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a b s t r a c t

Crypto-ransomware is a type of malware whose effect is irreversible even after detection and removal.
Thus, early detection is crucial to protect user files from being encrypted and held to ransom.
Several studies have proposed early detection solutions based on the data acquired during the pre-
encryption phase of the attacks. However, the lack of sufficient data in the early phases of the attack
adversely affects the ability of feature selection techniques in these models to perceive the common
characteristics of the attack features, which makes it challenging to reduce the redundant features,
consequently decreasing the detection accuracy. Therefore, this study proposes a novel Redundancy
Coefficient Gradual Upweighting (RCGU) technique that makes better redundancy–relevancy trade-
offs during feature selection. Unlike existing feature significance estimation techniques that rely
on the comparison between the candidate feature and the common characteristics of the already-
selected features, RCGU compares the mutual information between the candidate feature and each
feature in the selected set individually. Therefore, RCGU increases the weight of the redundancy term
proportional to the number of already selected features. By integrating the RCGU into the Mutual
Information Feature Selection (MIFS) technique, the Enhanced MIFS (EMIFS) was developed. Further
improvement was achieved by proposing MM-EMIFS which incorporates the MaxMin approximation
with EMIFS to prevent the redundancy overestimation that RCGU could cause when the number of
features in the already-selected set increases. The experimental evaluation shows that the proposed
techniques achieved accuracy higher than that in related works, which confirms the ability of RCGU
to make better redundancy–relevancy trade-offs and select more discriminative pre-encryption attack
features compared to existing solutions.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Since its beginning in the early 1970s, several types of ma-
icious software, also called malware, have been witnessed in
he wild, such as Viruses, Worms, Trojans, Spyware and Ran-
omware [1–3]. Ransomware is a type of malware whose purpose
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is to hold user data and files to ransom by denying the access to
these files [4–9]. Although ransomware history dates back to the
late 1980s, it did not gain much popularity among attackers until
recently, when some enabling technologies like Ransomware-as-
a-Service (RaaS), Internet, cryptography and the difficult-to-trace
digital currency, have emerged [10]. These technologies make it
easy for even novice attackers to develop and disseminate their
own ransomware and get paid without the fear of being caught
by the authorities [10,11]. Consequently, the rate of ransomware
attacks has increased dramatically in recent years [12–14].

According to Kaspersky, ransomware attacks are now moving
towards business and 30% of infections in 2019 were among
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corporate users instead of individuals [15]. The report also con-
cluded that around 4$ billion of financial loss was caused by
WannaCry attacks. This adds to the previous statistics which
show that, throughout the world, the losses hit $3 million and
$352 million due to ransomware attacks in 2014 and 2015, re-
spectively [16,17]. In 2016, Indiana county alone incurred around
$220K to recover from ransomware attacks [17]. In 2017, the es-
timated loss due to NotPetya and WannaCry ransomware attacks
was 8$ billion around the globe [18]. Denying access to data is
not the only loss that ransomware victims incur, the damage
could also include downtime costs, loss of money and reputa-
tion [6]. Based on the severity, ransomware is categorized into
locker-ransomware and crypto-ransomware [19]. In contrast to
locker-ransomware attacks, whose effect can easily be mitigated,
crypto-ransomware attacks are not reversible even after remov-
ing the malware. In many cases, the victim has no choice other
than paying the ransom to get the decryption key [10]. Therefore,
to effectively protect user’s digital assets, it is imperative to detect
crypto-ransomware attacks early, i.e. before the encryption takes
place [10,16,20,21]. The early detection of crypto-ransomware
attacks can be achieved by observing its process(es) running
in the victim’s machine and analysing the runtime data gen-
erated during the pre-encryption phase, i.e. the phase in the
crypto-ransomware lifecycle that precedes encryption. However,
detecting crypto-ransomware at early phases of its attack is chal-
lenging, due to insufficient data and attack patterns at this early
phase [19,22].

The small amount of data captured during the initial phases of
he attack is one of the challenges for the early detection which
auses low detection accuracy [23,24]. Even with the availability
f many ransomware samples, the runtime data acquired during
he pre-encryption phase of the attack is small compared to the
ntire runtime data that can be collected from each sample if we
ait until the end of the attack. This small amount of data con-
ains only a few attack patterns, if any, which are not enough for
he model to decide whether this process is normal or malicious.
onsequently, the pre-encryption data lack sufficient attack pat-
erns that the detection model needs to make accurate decisions.
his data insufficiency also prevents the feature selection tech-
ique from identifying the important features that distinguish
he ransomware behaviour from the normal behaviour. With the
nsufficient data collected during the early phases of the attack,
he feature selection technique cannot estimate the features’
ignificance accurately. This challenge exacerbates due to high
imensional features generated by feature extraction methods
ike n-gram, adopted by most detection solutions [20,25–28].
hat is, the number of features extracted by n-gram increases
xponentially with the size of n, which renders the detection
odels prone to overfitting [20,25–27,29–31]. Many of those

eatures are either too common or too specific which makes
he information they carry about the attacks of little use [16].
n addition, many of those features are redundant and highly
orrelated due to the dependency between the API calls used by
ansomware’s running process, which makes these APIs always
ppear together [32–34]. The redundant features cause a degra-
ation in detection accuracy, as they add no relevant information
bout the ransomware attack [19]. More importantly, including
hese redundant features in the selected set comes at the cost of
iscarding other informative features that the feature selection
echnique could exclude when exceeding the pre-defined number
f required features.
Several Ransomware and malware detection solutions as well

s many other solutions incorporate feature selection techniques
o reduce data dimensionality and remove redundant features
20,25,35,36]. It turns out that features’ redundancy and rele-

ancy are the main factors that govern the performance of any
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feature selection technique [37]. These techniques try to filter
out the redundant and irrelevant features and keep only the
informative ones. However, redundancy and relevancy are not
always orthogonal. These features are conflicting in nature, as
some relevant features might also be redundant [37]. For exam-
ple, BCryptDeriveKey employed for deriving the key from secret
agreement value is always accompanied by BCryptSecretAgree-
ment responsible for creating hSharedSecret handle used as a
parameter for the BCryptDeriveKey. Another example is BCryp-
tEncrypt function used for encrypting a block of data usually
comes with BCryptGenerateSymmetricKey, BCryptGenerateKey-
Pair, or BCryptImportKey employed to obtain the hKey handle
which is used as an input parameter for BCryptEncrypt. There-
fore, the redundancy–relevancy trade-off is needed during the
selection process. As such, it is necessary that the feature se-
lection technique can make this redundancy–relevancy trade-off
effectively.

The information theory-based feature selection techniques are
superior when it comes to the trade-off between redundancy and
relevancy, as they make no assumptions about the distribution
of the underlying data [29,38]. This is important for ransomware
early detection, as it relies on sparse and incomplete attack pat-
terns whose clear distribution has yet to be observed [19]. The
redundancy–relevancy trade-off is carried out by adjusting the
values of redundancy coefficients, which changes the belief in
the redundancy term at each iteration in a way that is inversely
proportional to the current size of the selected features set [38].
Although this approach works well for data with full observations
about the attacks, it generates a suboptimal feature set when
dealing with data that lack sufficient attack patterns [39,40]. This
is due to the reliance on the calculation of mutual information be-
tween the candidate feature and the common characteristics of all
already-selected features in the selected set [29]. Such common
characteristics are difficult to perceive from incomplete data ac-
quired during the pre-encryption phase of crypto-ransomware at-
tacks. Consequently, the selected set could include redundant and
irrelevant features, given the limited amount of attack patterns,
as is the case in the early detection where the entire character-
istics of ransomware attack have not yet been observed [39,41].
Therefore, an improvement to the mutual information technique
is needed that overcomes the challenge of pre-encryption data
insufficiency and estimates features’ significance more accurately.

