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Abstract
In this paper, we present a fast boundary integral equation method for the numeri-
cal conformal mapping and its inverse of bounded multiply connected regions onto
a disk and annulus with circular slits regions. The method is based on two uniquely
solvable boundary integral equations with Neumann-type and generalized Neumann
kernels. The integral equations related to the mappings are solved numerically using
combination of Nyström method, GMRES method, and fast multipole method. The
complexity of this new algorithm is O((M + 1)n), where M + 1 stands for the multi-
plicity of the multiply connected region and n refers to the number of nodes on each
boundary component. Previous algorithms require O((M + 1)3n3) operations. The
numerical results of some test calculations demonstrate that our method is capable of
handling regions with complex geometry and very high connectivity. An application
of the method on medical human brain image processing is also presented.
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1 Introduction

Conformal mapping has been applied to the study of the visual cortex. Frederick and
Schwartz [1] presented the conformal mapping of retina as a case of identification
of a single point (the representation of the blind spot, or optic disk) in the eye. They
mapped one half of the retina conformally to the half unit disk, which conformally is
mapped to a unit disk preserving the point in the half disk that mapped to the origin
of the target disk as a parameter of this mapping. Finally, the unit disk is mapped
conformally to an arbitrary 2D region, the flattened data. More applications can be
found in [2,3].

Explicit formulae for conformal mappings of multiply circular regions onto canon-
ical slit regions in terms of Schottky–Klein prime function and their applications
are described in [4–6]. Numerical conformal mappings of general multiply connected
regions onto canonical slit regions have been described in [7–22]. The obtained bound-
ary integral equation methods in [16–20,23–25] were discretized by the Nyström
method with trapezoidal rule to obtain a dense and nonsymmetric linear system.
Gauss elimination method of order O((M + 1)3n3) operations was used for solv-
ing the obtained linear system, where M + 1 refers to the multiplicity of the multiply
connected region and n stands for the number of nodes in the discretization of each
boundary component. Hence, it is very expensive to solve the linear system for very
large values of M and n.

This paper illustrates a new integral equation method using the adjoint general-
ized Neumann and Neumann-type kernels for conformal mapping and its inverse of
a bounded multiply connected region onto a disk and annulus with circular slits,
extending the work presented in Sangawi et al. [16,17]. Unlike the methods presented
in [16,17] which require solving three integral equations, the method shown in this
paper requires only two integral equations. Discretization of the integral equation
yields a system of linear equations which are solved by an iterative method based on
the restarted version of the generalized minimal residual (GMRES) method of Saad
and Schultz [26].

The GMRES method will converge significantly faster without the need to use pre-
conditioning for solving our linear system. See [27–31] for details on FMM operation
and memory requirement. This paper is an improvement of the methods presented
in [16,17]. The matrix–vector product function can be computed using the function
gmres. The function zfmm2dpart in the MATLAB toolbox FMMLIB2D developed by
Greengard and Gimbutas [32] is then used for the matrix–vector product function for
the coefficient matrix of our linear system. Thus, the obtained linear system can be
solved in O((M + 1)n) operations. We then apply the proposed method to brain med-
ical image processing which gives high-quality information that helps in diagnosing
diseases and making the treatment easier.

The disposition of this paper is as follows: Sect. 2 presents some auxiliarymaterials.
Section 3 discusses an integral equation method to calculate the modulus of conformal
mapping function f . Derivations of integral equations related to f ′ for canonical
regions of type disk with circular slits Ω1 and annulus with circular slits Ω2 are given
inSects. 4 and5 . Section 6presents amethod to compute the inversemapping functions
from the canonical slits region onto the original region. Section 7 describes the fast
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Fig. 1 Mappings of the bounded multiply connected region onto a disk Ω1 and annulus with circular slits
Ω2

numerical implementation. Section 8 provides examples to illustrate the effectiveness
of proposed method. Section 9 applies the proposed method to brain medical image
processing. Finally, Sect. 10 concludes the findings of this paper.

2 Notations and Auxiliary Materials

Let Ω be a bounded multiply connected region of connectivity M + 1. The boundary
Γ consists of M + 1 smooth Jordan curves Γ j , j = 0, 1, . . . , M as shown in Fig. 1.

The curves Γ j are parametrized by 2π -periodic twice continuously differentiable
complex functions z j (t) with non-vanishing first derivatives

z′j (t) = dz j (t)/dt �= 0, t ∈ J j = [0, 2π ] , j = 0, 1, . . . , M .

The total parameter domain J is the disjoint union of M + 1 intervals J0, . . . , JM .
We define a parametrization z(t) of the whole boundary Γ on J by

z(t) = z j (t), t ∈ J j . (1)

Let H∗ be the space of all real Hölder continuous 2π -periodic functions ω(t) such
that

ω(t) = ω j (t), t ∈ J j .

