.

(4) The T-S profile in water deeper than 200 m showed the same pattern, while at shal-
lower depths, different characteristics of the water mass were described. In waters
shallower than 200 m, the arc of the pattern became fairly large, while in water deeper
than 200 m, it showed about the same tendency as those recorded in the northern part
of South China Sea territories, such as Palau, Okinawa and Kumejima.

(5) The renewable energy to be generated by an OTEC system within the Malaysian EEZ,
based on two calculation methods—one using the heat quantity of the temperature
difference of seawaters and the other using the heat flux of solar energy—should be an
amount similar to and four times greater than, respectively, the current government
target for RE power generation by 2025.

Possible future works would include, but not be limited to, OTEC optimization for a
2.5 or 10 MW commercial plant. Another future extension with these results could be to
develop an economically viable Malaysian OTEC model.
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Abbreviations
RE Renewable Energy
OTEC Ocean Thermal Energy Conversion
PV Photovoltaics
MW Megawatt
JODC Japan Oceanographic Data Center
EEZ Exclusive Economic Zone
◦C Degrees Celsius
M Meter
Approx. Approximately
PSU Practical Salinity Unit
mL/L Milliliters per liter
T-S Temperature-Salinity
cm Centimeter
km Kilometer
kWh Kilowatt-hour
LNG Liquid Natural Gas
SDGs Sustainable Development Goals
DO Dissolved Oxygen
CTD Conductivity, Temperature and Depth
KCl Potassium Chloride
mmho Milli-mho
db Decibel
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