To this end, this paper is devoted to address this issue and
proposes a Redundancy Coefficient Gradual Upweighting (RCGU)
technique that estimates the features significance accurately even
with insufficient attack patterns, as is the case in the early (pre-
encryption) phase of crypto-ransomware attacks. By incorpo-
rating the proposed RCGU into the feature selection technique,
the redundancy between the candidate feature and each feature
in the selected set is individually calculated at every iteration
of the feature selection process. Unlike existing feature signif-
icance techniques that decrease the weight of the redundancy
term in the goal function when the number of features in the
already-selected set increases, the proposed RCGU proportionally
increases the weight of the redundancy term when the number
of those features increases.

The key idea is that, instead of comparing the characteristics
of the candidate feature with the common characteristics of all
features in the selected set (which is very difficult to perceive
from the limited amount of pre-encryption data collected at the
beginning of a ransomware attack), RCGU (individually) compares
between the candidate feature and each feature in the already-
selected set. This individual comparison will help to discover
redundancy even with the insufficient runtime data collected
during the early phases of ransomware attacks. The intuition is

that, by comparing the candidate feature with each feature in the
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selected set individually, the chance that the candidate feature
is redundant with one or more of those features increases with
the growth of the selected set’s size [40]. With this approach, the
need to extract the difficult-to-perceive common characteristics
of the features in the already-selected set becomes unnecessary.
Consequently, the belief in the redundancy term increases when
more features are added to the selected set. As such, the proposed
RCGU can make better redundancy–relevancy trade-off when
dealing with limited amount of data as it is the case of the data
collected during the pre-encryption phase of crypto-ransomware
attacks’ lifecycle. The contribution of this paper is four-fold.

1- A Redundancy Coefficient Gradual Up-weighting (RCGU)
technique is proposed and incorporated into the redun-
dancy term of the goal function of the mutual information
feature selection technique to improve the calculation of
the relevancy–redundancy trade-off, which in turns helps
in selecting a more informative features set.

2- RCGU is incorporated with the Maximum of Minimum
(MaxMin) approximation technique to prevent the redun-
dancy overestimation that RCGU could cause when the size
of the selected set increases.

3- We have shown that the redundancy term plays a major
role in the accuracy of the selected features and is better
than the involvement of conditional redundancy in the
calculation.

4- An extensive experimental evaluation was conducted to
show the efficacy and significance of the improvement that
the proposed techniques contributed to.

or the purpose of this study, crypto-ransomware and
ansomware are used interchangeably unless stated otherwise.
he rest of this paper is organized as follows. Section 2 gives an
verview of the related work. Section 3 provides preliminaries
bout the mutual information-based feature selection techniques.
ection 4 details the methodology followed to design and develop
he proposed techniques. Section 5, presents the experimental
esults, which are analysed and discussed and compared with
elated works. The paper concludes with a summary of the
ethods and results as well as suggestions for future work, in
ection 6.

. Related works

Like other cyberattacks, ransomware attacks target a variety of
ystems and networks, including Personal Computers (PCs), mo-
ile devices, Wireless Sensor Networks (WSN), Vehicular Ad-Hoc
etworks (VANETs), and the Internet of Things (IoT) [42–46]. Sev-
ral studies have been conducted to detect crypto-ransomware
ttacks. These studies can be categorized into data-centric and
rocess-centric approaches. The data-centric approach monitors
he user data and files subject to attack and raises the alarm when
t detects a suspicious change in those files. Several techniques
uch as decoy, entropy and similarity have been employed to
onitor the file structure before and after access [10,12,47–
9]. However, this approach does not distinguish between the
hanges carried out by benign programs from those caused by
rypto-ransomware, which leads to high rate of false alarms [11,
0,51]. More importantly, this approach does not fully protect
ser data from being held to ransom, as it sacrifices part of
he data (which could be more valuable to the victim than the
emaining data) before detection [50,52]. Thus, the data-centric
pproach is not effective for crypto-ransomware early detection.
The process-centric approach monitors the behaviour of the

unning process to discover suspicious patterns. Several stud-
es, such as those by Cohen and Nissim [17], Shahriari [48],
hen, et al. [53], Chen and Bridges [54] have employed this
643
approach and acquired different types of behavioural data to
train machine learning classifiers like Random Forest and Naïve
Bayes. However, most of those studies followed the malware
detection approach that relies on the entire runtime data, which
include pre-encryption and post-encryption data, to detect the
attacks [23,55]. Such approaches assume the availability of the
entire data at detection time [23]. Thus, they are not suitable
for crypto-ransomware early detection where the data of the
malicious process in question are not fully available.

Another type of process-centric approach is to monitor the
computational resources used by ransomware processes. That is,
one or more resources in the user machine, such as CPU, network,
I/O buffer and memory are observed, and the alarm is raised when
some events related to ransomware and/or cryptography are
encountered. Maltester, proposed by Cabaj, et al. [56], is one such
solution aimed to detect the infection chain of the Cryptowall
ransomware family via introspecting the network traffic. Simi-
larly, Cabaj, et al. [57], Cusack, et al. [58] have proposed detection
solutions based on monitoring the network traffic between the
infected devices and the ransomware’s command and control
(C&C) server. In another study, Kharraz, et al. [12] propose UN-
VEIL, which observes I/O access patterns and file system activities.
Similarly, Song, et al. [47] put forward a model that monitors CPU,
I/O and the device’s memory in order to detect the suspicious
activities caused by ransomware. However, the reliance on ad-
hoc events leads to high rate of false alarms, as those events
are not mutually exclusive to crypto-ransomware and some be-
nign programs raise such events as well [51]. Additionally, those
events could happen after the encryption takes place, which
renders this approach ineffective for early detection [12]. To be
effective, it is essential that the detection takes place during early
phases, before the attack starts the main sabotage, which is the
encryption in the case of crypto-ransomware. Table 1 provides a
summarized comparison between the data-centric and process-
centric detection approaches adopted by existing ransomware
detection research.

To detect crypto-ransomware early, several approaches [16,
19–21,23,59] use the data collected during the pre-encryption
phase of the crypto-ransomware lifecycle, before the encryption
takes place. The collected data are then used to train different
machine learning algorithms to classify the programs into benign
and ransomware. However, the lack of sufficient data during the
early phases of the attack adversely affects the ability of the
goal function of feature selection techniques in these models
to perceive the common characteristics of attack features. This
makes it challenging to reduce the redundant features during the
feature selection process. When the number of redundant fea-
tures increases, the data dimensionality increases and detection
accuracy decreases. This paper addresses this issue by proposing
the RCGU technique, which improves the ability of the feature
selection techniques to make better redundancy–relevancy trade-
offs, thus improving the estimation of feature significance. This
improved estimation facilitates the selection of important fea-
tures and overcomes the insufficiency in attack patterns collected
during the early phases of crypto-ransomware attacks.

3. Preliminaries

For two discrete variables, the mutual information (MI) crite-
rion is the amount of information that these variables share about
each other [39]. This criterion is calculated according to Eq. (1) as
follows.

I (X; Y ) =

∑
yϵY

∑
xϵX

p(x, y) log
p(x, y)
p(x)p(y)

(1)

where I(X; Y ) denotes the mutual information between X and Y ,
P x and p(y) are the marginal distribution of x and y and p(x, y) is
( )
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Table 1
Summary comparison between data centric and process centric detection approaches.
Approach Description Studies Advantages Disadvantages

Data Centric – Monitors user data and files
subject to attack.
– Raises the alarm when it detects
a suspicious change in those files.
– Employs a set of techniques
such as decoy, entropy and
similarity to monitor the file
structure before and after access.