Suppose that b(z) and H(z) are complex-valued functions defined on Γ such that
b(z) �= 0, H(z) �= 0 and H(z)/T (z)2 satisfies the Hölder condition on Γ . Then, the
interior relationship is defined as follows:

A complex-valued function P(z) is said to satisfy the interior relationship if P(z)
is analytic in Ω and satisfies the non-homogeneous boundary relationship

P(z) = b(z)T (z)

G(z)
P(z) + H(z), z ∈ Γ , (2)
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174 A. W. K. Sangawi et al.

where G(z) is analytic in Ω , Hölder continuous on Γ , and G(z) �= 0 on Γ . The
boundary relationship (2) also has the following equivalent form:

G(z) = b(z)T (z)
P(z)2

|P(z)|2 + G(z)H(z)

P(z)
, z ∈ Γ . (3)

The following theorem from [18] gives an integral equation for an analytic function
satisfying the interior non-homogeneous boundary relationship (2) or (3).

Theorem 1 [18, Theorem 3.1] If the function P(z) satisfies the interior non-
homogeneous boundary relationship (2) or (3), then

T (z)P(z) +
∫

Γ

NT (z, w)T (w)P(w)|dw| + b(z)

⎡
⎣ ∑
a j insideΓ

Res
w=a j

P(w)

(w − z)G(w)

⎤
⎦
conj

= −L−
R (z), z ∈ Γ , (4)

where

NT (z, w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2π i

[
T (z)

z − w
− b(z)

b(w)

T (w)

z − w

]
, z �= w

− 1

2π i|z′(t)|

[
Q′(z(t))
Q(z(t))

+ c′(z(t))
c(z(t))

]
, z = w

, (5)

L−
R (z) = −1

2

H(z)

T (z)
+ PV

1

2π i

∫
Γ

b(z)H(w)

b(w)(w − z)
|dw|. (6)

The symbol “conj” in the superscript denotes complex conjugate, while the minus
sign in the superscript denotes limit from the exterior. The sum in (4) is over all those
zeros a1, a2, . . . , aM of G that lie inside Ω . If G has no zeros in Ω , then the term
containing the residue in (4) will not appear.

3 Compute the Piecewise Real Function hj

Let A(t) be a complex continuously differentiable 2π -periodic function for all t ∈ J .
The generalized Neumann kernel formed with A is defined by [13,18]

N (t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

π
Im

(
Â(t)

Â(s)

z′(s)
z(s) − z(t)

)
, t �= s

1

π

(
1

2
Im

z′′(t)
z′(t)

− Im
A′(t)
A(t)

)
, t = s

,

123



Circular Slit Maps of Multiply Connected Regions with… 175

The adjoint function to the function Ã is given by

Ã(t) = z′(t)
A(t)

.

The generalized Neumann kernel Ñ (s, t) formed with Ã is given by

Ñ (t, s) = 1

π
Im

(
Ã(t)

Ã(s)

z′(s)
z(s) − z(t)

)
.

Then

Ñ (s, t) = −N∗(s, t),

where N∗(s, t) = N (t, s) is the adjoint kernel of the generalized Neumann kernel
N (s, t) (see [13] for more details). Define the Fredholm integral operator N∗ by

N∗ψ(t) =
∫
J
N∗(t, s)ψ(s)ds, t ∈ J .

It is known that λ = 1 is an eigenvalue of the kernel N with multiplicity 1 and
λ = −1 is an eigenvalue of the kernel N with multiplicity M [13]. The eigenfunctions
of N corresponding to the eigenvalue λ = −1 are

{
χ [0], χ [1], . . . , χ [M]}, where

χ [ j](ξ) =
{
1, ξ ∈ Γ j ,

0, otherwise,
j = 0, 1, . . . , M .

Define the space S by

S = span{χ [0], χ [1], . . . , χ [M]} (7)

and define an integral operator J by (see [16])

Jυ =
∫
J

1

2π

M∑
j=0

χ [ j](s)χ [ j](t)υ(s)ds. (8)

The following theorem from [16] is useful in upcoming sections.

Theorem 2 [16] Suppose that the function γ ∈ H∗ and functions h, μ ∈ S such that

Ag̃ = γ + h + iμ (9)

are boundary values of an analytic function g̃(z) in Ω . Then, the function h =
(h0, h1, . . . , hM ) is given by

h j = (γ, φ[ j]) = 1

2π

∫
Γ

γ (t)φ[ j](t)dt, (10)
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where φ[ j] are solutions of the following integral equations

(I + N∗ + J)φ[ j] = −χ [ j], j = 0, 1, . . . , M . (11)

4 Disk with Circular Slit Region

Assume that an analytic function w = f (z) maps Ω conformally onto a disk with
circular slitsΩ1 (see Fig. 1b). This canonical regionΩ1 consists of the disk |w| ≤ μ0
slit along M arcs of circles |w| = μ j , j = 1, . . . , M . We assume that w = f (z)
maps Γ0 onto the circle |w| = μ0 , and the curves Γ1, . . . , ΓM onto the arcs of circles
|w| = μ j , j = 1, . . . , M , where μ0 is known, and μ j , j = 1, . . . , M, are unknowns
and have to be determined.The function is uniquely determined by prescribing that
f (a) = 0 and f ′(a) > 0. The boundary values of f can be represented in the form

f (z j (t)) = μ j e
iθ j (t), Γ j : z = z j (t), 0 ≤ t ≤ β j , j = 0, 1, . . . , M, (12)

where θ j are the boundary correspondence functions of Γ j and μ j are the radii of the

circular slits. The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)
|z′(t)| . Thus, it

can be shown from (12) that

f (z j (t)) = μ j

i
T (z j (t))