[10,12,47–49] – Can identify any data-related
activities instantaneously.

– Does not distinguish between
the changes carried out by
benign programs from those
caused by crypto-ransomware.
– Sacrifices part of the data
(which could be more valuable
to victim than the remaining
data) before detection.

Process centric − Behaviour of the running
process to discover the suspicious
patterns.

[17,48,53,54] − Can detect the attacks at the
runtime.

− Relies on the entire runtime
data (pre-encryption and
post-encryption), which is not
suitable for the early detection.
the joint distribution. According to Li, et al. [29], Brown, et al. [38],
Eq. (2) represents the general formula of the framework, which
is referred to as a criterion by linear combinations of Shannon
information terms.

J (Xk) = I (Xk; Y ) − β
∑
XjϵS

I
(
Xj; Xk

)
+ γ

∑
XjϵS

I
(
Xj; Xk

⏐⏐Y)
(2)

where I(Xk; Y ) is the mutual information between the candidate
feature Xk and the class label Y ; I(Xj; Xk|Y ) is the conditional
mutual information between the candidate feature Xk and the
feature Xj in the selected set S, given the class label Y , while β
and γ are parameters (coefficients) with values between 0 and
1. It can be noticed that Eq. (2) consists of two parts, namely a
relevancy term represented by expression (3) and a redundancy
term represented by expression (4). Furthermore, the redundancy
term consists of two sub-terms, namely the marginal redundancy,
represented by expression (5), and the conditional redundancy,
represented by expression (6).

I (Xk; Y ) (3)

β
∑
XjϵS

I
(
Xj; Xk

)
+ γ

∑
XjϵS

I
(
Xj; Xk

⏐⏐Y)
(4)

β
∑
XjϵS

I
(
Xj; Xk

)
(5)

γ
∑
XjϵS

I
(
Xj; Xk

⏐⏐Y)
(6)

The information theory-based feature selection techniques try to
optimize the trade-off between the relevancy and redundancy
terms. In this context, two types of techniques can be distin-
guished, based on whether they include the conditional redun-
dancy term. The first type has only two terms, namely a relevancy
term and a redundancy term, and is calculated using Eq. (2) by
considering only the marginal redundancy coefficient β , while
γ = 0. Mutual Information Features selection MIFS and Min-
imum Redundancy Maximum Relevance (mRMR) are examples
of this type. The second type considers both redundancy terms,
namely marginal redundancy and conditional redundancy. This
is achieved by giving both coefficients β, γ values between 0
and 1 in Eq. (2). Joint Mutual information (JMI) is an example of
this type. It turned out that the calculation of the relevancy term
is same in all techniques and involves calculating the relevancy
between the candidate feature Xk and the class label Y . Thus,
the difference in the performance between those techniques is
determined by the redundancy calculation.

As shown by Eq. (2), the values of the coefficients β and
γ play an important role in the relevancy-redundancy trade-off
which determines the feature’s significance. Concretely, a small
value of β contributes to decreasing the effect of the redundancy,
which, consequently, increases the feature’s significance, whereas
a small value of γ decreases such significance.
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4. The methodology

In this section, the design of the proposed RCGU technique
that accurately estimates the features’ significance based on the
data collected during the pre-encryption phase of crypto-
ransomware is elaborated. In addition, the integration of RCGU
with the Mutual Information Feature Selection (MIFS) technique
is detailed. This integration takes place in the redundancy term
of the goal function. Moreover, the performance of the proposed
RCGU is improved by incorporating the MaxMin approximation
approach into the goal function of the MIFS to mitigate the
effect of redundancy overestimation that RCGU could cause when
the number of features within the already-selected set grows.
Accordingly, two feature selection techniques were built, namely
the Enhanced Mutual Information Feature Selection (EMIFS) and
the Maximum of Minimum Enhanced Mutual Information Feature
Selection (MM-EMIFS). Both techniques were used to extract the
features from the early runtime data extracted during the pre-
encryption phase of the crypto-ransomware lifecycle. Before the
design of proposed techniques is detailed, we start by describ-
ing the attack model which illustrates the different phases of
crypto-ransomware attacks.

4.1. Crypto-ransomware attack model

Ransomware’s lifecycle starts from the moment when the
malicious code is disseminated and lasts until the financial claim
is shown to the victim. During this lifecycle, several actions are
conducted in order to successfully hijack the user’s files and re-
sources. According to [8,18,21] and [34–39], ransomware attacks
go through several essential phases, as illustrated in Fig. 1 and
summarized below.

1- Distribution: During this phase, the ransomware is packed
and delivered into the victim’s system using different ex-
ploitation techniques such as email attachment or drive-by
download.

2- Installation: In this phase, crypto-ransomware installs itself
in the victim’s machine. Such installation also involves
exploring the running environment and collecting informa-
tion about the victim’s device, such as platform type, OS
version, and already-installed programs.

3- Encryption key generation: Crypto-ransomware retrieves
the encryption key from the C&C server or generates it
locally.

4- File search: Ransomware starts looking for targeted files.
5- Encryption: Based on the attack approach, Crypto-

ransomware starts encrypting the targeted files, either one-
by-one concurrently with the files’ search process or waits
until listing all the files then encrypting them all at once.

6- Post encryption: Once the encryption process is finished,
the original files are either deleted or moved to another

location with new names.
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Fig. 1. Crypto-ransomware attack model.
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7- Extortion: After encrypting and deleting/moving all files,
the extortion message is shown to the victim asking for a
ransom accompanied by payment instructions.

Among the stages listed above, the pre-encryption phase of
crypto-ransomware attacks lifecycle involves (2) installation, (3)
encryption key generation and (4) file search.

4.2. Pre-encryption feature extraction

As in our previous publications [19,59], early detection (also
called pre-encryption) is measured from the moment we run the
crypto-ransomware sample until we capture the first
cryptography-related API call. The cryptography-related APIs are
the API functions in the victim’s OS that are explicitly or im-
plicitly related to the encryption process. Unlike the fixed time
thresholding approach employed by existing crypto-ransomware
early detection solutions, our approach uses these APIs to de-
termine the boundary that separates the pre-encryption phase
from the encryption phase in the crypto-ransomware lifecycle.
The pre-encryption boundary is a set of cryptography-related
APIs. These APIs separate the API pre-encryption phase in crypto-
ransomware from the subsequent attack phases. The intuition is
that the calling of any of cryptography-related APIs for the first
time indicates an imminent encryption activity which might be
related to an actual attack against the user files and data. The
cryptography-related APIs are stored in a vector called the pre-
encryption boundary vector, such that the first call to any of its
entries represents the borderline between the end of the pre-
encryption phase and the beginning of the encryption phase of
the crypto-ransomware attacks. This vector is used as a cut-off
during data acquisition to stop recording the API calls into trace
file when encountering the first call of any of the vector’s entries.
Table 2 shows a subset of the pre-encryption boundary vector
with a description of each entry.