θ j
′(t)∣∣θ j
′(t)

∣∣
f ′(z j (t))∣∣ f ′(z j (t))

∣∣ , z j ∈ Γ j , j = 0, 1, . . . , M . (13)

Note that for j = 0, θ j
′ > 0 and for j = 1, 2, . . . , M , θ j

′ may be positive or negative

since each circular slit f (Γ j ) is traversed twice (see Fig. 1c). Thus
θ j

′(t)∣∣θ j
′(t)

∣∣ = ±1.

Squaring both sides of (13), we get

f (z)2 = −| f (z)|2T (z)2
f ′(z)2

| f ′(z)|2 , z ∈ Γ . (14)

The mapping function can also be expressed as [11,16]

f (z) = c(z − a)e(z−a)ĥ(z), (15)

where ĥ(z) is an analytic function and c = f ′(a) is an undetermined real constant.
From (14) and (15), we obtain the boundary relationship

c2(z − a)e2(z−a)ĥ(z) = −| f (z)|2T (z)2

z − a

f ′(z)2

| f ′(z)|2 , z ∈ Γ . (16)

By taking logarithm on both sides of (15), we obtain

log( f (z(t)) = ln c + log(z(t) − a) + (z(t) − a)ĥ(z(t)) (17)
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which implies

(z(t) − a)ĥ(z(t)) = ln
(μ

c

)
− ln |z(t) − a| − i arg (z(t) − a) + iθ

= γ (t) + h(t) + iυ(t),
(18)

where γ (t) = − ln |z(t) − a|, h(t) = ln
(μ

c

)
, μ = (μ0, μ1, . . . , μM ). Let A(t) =

z(t) − a. By obtaining h j , j = 0, 1, . . . ,m, from (10), we obtain

c = e−h0 , (19)

and

μ j = ceh j , j = 1, 2, . . . ,m. (20)

Comparison of (16) and (3) leads to a choice of P(z) = f ′(z), b(z) =
−| f (z)|2T (z)

z − a
, G(z) = c2(z − a)e2(z−a)ĥ(z), H(z) = 0. Theorem 1 yields

T (z) f ′(z) + PV
∫

Γ

NT (z, w)T (w) f ′(w) |dw|

= | f (z)|2T (z)

(z − a)

⎡
⎣ ∑
a j insideΓ

Res
w=a j

f ′(w)

(w − z)c2(w − a)e2(w−a)ĥ(w)

⎤
⎦
conj

, z ∈ Γ ,(21)

where

NT (z, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π i

[
T (z)

z − w
− (w − a)| f (z)|2T (z)

(z − a)| f (w)|2(z − w)

]
, z �= w

1

2π |z′(t)| Im
z′′(t)
z′(t)

+ 1

2π i |z′(t)|
(

z′(t)
z(t) − a

)
, z = w

, (22)

Note that a is a pole of order one for
f ′(w)

(w − z)c2(w − a)e2(w−a)ĥ(w)
. Hence,

Res
w=a

f ′(w)

(w − z)c2(w − a)e2(w−a)ĥ(w)
= 1

c(a − z)
. (23)

Combining the integral equation (21) and (23), we get

T (z) f ′(z) + PV
∫

Γ

NT (z, w)T (w) f ′(w) |dw| − | f (z)|2T (z)

c(z − a)2
, z ∈ Γ . (24)
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Write the integral equation (24) as

f ′(z)T (z) +
∫

Γ

NT (z, w) f ′(w)T (w) |dw| = −| f (z)|2T (z)

c(z − a)2
, z ∈ Γ , (25)

By using single-valuedness of the mapping function f leads to the following condi-
tions

1

2π

∫
−Γq

f ′(w)T (w) |dw| = 0, q = 1, 2, . . . , M . (26)

Thus, the integral equation (25) with condition (26) should give a unique solution
provided the parameters c and | f (zq)| = μq , q = 1, 2, . . . , M that appear in (25)
are known.

By solving the integral equation (11), we get φ[ j], j = 0, 1, . . . , M , which gives h j

through (10) which in turn gives c and μ j through (19) and (20). By solving (25) with
(26) and the known values of c and μ j , we get the values of f ′. Then, the boundary
values of ĥ(z) are given by

ĥ(z) = 1

2(z − a)
log

[
−| f (z)|2T (z)2

c2(z − a)2

f ′(z)2

| f ′(z)|2
]

, z ∈ Γ . (27)

The logarithm in (27) indicates complex logarithm which define as

log(z) = ln |z| + iArg(z).

In This paper, we define the range of Arg(z) as [0, 2π) to avoid the multiple value of
Arg(z). Finally, the approximate boundary values of f (z) are obtained from (15), i.e.,

f (z) = c(z − a)e(z−a)ĥ(z), z ∈ Γ . (28)

The approach presented here is an improvement over [16]. Unlike [16], no integral
equation for θ ′(t) is required here for the computation of f (z).

Note that if Ω is a simply connected region, then (25) reduced to

f ′(z)T (z) +
∫

Γ

NT (z, w) f ′(w)T (w) |dw| = − T (z)

c(z − a)2
, z ∈ Γ , (29)

where

NT (z, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π i

[
T (z)

z − w
− (w − a)T (z)

(z − a)(z − w)

]
, z �= w

1

2π |z′(t)| Im
z′′(t)
z′(t)

+ 1

2π i |z′(t)|
(

z′(t)
z(t) − a

)
, z = w

. (30)
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For simply connected region, we can just solve integral equation (22) for f ′(z(t)) and
compute f (z(t)) using (14).

5 Annulus with Circular Slit Region

Letw = f (z)be the analytic functionwhichmapsΩ conformally onto an annuluswith
circular slits Ω2 (see Fig. 1c). This canonical region Ω2 consists of a circular annulus
μM ≤ |w| ≤ μ0 slit along M − 1 arcs of circles |w| = μ j , j = 1, . . . , M − 1. We
assume thatw = f (z)mapsΓ0 onto the circle |w| = μ0,ΓM onto the circle |w| = μM

and the curves Γ1, . . . , ΓM−1 onto the arcs of circles |w| = μ j , j = 1, . . . , M − 1,
where μ0 is known, and μ j , j = 1, . . . , M, are unknowns and have to be determined.
The boundary values of f can be represented in the form

f (z j (t)) = μ j e
iθ j (t), Γ j : z = z j (t), 0 ≤ t ≤ β j , j = 0, 1, . . . , M, (31)

where θ j are the boundary correspondence functions of Γ j and μ j are the radii of the
circular slits. The mapping function can be expressed as [11,17]

f (z) = c(b − z)

b
ezĥ(z), (32)

where ĥ(z) is an analytic function and let 0 ∈ Ω and b be an interior point in ΓM . The
mapping ismade uniquely determined by prescribing that f (b) = 0 and c = f (0) > 0
where c is an undetermined real constant. From (32), we get

f ′(z) = f (z)

[
zĥ′(z) + ĥ(z) − 1

b − z

]
, (33)

which implies

f ′(0)
ĥ(0) − 1

b

= f (0) = c > 0. (34)

The above equation means either both f ′(0) and ĥ(0)− 1

b
are reals or both pure imagi-

nary complex numbers. The representation (31) also satisfy the boundary relationship
(14). Multiplying both sides of (14) by z gives the following boundary relationship

z f (z)2 = −z | f (z)|2 T (z)2
f ′(z)2

| f ′(z)|2 , z ∈ Γ . (35)

Comparison of (35) and (3) leads to a choice of P(z) = f ′(z), b(z) =
−z| f (z)|2T (z), G(z) = z f (z)2, H(z) = 0. Theorem 1 yields

T (z) f ′(z) + PV
∫

Γ

NT (z, w)T (w) f ′(w) |dw|
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z| f (z)|2T (z)

⎡
⎣ ∑
a j insideΓ

Res
w=a j

f ′(w)

(w − z)w f (w)2

⎤
⎦
conj

, z ∈ Γ , (36)

where

NT (z, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π i

[
T (z)

z − w
− z| f (z)|2T (z)

w| f (w)|2(z − w)

]
, z �= w

1

2π |z′(t)| Im
z′′(t)
z′(t)

− 1

2π i |z′(t)|
(
z′(t)
z(t)

)
, z = w

. (37)

Note that zero is a pole of order one for
f ′(w)

(w − z)w f (w)2
. Hence

Res
w=0

f ′(w)

(w − z)w f (w)2
= f ′(0)

−c2z
. (38)

Thus, integral equation, (36) after dividing both sides by f ′(0), becomes

f ′(z)T (z)

f ′(0)
+

∫
Γ

NT (z, w)
f ′(w)T (w)

f ′(0)
|dw| = −| f (z)|2T (z)

c2
, z ∈ Γ . (39)

By using single-valuedness of the mapping function, f leads to the following condi-
tions

1

2π

∫
−Γq

f ′(w)T (w)

f ′(0)
|dw| = 0, q = 1, 2, . . . , M, (40)

and

1

2π i

∫
Γ

w f ′(w)T (w)

f ′(0)
|dw| = 0. (41)

Thus, the integral equation (39) with conditions (40) and (41) should give a unique
solution provided the parameters c and | f (zq)| = μq , q = 1, 2, . . . , M that appear
in (39) are known.