After collecting the API calls during the dynamic analysis of
the crypto-ransomware samples, the feature extraction is carried
out. The data recorded in the trace files of crypto-ransomware
samples are the names of the API calls with their input param-
eters and returned values. As the purpose of this study is to
determine whether a program is a crypto-ransomware, regardless
of the family, the input parameters and returned values are
removed from the trace files and only the API calls are kept. As
the data in trace files are the names of API calls, they are in a
textual form. Therefore, it is necessary to transform (vectorize)
these textual data into a numerical form so that they become
645
ready for modelling. Following our previous study [19], the Term
Frequency-Inverse Document Frequency (TF-IDF) was used to
convert the textual data in trace files into the numerical form and
extract the features from these data. Concretely, each API name
was used as a feature and its TF-IDF value was calculated based
on its local and global frequency. The local frequency of a feature
was determined by calculating its frequency in each trace file
individually while the global frequency was determined by calcu-
lating the number of trace files in which this API occurred. Both
local and global frequencies were then combined to calculate the
TF-IDF value of that feature as shown in Eq. (7).

w

(
apijk

)
= tf

(
apijk

)
· log

N
idf (apik)

(7)

where apik denotes the kth API; tf (apijk) is the term frequency,
which calculates how many times the apik was called by the
ransomware instance rj in the subset. Similarly, idf (apik) is the
inverse document frequency, which calculates how many ran-
somware instances, rj, there are in the subset called apik, at
east one, while N denotes the total number of ransomware
nstances in the subset. Fig. 2 shows the general design of crypto-
ansomware early detection model which incorporates the RCGU
nto the feature selection goal function.

.3. The proposed redundancy Coefficient Gradual Up-weighting
echnique for an enhanced MIFS

In this subsection we discuss the design and implementation
f the proposed Redundancy Coefficient Gradual Upweighting
RCGU) technique and its integration with MIFS to produce the
nhanced Mutual Information Feature Selection (EMIFS) method
sed for selecting the discriminative features from the dataset
ollected during the pre-encryption phase of crypto-ransomware
ttacks. EMIFS adopts the approach used in the mRMR technique
nd calculates the mutual information according to Eq. (8).

(xk) = MI (xk, y) − β
∑
sjϵS

I
(
xk, xj

)
(8)

where xk denotes the candidate feature; sj ∈ S = {s1, s2, . . . , sm}

is the jth feature in the already-selected features set S, and β is
a non-negative parameter (coefficient) between 0 and 1. The left
term in the equation represents feature relevancy while the right
term represents feature redundancy. The value of β determines
the strength of belief in the redundancy term. Fig. 3 shows the
integration between the proposed RCGU with both EMIFS and
MM-EMIFS.
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Table 2
Examples of cryptography-related APIs.
Cryptography-related API Description

CryptAcquireContexta Gets a handle to a particular key container within the cryptographic service provider (CSP) in
order to call CryptoAPI functions.

CryptCreateHash For hashing initiation of a stream data.

CryptUnprotectData For integrity checking and decryption of the data in a DATA_BLOB structure.

CryptHashData Adds data to a specified hash object.

CertGetNameStringW Obtains the subject or issuer name from a certificate CERT_CONTEXT structure and converts it
to a null-terminated character string.

CryptDecrypt Decrypts the data encrypted the CryptEncrypt function.

CryptExportKey Exports a cryptographic key or a key pair from the CSP

CryptGetObjectUrl Retrieves the URL of the remote object.

CryptGetHashParam Retrieves data related to a hash object.

CryptGenKey Generates the session key or the public–private pair

CryptDecodeObjectEx Decodes the data in a structure determined by the lpszStructType parameter

EncryptMessage Encrypts a message using the chosen cryptographic algorithms.
CryptReleaseContext Releases the handle of the CSP with the key container.
Fig. 2. Ransomware early detection using the improved RCGU-Based feature selection techniques.
.4. Redundancy Coefficient Gradual Upweighting Technique

In contrast to existing MI techniques that calculate the redun-
ancy coefficient inversely proportional to the size of already-
elected feature set, the proposed Redundancy Coefficient Grad-
al Upweighting (RCGU) technique increases the weight of the
646
redundancy term in proportion to the size of the selected set.
Consequently, the belief in the redundancy term increases when
the number of features in the selected set increases. Intuitively,
by comparing the candidate feature with each feature in the
selected set individually, the chance that the candidate feature
is redundant with one or more of those features increases when
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Fig. 3. The general architecture of the crypto-ransomware early detection model including the proposed RCGU-based Mutual Information Feature Selection Technique.
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the number of features in the selected set increases [40]. In this
way, the RCGU can make better redundancy–relevancy trade-offs
when dealing with the limited amount of data collected during
the pre-encryption phase of a crypto-ransomware attack’s life-
cycle, where the common characteristics of the already-selected
features are yet to be observed. Consequently, the ability of
the feature selection method to estimate feature significance
and select the features related to crypto-ransomware attacks is
improved.

Unlike existing MI techniques that calculate the coefficient β
according to Eq. (9), the RCGU technique calculates it according
to Eq. (10). Thus, the value of β starts low at the beginning of se-
lection process, corresponding to the size of the already-selected
set S that also starts low. The value of β then increases gradually
with the increase in size of S. The value of the denominator
does not change throughout the selection process and maintains
a fixed value equal to the size of the original features set, F .

β =
1
|S|

(9)

β =
|S|
|F |

(10)

here |S| and |F | denote the number of features in the se-
lected and original set, respectively. Therefore, EMIFS selects the
informative features according to Eq. (11).

J (xk) = MI (xk, y) −
|S|
|F |

∑
sjϵS

I
(
xk, xj

)
(11)

Fig. 4 shows the pseudo code of EMIFS. Given the original fea-
tures vector. F , EMIFS selects the informative features according
to Eq. (11). As shown by Fig. 5, F = {f1, f2, f3, . . . .}, is the original
features vector with n number of features; V is a temporary
set that holds the features whose MI values have already been
calculated; S = {s1, s2, . . . , sτ } is the selected set with τ number
of features. EMIFS starts by initializing the empty sets V and S
and calculating the MI value for each feature, fi, in F . Based on
the MI value, those features are ranked and stored in the set V .
The feature vk in V with max (V ,MI) is simultaneously removed
from V and added into S. The next feature sp is chosen according
to Eq. (12).

sp = argmax
vj∈V

[MI
(
vj; C

)
−

|S|
|F |

∑
sjϵS

I
(
vk; sj

)
] (12)
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4.5. Maximum of minimum-based enhanced mutual information
features selection technique

The RCGU proposed in the previous section has the limitation
of overestimating the redundancy term when the number of fea-
tures in the already-selected set becomes high. To overcome this
problem, an improvement to EMIFS is introduced in this section,
which employs the maximum of minimum approach for features-
to-vector approximation. This approach extends the calculation
of MI(xi, sj) to MI(xi, S). As mentioned by Che, et al. [39], the
overestimation of the redundancy term weakens the relevancy
term. Therefore, MM-EMIFS applies the maximum of minimum
approximation on the redundancy term to mitigate the issue of
redundancy overestimation caused by RCGU. This approximation
relaxes the redundancy calculation without compromising the
relevancy term. As such, the integration of maximum of minimum
into EMIFS prevents RCGU from overestimating the redundancy
term when the size of the already selected set grows. Conse-
quently, in this study, MM-EMIFS was able to produce better
estimation for features’ relevancy based on the incomplete data
collected during the pre-encryption phase of crypto-ransomware
lifecycle.

At the beginning of the selection process, the mutual in-
formation value for each feature in the original features set is
calculated. The feature with higher MI value is then stored in the
selected set. The subsequent features are chosen according to the
weight calculated by Eq. (13) using RCGU for significance esti-
mation and MaxMin for feature to vector approximation. More
specifically, for each feature in the candidate set, the mutual
information is calculated with every feature in the selected set
according to Eq. (13). The result is then added into a temporary
list, L. This value is kept in the list unless a lower MI value
etween the same candidate feature and another feature in the
elected list was found. If a lower MI value is found, the existing
alue in L is replaced with the new (lower) MI value. The process
s repeated for each candidate feature in F so that one minimum
alue is added into L at the end of each iteration. When all
eatures in F are exhausted, the list L will contain a number of
inimum MI values equal to the number of features in F . The
andidate feature corresponding to the highest value in L is then
simultaneously added into S and removed from F .