The values of μ can be computed by using the integral equation (11), (10), (19)
and (20) with γ (t) = ln |b| − ln |b − z(t)| and A(t) = z(t). By solving (39) with
the known values of c and μ, we get the boundary values of f ′. Then, the following
equation gives the values of ĥ(z) if f ′(0) is real

ĥ(z) = 1

2z
log

[
−b2| f (z)|2T (z)2

c2(b − z)2
f ′(z)2

| f ′(z)|2
]

, z ∈ Γ . (42)

The logarithm in (42) indicates complex logarithm. Section 4 (after 27) explained the
definition of complex algorithm and range of argument to avoid multiple computation.
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If f ′(0) and (ĥ(0) − 1
b ) are both pure imaginary, then the boundary values of ĥ(z) are

given by

ĥ(z) = 1

2z
log

[
b2| f (z)|2T (z)2

c2(b − z)2
f ′(z)2

| f ′(z)|2
]

, z ∈ Γ . (43)

Finally, the approximate boundary values of f (z) are given by

f (z) = c(b − z)

b
ezĥ(z), z ∈ Γ . (44)

6 Computing Values of Mapping Functions Interior and Inverse
Mapping Functions

The approximate interior values of the function f (z) for both canonical slits regions
are calculated by the Cauchy integral formula in the form of

f (z) =
∫
Γ

f (w)
w−z dw∫

Γ
1

w−z dw
, z ∈ Ω, (45)

numerically where
∫

Γ

1

w − z
dw = 1, the integral in the numerator has the advantage

that the denominator in this formula compensates for the error in the numerator (see
[33]). The integrals in (45) are approximated by the trapezoidal rule.

For computing the inverse maps, note that the mapping function f −1(w) = z is
analytic in the respective canonical slits region. Then by means of Cauchy’s integral
formula, we obtain z ∈ Ω by

z = 1

2π i

∫
J

z(t)

f (z(t)) − w
f ′(z(t))z′(t)dt . (46)

7 Numerical Implementation

Since the functions z j (t) are 2π -periodic, a reliable procedure for solving the integral
equations (11), (25) and (39) numerically is by using the Nyström’s method with the
trapezoidal rule [34]. The trapezoidal rule is the most accurate method for integrating
periodic functions numerically [35, pp. 134–142]. The details for solving integral
equation (11) is given in [36,37].
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182 A. W. K. Sangawi et al.

7.1 Solving Integral Equation with Neumann-Type Kernel for Conformal Mapping
onto Unit Disk with Circular Slits

For solving integral equation (25), multiplying both sides by |z′(t)| gives

f ′(z)z′(t) +
∫

Γ

NT (z, w) f ′(w)|z′(t)|T (w) |dw| = −| f (z)|2z′(t)
c(z − a)2

, z ∈ Γ . (47)

We choose n equidistant collocation points for Γ j

t j̃ = (( j̃ − 1)modn)2π

n
, j̃ = 1, 2, . . . , n(M + 1).

Using the parametric representation z(t) on Γ and discretize integral equation (47)
and (26) gives

f ′(z(tk̃))z
′(tk̃) + 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
z′(tk̃)

z(tk̃) − z(t j̃ )
− (z(t j̃ ) − a)|z′(tk̃)

(z(tk̃) − a)|(z(tk̃) − z(t j̃ ))

× | f (z(tk̃))|2
| f (z(t j̃ ))|2

]
f ′(z(t j̃ ))z

′(t j̃ ) +
(M+1)n∑
k̃=1

(
1

n
Im

z′′(tk̃)
z′(tk̃)

+ 1

ni

(
z′(tk̃)

z(tk̃) − a

))

f ′(z(tk̃))z
′(tk̃) = −| f (z(tk̃))|2z′(tk̃)

c(z(tk̃) − a)2
, (48)

1

n

(M+1)n∑
j̃=n+1

f ′(z(t j̃ ))z
′(t j̃ ) = 0. (49)

We define vector hpx as

hpx j̃ =
{
0, j̃ = 1, 2, . . . , n
f ′(z(t j̃ ))z

′(t j̃ ), j̃ = n + 1, n + 2, . . . , (M + 1)n
. (50)

Then, (49) can be written as

1

n

(M+1)n∑
j̃=1

hpx j̃ = 0. (51)
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Adding (51) and (48) gives

f ′(z(tk̃))z
′(tk̃) + 1

n

(M+1)n∑
j̃=1

hpx j̃ + 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
z′(tk̃)

z(tk̃) − z(t j̃ )
− (z(t j̃ ) − a)

(z(tk̃) − a)

× | f (z(tk̃))|2z′(tk̃)
| f (z(t j̃ ))|2(z(tk̃) − z(t j̃ ))

]
f ′(z(t j̃ ))z

′(t j̃ ) +
(M+1)n∑
k̃=1

(
1

n
Im

z′′(tk̃)
z′(tk̃)

+ 1

ni

×
(

z′(tk̃)
z(tk̃) − a

))
f ′(z(tk̃))z

′(tk̃) = −| f (z(tk̃))|2z′(tk̃)
c(z(tk̃) − a)2

. (52)

Rearrange (52) yields

f ′(z(tk̃))z
′(tk̃) + 1

n

(M+1)n∑
j̃=1

hpx j̃ + 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
f ′(z(t j̃ ))z′(t j̃ )
z(tk̃) − z(t j̃ )

]
z′(tk̃)

− 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
f ′(z(t j̃ ))z′(t j̃ )(z(t j̃ ) − a)

| f (z(t j̃ ))|2(z(tk̃) − z(t j̃ ))

]
| f (z(tk̃))|2z′(tk̃)

(z(tk̃) − a)
+

(M+1)n∑
k̃=1

(
1

n

× Im
z′′(tk̃)
z′(tk̃)

+ 1

ni

(
z′(tk̃)

z(tk̃) − a

))
f ′(z(tk̃))z

′(tk̃) = −| f (z(tk̃))|2z′(tk̃)
c(z(tk̃) − a)2

. (53)

Let E and G be n × n matrices with the elements

(E)k̃ j̃ =
⎧⎨
⎩

1

z(tk̃) − z(t j̃ )
, k̃ �= j̃

0, k̃ = j̃

, (54)

and

(G)k̃ j̃ =
⎧⎨
⎩

1

z(tk̃) − z(t j̃ )
, k̃ �= j̃

0 k̃ = j̃
, (55)

Take t to be the vectorwith element tk̃ , where k̃ = 1, 2, . . . , (M+1)n, a be (M+1)n×1
vector with element a and

y = 1

n

(M+1)n∑
j̃=1

hpx j̃ .
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Then, (53) can be written in matrix form as

f ′(z(t))z′(t) + y + 1

ni

[
G f ′(z(t))z′(t)

]
z′(t) − 1

ni

[
E f ′(z(t))z′(t)(z(t) − a)

| f (z(t))|2
]

×| f (z(t))|2z′(t)
(z(t) − a)

+
(
1

n
Im

z′′(t)
z′(t)

+ 1

ni

(
z′(t)

z(t) − a

))
f ′(z(t))z′(t)

= −| f (z(t))|2z′(t)
c(z(t) − a)2

. (56)

From (56), multiplication of matrix G by a vector can be done by FMM of order
O((M + 1)n) operations. Let the (M + 1)n × 1 vector p be the vector f ′(z(t))z′(t)

and the (M + 1)n × 1 vector q be the vector
f ′(z(t))z′(t)(z(t) − a)

| f (z(t))|2 . Let also b and

c be 2 × (M + 1)n real vectors

b =
(
Re(z(t))T

Im(z(t))T

)
(57)

and

c =
(
Re(z(t))T

Im(z(t))T

)
. (58)

Hence the products Ep and Gq can be computed by using the MATLAB function
zfmm2dpart as follows [32]:

Ep = zfmm2dpart(i prec, n,b,pT , 1) (59)

and

Gq = zfmm2dpart(i prec, n, c,qT , 1). (60)

In this paper, we take i prec = 4, which implies the tolerance of the FMM is 0.5 ×
10−12. The solution of the system (56) can be solve by using GMRES method. We
use the MATLAB function gmres to solve the system (56) with relative residual <

10−12 as the stopping criteria. Once the solution
f ′(z(t))z′(t)

f ′(0)
has been computed, the

mapping function f (z(t)) is computed, by the formulas (27) and (28). The computation
of interior values and inverse value viaCauchy integral formula (45) and (46) is referred
to Nasser [37]. For computing Cauchy integral formula, we also discretized integrals
using Nyström method with trapezoidal rule. The summation can be done by using
FMM.
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7.2 Solving Integral Equation with Neumann-Type Kernel for Conformal Mapping
onto the Annulus with Circular Slits

For solving integral equation (39), multiplying both sides of equation (39) by |z′(t)|
gives

f ′(z)z′(t)
f ′(0)

+
∫

Γ

NT (z, w)
f ′(w)T (w)|z′(t)|

f ′(0)
|dw| = −| f (z)|2z′(t)

c2
, z ∈ Γ .(61)

We choose n equidistant collocation points by choosing the same equidistant colloca-
tion points as in previous subsection. Using the parametric representation z(t) on Γ

and discretizing integral equations (61), (40) and (41) gives

f ′(z(tk̃))z
′(tk̃)

f ′(0)
+ 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
z′(tk̃)

z(tk̃) − z(t j̃ )
− z(tk̃)| f (z(tk̃))|2z′(tk̃)

z(t j̃ )| f (z(t j̃ ))|2(z(tk̃) − z(t j̃ ))

]

f ′(z(t j̃ ))z
′(t j̃ )

f ′(0)
+

(M+1)n∑
k̃=1

(
1

n
Im

z′′(tk̃)
z′(tk̃)

+ 1

ni

(
z′(tk̃)
z(tk̃)

))
f ′(z(tk̃))z

′(tk̃)
f ′(0)

= −| f (z(tk̃))|2z′(tk̃)
c2

, (62)

1

n

(M+1)n∑
j̃=n+1

f ′(z(t j̃ ))z′(t j̃ )
f ′(0)

= 0, (63)

and

1

ni

(M+1)n∑
j̃=1

z(t j̃ ) f
′(z(t j̃ ))z′(t j̃ )
f ′(0)

= 0. (64)

We define vector hp as

hp j̃ =
⎧⎨
⎩
0, j̃ = 1, 2, . . . , n
f ′(z(t j̃ ))z

′(t j̃ )
f ′(0)

, j̃ = n + 1, n + 2, . . . , (M + 1)n
. (65)