Fig. 5 shows the pseudo code of the proposed MM-EMIFS
technique. Let F = {f1, f2, f3, . . . .fn−1, fn} be the original features

vector with n number of features; V is the candidate set that holds
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Fig. 4. Pseudo code of the proposed EMIFS technique.
Fig. 5. Pseudo code of MM-EMIFS technique.
the features whose MI values have been already calculated; S =

s1, s2, . . . , sτ } is the selected set with τ number of features. As
shown in lines 1 to 6, the process starts by initializing the empty
sets V and S, and calculating the MI value for each feature fi in F .
Based on the MI value, those features are ranked and stored in the
set V . The feature vk in V with max (V ,MI) is then simultaneously
removed from V and added into S. As shown in the lines from 7
to 11, at each iteration for each feature in the candidate set V , the
mutual information between that feature and the class label given
each feature in the already-selected set S is calculated according
to Eq. (13). The selected feature is then simultaneously added into
the already-selected set S and removed from the candidate set
V . The process continues until satisfying the number of required
features in the already-selected set S.

sp = argmax
vj∈V

min
sr∈S

{EMIFS(C; vj
⏐⏐sr )} (13)

5. Results analysis and discussion

This section describes the implementation and experimental
evaluation of the proposed EMIFS and MM-EMIFS techniques. It
starts with an explanation of the dataset used by this study. The
experimental results of each technique and the comparison with
the related works are then presented and discussed.
648
5.1. The dataset and experimental environment

To collect the attack’s behavioural data at the pre-encryption
phase of the crypto-ransomware lifecycle, dynamic analysis was
used [60,61]. The rationale for this is that dynamic analysis over-
comes the obfuscation and packing techniques that advanced
malware uses to resist analysis and evade detection [25,62–64].
The dynamic analysis was carried out in a controlled environment
built on top of the sandbox technology [65,66]. The sandbox
environment was configured according to [66]. The architecture
of the analysis environment consisted of the Cuckoo sandbox as
a host installed on Virtual Box. Within the host, an MS Windows
X86 32-bit guest machine was created and used as a victim
machine that the ransomware would target during the analy-
sis. All the crypto-ransomware samples in the dataset were run
one sample at a time. The processes created for the running
sample were then hooked by the agent in the guest operating
system to capture the APIs called by the ransomware during the
runtime and record them into an independent trace file dedi-
cated for that ransomware sample. Therefore, each ransomware
sample had its own trace file containing all API calls used by
that sample. These APIs contained the behavioural patterns of
the ransomware, which could be used to introspect the attack
characteristics and extract the latent features by analysing the
usage (calls) to certain API functions [20,23,67]. This approach
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Fig. 6. The dynamic crypto-ransomware analysis and detection process.
Table 3
Crypto-ransomware families used by this study.
Family Year Techniques Target # samples

Cryptolocker 2013 RSA User files 6450
Cryptowall 2014 RSA 2048-bit User files 3309
Cryrar 2012 RAR-sfx User files 1743
Locky 2016 RSA-2048 + AES-128 cipher with ECB mode User files 2661
Petya 2016 AES-128 MBR, user files 2846
Reventon 2012 N/A user files 2798
Teslactypt 2015 ECC Games and multimedia files 1670
Wannacry 2017 RSA 2048 bit User files 1899
Cerber 2016 RSA-2048 User files 1203
Filecryptor 2013 2048-bit RSA User files 3428
Crypt N/A N/A User files 3672
CTB_Locker 2014 ECC User files 2701
Satana 2016 256-bit AES in ECB User files 1258
CryptXXX 2016 RSA4096 User files 2934
Sage 2016 AES 256 and RSA 1024 User files 806
is commonly used by many dynamic ransomware and malware
detection studies [20,59,60,68–70]. Fig. 6 shows the general archi-
tecture of the crypto-ransomware dynamic analysis and detection
process.

The ransomware samples used in the experimental evalua-
ion of the techniques proposed in this study were downloaded
rom virusshare.com, the widely-used public repository of mal-
are [20,23,53,71,72]. We collected 39,378 crypto-ransomware
amples. Table 3 shows the full list of ransomware families used
y this study, with additional information about each family,
ncluding the year of release, encryption technique and the num-
er of samples in each family. Additionally, 16057 benign pro-
rams were collected from informer.com, the well-known Win-
ows software repository [20,53,73,74]. Several types of benign
pplications were downloaded. These types include file tools
e.g. office, developers, paint and multimedia tools), utility pro-
rams (e.g. compression, encryption, editing), games, browsers
nd drivers. Both benign and malicious programs were checked
sing VirusTotal, the popular malware scanning web service,
hich uses 56 anti-viruses to confirm the maliciousness of each
ample [5,23,75,76]. As in [19,23], the samples that were labelled
s malicious by less than 5 Anti-Viruses were excluded. The
enign samples were used if they were labelled as trusted by all
6 Anti-Viruses; otherwise they were discarded.
To emulate a real environment, around 925 files, including

S Word documents, Excel, PPT, Visio, PDF, JPG and short video
iles were stored in different locations within the local storage of
he guest machine. These files were attacked during the dynamic
nalysis when crypto-ransomware samples were executed within
he Sandbox environment. The dynamic analysis of both the
ansomware and benign programs took place by running them
ne at a time on the analysing machine (guest machine) in the
649
Cuckoo Sandbox. Once a program is submitted for analysis, the
sandbox runs it on the guest machine and hooks the process it
creates and records the APIs into a trace file dedicated for that
program. During the recording, each API is compared against the
pre-encryption boundary vector such that the analysis process
will be terminated when a match is found. This is to ensure that
all trace files in the dataset contain only the pre-encryption APIs,
i.e. the APIs called from the beginning of analysis process until en-
countering the first cryptography-related API. After each run, the
analysis system (guest machine) was reverted back to its original,
clean state. The data in trace files constitute the pre-encryption
dataset (DS-pre), which was used for crypto-ransomware early
detection. Descriptive statistics were used to evaluate the distri-
bution of the pre-encryption data using skewness and kurtosis
metrics. For a normally distributed data, the skewness and kur-
tosis need to be close to zero and three, respectively. In the
pre-encryption dataset, the values of skewness and kurtosis were
11.15 and 129.81, respectively. As such, these high values indi-
cate that the data is not normally distributed, which advocates
our choice of the information theory-based approach for feature
selection for the pre-encryption data, as it does not involve any
assumption regarding the distribution of the data.

DS-pre was used to evaluate the accuracy, detection rate
and false positive rate of the proposed techniques. The pro-
posed techniques were also evaluated using three additional
crypto-ransomware pre-encryption datasets, i.e. DS1, DS2 and
DS3, which were built following [20,23,77], respectively. The
experimental work, modelling, evaluation and analysis were con-
ducted using several Python-based packages including Sklearn,
Pandas, Numpy and SkFeature. The detection accuracy (ACC),
detection rate (DR) and False Positive Rate (FPR) were calculated
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according to Eqs. (14), (15) and (16), respectively.

ACC =
TP + TN

TP + TN + FP + FN
(14)

R =
TP

TP + FN
(15)

PR =
FP

FP + TN
(16)

where TP, TN, FP and FN denote true positive, true negative, false
positive and false negative, respectively.