Then, (49) can be written as

1

n

(M+1)n∑
j̃=1

hp j̃ = 0. (66)
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Adding (66), (64) and (62) gives

f ′(z(tk̃))z
′(tk̃)

f ′(0)
+ 1

n

(M+1)n∑
j̃=1

hp j̃ + 1

ni

(M+1)n∑
j̃=1

z(t j̃ ) f
′(z(t j̃ ))z

′(t j̃ )
f ′(0)

+ 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
z′(tk̃)

z(tk̃) − z(t j̃ )
− z(tk̃)| f (z(tk̃))|2z′(tk̃)

z(t j̃ )| f (z(t j̃ ))|2(z(tk̃) − z(t j̃ ))

]
f ′(z(t j̃ ))z

′(t j̃ )
f ′(0)

+
(M+1)n∑
k̃=1

(
1

n
Im

z′′(tk̃)
z′(tk̃)

+ 1

ni

(
z′(tk̃)
z(tk̃)

))
f ′(z(tk̃))z′(tk̃)

f ′(0)
= −| f (z(tk̃))|2z′(tk̃)

c2
.

(67)

Rearrange (67) yields

f ′(z(tk̃))z
′(tk̃)

f ′(0)
+ 1

n

(M+1)n∑
j̃=1

hp j̃ + 1

ni

(M+1)n∑
j̃=1

z(t j̃ ) f
′(z(t j̃ ))z′(t j̃ )
f ′(0)

+ 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
f ′(z(t j̃ ))z

′(t j̃ )/ f
′(0)

z(tk̃) − z(t j̃ )

]
z′(tk̃)

− 1

ni

(M+1)n∑
j̃=1
k̃ �= j̃

[
f ′(z(t j̃ ))z

′(t j̃ )/ f
′(0)

z(t j̃ )| f (z(t j̃ ))|2(z(tk̃) − z(t j̃ ))

]
z(tk̃)| f (z(tk̃))|2z′(tk̃)

+
(M+1)n∑
k̃=1

(
1

n
Im

z′′(tk̃)
z′(tk̃)

+ 1

ni

(
z′(tk̃)
z(tk̃)

))
f ′(z(tk̃))z

′(tk̃)
f ′(0)

= −| f (z(tk̃))|2z′(tk̃)
c2

.

(68)

Let E and G be (M + 1)n × (M + 1)n matrices as in (54) and (55), take t be vector
with element tk , where k = 1, 2, . . . , (M + 1)n and

s = 1

n

(M+1)n∑
j̃=1

hp j̃ + 1

ni

(M+1)n∑
j̃=1

z(t j̃ ) f
′(z(t j̃ ))z′(t j̃ )
f ′(0)

.

Then, (68) can be written in matrix form as

f ′(z(t))z′(t)
f ′(0)

+ s + 1

ni

[
G

f ′(z(t))z′(t)
f ′(0)

]
z′(t) − 1

ni

[
E

f ′(z(t))z′(t)/ f ′(0)
z(t)| f (z(t))|2

]

×z(t)| f (z(t))|2z′(t) +
(
1

n
Im

z′′(t)
z′(t)

+ 1

ni

(
z′(t)
z(t)

))
f ′(z(t))z′(t)

f ′(0)

= −| f (z(t))|2z′(t)
c2

. (69)
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Fig. 2 Mapping a region bounded by unit circle onto a disk for Example 1

Let the (M+1)n×1 vector p be the vector | f
′(z(t))z′(t)
f ′(0)

and the (M+1)n×1 vector

q be the vector
f ′(z(t))z′(t)/ f ′(0)
z(t)| f (z(t))|2 . Let also b and c be 2 × (M + 1)n real vectors

as given in (57) and (58). The products Ep and Gq can be computed by using the
MATLAB function zfmm2dpart according to (59) and (60), respectively. We take
i prec = 4, which implies the tolerance of the FMM is 0.5×10−12. The solution of the
system (69) can be solved by using GMRES method. We use the MATLAB function
gmres to solve the system (69) with relative residual< 10−12 as the stopping criteria.

Once the solution
f ′(z(t))z′(t)

f ′(0)
has been computed, the mapping function f (z(t)) is

computed, by the formulas (42), (43) and (44). The computation of interior values and
inverse value via Cauchy integral formula (45) and (46) is referred to Nasser [37].
For computing Cauchy integral formula, we also discretized integrals using Nyström
method with trapezoidal rule. The summation arising from discretization can be done
by using FMM.

8 Numerical Examples

For numerical experiments, we have used some test regions of connectivity one, two
and fifteen. All the computations were done usingMATLAB7.12.0.635(R2011a). The
number of points used in the discretization of each boundary component Γ j is n. The
test regions and their corresponding images are shown in Figs. 2, 3, 4, 5, 3, 7, 8, 9, 10
and 11.

Example 1 Consider a region Ω bounded by the unit circle

Γ : {z(t) = eit }, 0 ≤ t ≤ 2π, a = 0.3 + 0.3i.
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Fig. 3 Inverse image of the disk for Example 1

Fig. 4 Mappings of circular frame with c = 0.3, ρ = 0.1, σ = 0.50, μ = e−2σ

Then, the exact mapping function is given by [8, p. 340]

g(z) = z − a

1 − az
, μ = 1. (70)

See Figs. 2, 3 and Table 1 for numerical results.