5.2. Experimental results of the EMIFS technique

Based on the pre-encryption dataset (DS-pre), EMIFS was used
to select the most informative features for the pre-encryption
phase of crypto-ransomware lifecycle. The experiments were
conducted using several feature sets with different numbers of
features, i.e. 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 features. The
dataset was divided into a training set and a testing set using 10-
fold cross validation. Several machine learning algorithms were
used in this evaluation, including Support Vector Machine (SVM),
Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbour
(KNN), Random Forest (RF), AdaBoost, and Multi-Layer Perceptron
(MLP). These algorithms were chosen as they are commonly used
by the related studies, such as Sgandurra, et al. [20] and Homay-
oun, et al. [16] and Rhode, et al. [23]. The testing set then was
used to determine the classification accuracy of those classifiers
according to Eq. (14). To confirm the suitability of the proposed
EMIFS technique for use with the other early crypto-ransomware
datasets, the same procedures were repeated for the datasets DS1,
DS2 and DS3. Each of those datasets was divided into training
and testing sets using 10-fold cross validation in the same way
that DS-pre was divided. The same set of classifiers used with
DS-pre was also used with these datasets. Those classifiers were
trained using the training set of each dataset and the classification
performance was then measured by detection accuracy, detection
rate and FPR, using the testing set.

Tables 4, 5, and 6 show the results of the EMIFS technique
on the pre-encryption dataset in terms of detection accuracy,
detection rate and False Positive Rate (FPR) of each classifier.
Each row in the tables corresponds to one feature set used to
train different classifiers. It can be observed from Table 4 that,
for most classifiers, the detection accuracy increases with the
increase in the size of the feature set, especially for the sets
with less than 30 features. When the size of the feature set
exceeds 30, the increase becomes less gradual and sometimes the
classifiers experience a slight accuracy drop. Likewise, the results
in Table 5 show that the detection rate increases proportionally
to the number of features until the number of features reaches
25. The detection rate then starts fluctuating. Similar fluctuation
could also be noticed with FPR, as shown in Table 6. Furthermore,
the averaged (Avg.) accuracy, detection rate and FPR of all feature
sets per classifier ranges between 0.9183∼0.9708, 9241∼0.9758,
and 0.0764∼0.0247, respectively.

These results emphasize the efficacy of the proposed Redun-
dancy Coefficient Gradual Upweighting (RCGU) used in EMIFS
to make better redundancy–relevancy trade-offs than those of
related mutual information-based feature selection techniques
(see Fig. 7) when dealing with a limited number of attack patterns
as is the case in pre-encryption data. This is attributed to the
ability of the proposed RCGU to overcome the unavailability of
the common characteristics of the already-selected features by
individually estimating the redundancy between the candidate
feature and each feature in the selected set. Furthermore, the
high detection accuracy and detection rate as well as the low
FPR that EMIFS starts with indicates that feature relevancy plays
650
Table 4
Detection Accuracy of the EMIFS on pre-encryption dataset (DS-pre) with
different sizes of feature sets used to train several classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.9039 0.9286 0.9643 0.9714 0.9511 0.9386 0.9107
10 0.9168 0.9493 0.9661 0.9711 0.9518 0.9432 0.9207
15 0.9203 0.9518 0.9654 0.9707 0.9518 0.9432 0.9239
20 0.9203 0.9514 0.9664 0.9682 0.9518 0.9432 0.9239
25 0.9203 0.9514 0.9654 0.9722 0.9522 0.9432 0.9221
30 0.9203 0.9514 0.9661 0.9707 0.9522 0.9432 0.9207
35 0.9203 0.9514 0.9675 0.9725 0.9518 0.9432 0.9228
40 0.92 0.9514 0.9679 0.9707 0.9518 0.9432 0.9207
45 0.92 0.9514 0.9654 0.9718 0.9511 0.9432 0.9211
50 0.9203 0.9507 0.965 0.969 0.9515 0.9389 0.9243

Avg. 0.9183 0.9489 0.9659 0.9708 0.9517 0.9423 0.9211

Table 5
Detection rate of the proposed EMIFS on pre-encryption dataset (DS-pre) with
different sizes of feature sets used to train several classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.9053 0.9353 0.9732 0.9755 0.9520 0.9415 0.9173
10 0.9243 0.9501 0.9664 0.9721 0.9522 0.9496 0.9223
15 0.9249 0.9518 0.9678 0.9738 0.9573 0.9473 0.9282
20 0.9258 0.9594 0.9676 0.9721 0.9523 0.9498 0.9316
25 0.9288 0.9573 0.9709 0.9805 0.9586 0.9520 0.9276
30 0.9278 0.9538 0.9744 0.9773 0.9579 0.9438 0.9209
35 0.9261 0.9580 0.9695 0.9807 0.9574 0.9490 0.9253
40 0.9270 0.9567 0.9762 0.9742 0.9547 0.9485 0.9280
45 0.9283 0.9524 0.9677 0.9745 0.9522 0.9440 0.9267
50 0.9226 0.9522 0.9651 0.9777 0.9528 0.9420 0.9278

Avg. 0.9241 0.9527 0.9699 0.9758 0.9547 0.9468 0.9256

Table 6
False Positive Rate (FPR) of the EMIFS on pre-encryption dataset (DS-pre) with
different sizes of feature sets used to train several classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.0951 0.0654 0.0270 0.0249 0.0485 0.0588 0.0835
10 0.0765 0.0500 0.0343 0.0279 0.0478 0.0505 0.0784
15 0.0752 0.0489 0.0325 0.0270 0.0436 0.0529 0.0718
20 0.0749 0.0410 0.0329 0.0283 0.0481 0.0509 0.0687
25 0.0718 0.0432 0.0297 0.0204 0.0422 0.0489 0.0725
30 0.0724 0.0471 0.0256 0.0235 0.0423 0.0569 0.0797
35 0.0743 0.0426 0.0306 0.0200 0.0429 0.0516 0.0749
40 0.0738 0.0435 0.0244 0.0263 0.0460 0.0519 0.0725
45 0.0725 0.0481 0.0329 0.0258 0.0479 0.0566 0.0741
50 0.0774 0.0487 0.0352 0.0227 0.0474 0.0587 0.0725

Avg. 0.0764 0.0479 0.0305 0.0247 0.0457 0.0538 0.0749

the main role at the early stages of the selection process. This is
attributed to the low effect that redundant features have due to
the small number of features in the selected set at the beginning
of the selection process, which decreases the likelihood that the
candidate feature is redundant with any of them. This advocates
the efficacy of the individual redundancy calculation that RCGU
has been built based on. This effectiveness is also evidenced by
the way the improvement in classification performance (in terms
of accuracy, detection rate and FPR) decelerates when the number
of selected features increases, This indicates that the redundant
information becomes more influential on the MI calculation when
more features are added into the selected feature set, which again
supports the assumption that the influence of redundant features
starts low then increases gradually when more features are added
into the selected set. As such, the proposed RCGU technique deals
with this situation more effectively.

5.3. Experimental results of maximum of minimum-based Mutual
Information Feature Selection Technique

To evaluate the accuracy of the proposed Maximum of
Minimum-based Mutual Information Feature Selection (MM-
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Fig. 7. Comparison of the detection accuracy of the proposed EMIFS and MM_EMIFS with that of the techniques used by related works using different ML algorithms:
a) SVM, (b) LR, (c) DT, (d) KNN, (e) RF, (f) MLP, (g) AdaBoost.
MIFS) technique, an experimental evaluation was conducted by
pplying the proposed technique on the pre-encryption dataset
DS-pre). The experiments were carried out using different ma-
hine learning classifiers including LR, SVM, DT, RF, KNN, Ad-
Boost and MLP. Those classifiers are same as those used to
valuate EMIFS in the previous section. Furthermore, several
eature sets with different numbers of features ranging between
and 50 features were used. The number of features in those

ets was similar to those used to evaluate EMIFS. In addition,
he dataset was divided into training and testing sets using a 10-
old cross-validation approach. Detection accuracy, detection rate,
nd FPR were used to measure the performance of the proposed
echnique.

To confirm the suitability of the proposed MM-EMIFS tech-
ique for use with the other crypto-ransomware datasets, the
ame procedures were repeated for the datasets DS1, DS2 and
S3. Each dataset was divided into training and testing sets using
0-fold cross validation. The same set of classifiers used with DS-
re was also used with those datasets. The classifiers were trained
sing the training set of each dataset and the accuracy was then
easured by detection accuracy, using the test set.
Tables 7, 8, and 9 show the experimental results of the

M-EMIFS technique on the pre-encryption dataset in terms of
etection accuracy, detection rate and false positive rate (FPR).
t can be observed that, on average, the detection accuracy, de-
ection rate and FPR of all features sets per classifier ranges be-
ween 0.9573∼0.9909, 0.9621∼0.9940, and 0.0384∼0.0068, re-
pectively. Furthermore, the classification performance improves
roportionally to the number of features until reaching a cer-
ain number of features (which varies among the classifiers)
efore it starts fluctuating. These results show that the integra-
ion between the proposed RCGU and the MaxMin technique in
651
MM-EMIFS produced features with better classification accuracy,
detection rate and FPR than that of EMIFS. This indicates that
such integration helps in maintaining the balance between redun-
dancy overestimation and underestimation. On the one hand, by
enhancing the calculation of minimumMI value between the can-
didate feature and the individual features in the already-selected
set, the proposed RCGU improved the maximum of minimum
approximation. Such improvement helps to mitigate the effect of
redundancy underestimation that the MaxMin approach suffers
from [39]. On the other hand, the integration between RCGU
and MaxMin prevents the redundancy overestimation that RCGU
could cause when the number of features in the already-selected
set increases. As such, the feature corresponding to the maximum
value of the minimum MIs was more informative than the one
selected by the conventional MaxMin technique. This can also be
noticed in Fig. 7 which shows that the proposed MM-EMIFS out-
performed the conventional maximum of minimum technique.
It is worth noting that the fluctuation of MM-EMIFS happens
only when the number of selected features used for training the
detection model exceeds certain limits. This is related to the
overfitting that happens when we train the detection model using
a higher number of features.

5.4. Comparison with the related techniques

To show the improvement achieved by the proposed EMIFS
and MM-EMIFS techniques over related works, the results were
compared with two well-known and widely-used mutual
information-based feature selection techniques, Mutual Informa-
tion Features Selection (MIFS) and Minimum Redundancy Max-
imum Relevance (mRMR) techniques [78]. The reason for this
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Fig. 8. Comparison of the detection rates of the proposed EMIFS and MM_EMIFS with those of the techniques used by related works using different ML algorithms:
(a) SVM, (b) LR, (c) DT, (d) KNN, (e) RF, (f) MLP, (g) AdaBoost.

Fig. 9. Comparison of the False Positive Rates (FPRs) of the proposed EMIFS and MM_EMIFS with those of the techniques used by related works using different ML
algorithms: (a) SVM, (b) LR, (c) DT, (d) KNN, (e) RF, (f) MLP, (g) AdaBoost.
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Fig. 10. Comparison of the detection accuracy of the proposed MM-EMIFS with that of MIFS and mRMR implemented using the MaxMin technique.
choice was that the proposed EMIFS and MM-EMIFS resemble
these techniques as they do not involve a conditional redundancy
calculation. In addition, these techniques were used by several
ransomware early detection models [19,20,59].

Several machine learning classifiers were used in this compar-
son, i.e. LR, SVM, DT, RF, KNN, AdaBoost and MLP. In addition,
he experiments were conducted using different sizes of feature
653
sets, ranging from 5 to 50 and incremented by 5 features between
each two subsequent sets. Classification accuracy, detection rate
and FPR were used to measure classification performance. The
comparison results in Figs. 7, 8, and 9 show that EMIFS out-
performed MIFS and mRMR, which suggests that the proposed
RCGU employed by EMIFS to calculate the value of the redun-
dancy coefficient is more effective than the inversely proportional
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Fig. 11. Comparison of proposed EMIFS and MM-EMIFS with the related techniques in terms of the accuracy averaged over all data subsets (DS1, DS2 and DS3).
Fig. 12. Comparison of proposed EMIFS and MM-EMIFS with the related techniques in terms of the detection rate averaged over all data subsets (DS1, DS2 and
S3).
Fig. 13. Comparison of proposed EMIFS and MM-EMIFS with the related techniques in terms of the FPR averaged over all data subsets (DS1, DS2 and DS3).
pproach utilized by these previous techniques. This is attributed
o the way the RCGU calculates the redundancy term’s coeffi-
ient such that, at each iteration, it increases the weight of the
edundancy term proportionally to the number of features in the
elected set as opposed to the inversely-proportional approach
mployed by related techniques. In addition, the comparison
hows that, with most classifiers, EMIFS outperformed JMI when
mall numbers of features (5 and 10 features) were used. It can
lso be noticed that the improvement in the detection accuracy
f EMIFS starts to either fluctuate or becomes less gradual when
he number of features in the already-selected set exceeds a
ertain limit (which varies among classifiers). This is due to the
edundancy overestimation that RCGU could cause when the size
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of already-selected set grows. This issue of such redundancy over-
estimation has been alleviated by the proposed MM-EMIFS which
integrates the proposed RCGU with the MaxMin technique to
balance the redundancy estimation when the number of features
in the already-selected set increases.

In addition to MIFS and mRMR, Figs. 7, 8, and 9 also show the
comparison of the accuracy, detection rate and FPR of the pro-
posed MM-EMIFS technique with that of the Joint Mutual Infor-
mation (JMI) and Joint Mutual Information Maximization (JMIM)
techniques. JMI was chosen for this comparison as it has been
reported as the most accurate and stable mutual information-
based feature selection technique [38,40]. Likewise, the JMIM was
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Table 7
Detection accuracy for the detection accuracy of MM-EMIFS on pre-encryption
dataset (DS-pre) with different sizes of feature sets used to train several
classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.922 0.9379 0.9741 0.9656 0.9588 0.9482 0.9245
10 0.9293 0.9631 0.9799 0.9663 0.9679 0.9643 0.949
15 0.9406 0.9747 0.9938 0.9838 0.9818 0.9905 0.9624
20 0.9515 0.9736 0.9927 0.9853 0.981 0.9934 0.9672
25 0.9628 0.9819 0.9923 0.9842 0.9851 0.992 0.9756
30 0.9719 0.9826 0.9952 0.9853 0.9858 0.9942 0.981
35 0.9734 0.9812 0.996 0.9863 0.985 0.9945 0.9803
40 0.9737 0.9794 0.996 0.9842 0.9854 0.9949 0.9785
45 0.973 0.979 0.9934 0.9842 0.9854 0.9949 0.9799
50 0.9748 0.979 0.9956 0.9871 0.9854 0.9949 0.9799

Avg. 0.9573 0.97324 0.9909 0.98123 0.98016 0.98618 0.96783

Table 8
Detection rate of the MM-EMIFS on pre-encryption dataset (DS-pre) with
different sizes of feature sets used to train several classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.9272 0.9455 0.9815 0.9680 0.9620 0.9534 0.9281
10 0.9327 0.9692 0.9804 0.9690 0.9688 0.9653 0.9498
15 0.9471 0.9787 0.9974 0.9889 0.9835 0.9945 0.9711
20 0.9594 0.9803 0.9957 0.9942 0.9838 0.9969 0.9678
25 0.9636 0.9864 0.9948 0.9868 0.9892 0.9948 0.9825
30 0.9760 0.9900 0.9993 0.9913 0.9942 0.9987 0.9812
35 0.9772 0.9844 0.9995 0.9888 0.9869 0.9957 0.9850
40 0.9806 0.9828 1.0000 0.9883 0.9911 1.0000 0.9838
45 0.9739 0.9834 0.9960 0.9895 0.9871 0.9968 0.9837
50 0.9835 0.9841 0.9958 0.9937 0.9895 0.9987 0.9856

Avg. 0.9621 0.9785 0.9940 0.9858 0.9836 0.9895 0.9719

Table 9
False Positive Rate (FPR) of the MM-EMIFS on pre-encryption dataset (DS-pre)
with different sizes of feature sets used to train several classifiers.
DS-Pre LR SVM DT RF KNN AdaBoost MLP

5 0.0736 0.0545 0.0187 0.0325 0.0380 0.0474 0.0723
10 0.0675 0.0317 0.0202 0.0314 0.0313 0.0350 0.0504
15 0.0538 0.0213 0.0027 0.0111 0.0173 0.0058 0.0294
20 0.0410 0.0202 0.0048 0.0063 0.0170 0.0057 0.0323
25 0.0367 0.0142 0.0060 0.0136 0.0113 0.0060 0.0175
30 0.0246 0.0103 0.0013 0.0093 0.0060 0.0019 0.0189
35 0.0231 0.0162 0.0016 0.0117 0.0133 0.0044 0.0152
40 0.0199 0.0173 0.0038 0.0120 0.0097 0.0043 0.0166
45 0.0270 0.0170 0.0043 0.0111 0.0131 0.0037 0.0165
50 0.0167 0.0165 0.0045 0.0064 0.0112 0.0037 0.0146

Avg. 0.0384 0.0219 0.0068 0.0145 0.0168 0.0118 0.0284

chosen as it is the state-of-the-art mutual information-based fea-
ture selection technique that employs the MaxMin approximation
for the redundancy overestimation problem [40]. The comparison
results show that the proposed MM-EMIFS outperforms MIFS,
mRMR, JMI and JMIM. This confirms the ability of the proposed
RCGU technique to overcome the data insufficiency in the pre-
encryption phase of crypto-ransomware attacks and calculate the
redundancy term more accurately. The results also show that
MM-EMIFS outperformed the EMIFS and generated higher classi-
fication accuracy, higher detection rate and lower FPR even when
the number of features in the already-selected set increased. This
is attributed to the integration between the RCGU technique and
the MaxMin in the MM-EMIFS, which addressed the redundancy
overestimation caused by RCGU in EMIFS when the number of
features in the already-selected set increased. Thus, it enabled the
MaxMin to make better feature-to-vector approximation, which
in turn balanced the redundancy estimation with RCGU.

It is worth noting that the classification accuracy, detection
ate and FPR of the proposed MM-EMIFS were better than those
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Table 10
Comparison of significance test (t-test) results of the proposed MM-EMIFS
technique and the related techniques (JMI and JMIM) with different classification
algorithms.
Classifiers MM-EMIFS With JMI MM-EMIFS With JMIM

LR 3.91E−07 1.79E−05
SVM 4.03E−05 2.42E−05
DT 2.58E−09 1.86E−08
RF 0.005 0.05
KNN 4.69E−09 2.66E−06
adaBoost 1.22E−07 0.00024
MLP 1.27E−07 7.24E−07

of the JMI and JMIM techniques, which involve the conditional re-
dundancy term in the MI calculation. This confirms that the insuf-
ficiency of data and attack patterns at the early (pre-encryption)
phase of the crypto-ransomware lifecycle degrades the ability
of the conditional redundancy term (used in JMI and JMIM) to
calculate accurately the MI between several variables (the can-
didate feature, the already-selected features and the class label).
Fig. 10 shows that the employment of only the MaxMin approxi-
mation has no effect on the accuracy of the feature selection tech-
niques. However, the accuracy improved significantly once this
approximation had been integrated with the proposed RCGU. This
confirms the ability of RCGU to overcome the data insufficiency
challenge during the early phases of the crypto-ransomware life-
cycle and make better redundancy–relevancy trade-offs, which
improves the performance of detection model.

As the proposed EMIFS and MM-EMIFS exclude the conditional
redundancy term from the mutual information calculation, the
time complexity is similar to that of the MIFS, which is expressed
in the Big O notation as O(N logN) [79]. Concretely, the proposed
EMIFS and MM-EMIFS calculate the mutual information between
the feature and class label (for feature relevance) and the mu-
tual information between the candidate feature and the features
in the already-selected set (for redundancy) in the same step.
Accordingly, the time complexity of both EMIFS and MM-EMIFS
is O (N logN), as well. Therefore, the proposed RCGU technique
improves the performance of the early detection of attacks while
maintaining the same time complexity as existing techniques.

The accuracy performance of the proposed EMIFS and MM-
EMIFS techniques was also evaluated against the related works
using the datasets DS1, DS2 and DS3 used in the related works
[20,23,77]. Figs. 11–13 show the comparisons of the accuracy,
detection rate and FPR averaged over the three data sets. The
comparison shows that MM-EMIFS achieved better accuracy, de-
tection rate and FPR with all classifiers compared to the related
techniques. This confirms the ability of MM-EMIFS to select the
features with the highest discriminative power, even when at-
tack’s data and patterns are not sufficient, thanks to the proposed
RCGU technique that makes an accurate redundancy–relevancy
trade-off. Moreover, the significance test results in Table 10 using
the t-test show that, with all classifiers, the p-value was less than
or equal to 0.05 (the standard value), which confirms that the
improvement in the detection performance achieved by the pro-
posed RCGU was statistically significant compared to the related
techniques.

The future improvements that could be added into the pro-
posed RCGU is the inclusion of the conditional redundancy term
into the feature’s significance calculation within the goal function.
Such a calculation might improve the estimation of feature signif-
icance even further, as it involves comparison of the candidate
feature with the already-selected features with respect to the
target class label. Therefore, the decision to include or exclude
the feature will be based on how much it contributes to the class
label.
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6. Conclusion

In this paper, the Redundancy Coefficient Gradual Upweight-
ng (RCGU) technique was proposed for better estimation of the
ignificance of a crypto-ransomware feature when the amount of
ata is insufficient during the early phases of the attack lifecycle.
he proposed RCGU was integrated into the goal function of the
utual Information Features Selection and two improved feature
election techniques for early detection of crypto-ransomware
ere proposed: EMIFS and MM-EMIFS. The integration of the
CGU technique improved the redundancy–relevancy trade-off.
he detection accuracy of the RCGU-aided feature selection tech-
iques (EMIFS and MM-EMIFS) were higher than those of the
elated techniques. The results show the efficacy of the pro-
osed RCGU for crypto-ransomware early detection. This tech-
ique could be applied for early detection of other attacks such as
alware detection and intrusion detection. One limitation of the
roposed RCGU technique is the lack of consideration of the con-
itional redundancy term when calculating feature significance.
urrently, we are working on applying a similar approach on
he conditional redundancy term to further improve the feature
election process and enhance detection accuracy.
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