Example 2 Circular Frame :
Consider a pair of circles [38]

Γ0 : {z(t) = eit },
Γ1 : {z(t) = c + ρe−it }, t : 0 ≤ t ≤ 2π, b = 0.3,

such that the region Ω bounded by Γ0 and Γ1 is the region between a unit circle and
a circle center at c with radius ρ. Since θ4(πτ i/2) = 0 and r̃ = q = e−πτ where θ4

is the Jacobi Theta-functions [39], this implies τ = ln(r̃)

−π
and a = λ − e−2σ

1 − λe−2σ . We
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Fig. 5 Inverse images of the canonical slits regions onto original region for Example 2

Fig. 6 Mappings a region bounded by an ellipse and two circles onto a disk Ω1 and annulus with circular
slits region Ω2 for Example 3
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Fig. 7 Inverse images of the canonical slits regions onto original region for Example 3

Fig. 8 Mappings a region of connectivity fifteen onto a disk Ω1 and annulus with circular slits region Ω2
for Example 4
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Fig. 9 Inverse images of the canonical slits regions onto original region for Example 4

Fig. 10 Mappings a region of connectivity ninety-two onto a disk Ω1 and annulus with circular slits region
Ω2 for Example 5
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Fig. 11 Inverse images of the canonical slits regions onto original region for Example 5

choose a real number σ such that 0 < σ < πτ/2. Then, the exact mapping function
is given by [40]

g(z) = e2σ
θ4

(
1

2i
log p(z) + iπτ

2
− iσ

)

θ4

(
1

2i
log p(z) + iπτ

2
+ iσ

) , 0 < σ <
πτ

2
, (71)
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Table 1 Error norm (unit circle)
for Example 1

n ‖ f − fn(t)‖∞

8 3.5 (−03)

16 7.4 (−06)

32 1.6 (−11)

64 5.5 (−16)

Table 2 Error norm (circular
frame onto disk) for Example 2

n ‖μ1 − μ1n‖∞ ‖ f − fn(t)‖∞

8 1.2 (−05) 1.1 (−04)

16 1.6 (−09) 8.5 (−09)

32 5.5 (−17) 9.9 (−15)

Table 3 Error norm (circular
frame onto annulus) for
Example 2

n ‖μ1 − r̃‖∞ ‖ f − pn(t)‖∞ cA

8 3.4 (−06) 6.4 (−03) 0.303434475556255

16 6.2 (−10) 1.0 (−06) 0.303337061088429

32 0 1.6 (−14) 0.303337045290424

where p(z) = (z − λ)/(λz − 1) with

λ = 2c

1 + (c2 − ρ2) + √
(1 − (c − ρ)2)(1 − (c + ρ)2)

,

r̃ = 2ρ

1 − (c2 − ρ2) + √
(1 − (c − ρ)2)(1 − (c + ρ)2)

,

maps Γ0 onto the unit circle and Γ1 onto a circle of radius r̃ . See Figs. 2, 3 and
Tables 2, 3 for numerical results.

Example 3 Ellipse with Two Circles:
Let Ω be the region bounded by [41,42]

Γ0 : {z(t) = 2 cos t + i sin t},
Γ1 : {z(t) = 0.5 (cos t − i sin t) },
Γ2 : {z(t) = 1.2 + 0.3 (cos t − i sin t) }, 0 ≤ t ≤ 2π, a = 0, b = 1.

This example is also discussed in Reichel [41] and Kokkinos et al. [42] which allows
for comparison of the radii μ1, μ2. Since our condition problem is different from
them, we should multiply our radii by 2.5 to compare with the result of Reichels and
Kokkinos et al. We choose the symbols μ1R and μ2R for the radii in Reichel [41] and
μ1K and μ2K for the radii in Kokkinos et al. [42]. Figures 6 and 7 show the region
and its images based on our method. See Tables 4, 5 and 6 for comparisons between

123



194 A. W. K. Sangawi et al.

Table 4 Radii comparison for
Example 3 for disk with slits Ω1

n ‖μ1 × 2.5 − μ1R‖∞ ‖μ2 × 2.5 − μ2R‖∞

32 4.6 (−04) 7.3 (−04)

64 2.0 (−07) 1.3 (−06)

128 2.8 (−08) 1.2 (−08)

Table 5 Radii comparison for
Example 3 for disk with slits Ω1

n ‖μ1 × 2.5 − μ1K ‖∞ ‖μ2 × 2.5 − μ2K ‖∞

32 4.5 (−04) 7.2 (−04)

64 4.5 (−06) 9.0 (−06)

128 4.6 (−06) 1.0 (−05)

Table 6 Numerical values of cD , cA , μAi , i = 1, 2 for Example 3

n 32 64 128

cD 1.115370335536091 1.113868875795550 1.113869899112444

cA 0.782778014894537 0.782233504945784 0.782233891836727

μA1 0.251822455298932 0.252132045066240 0.252132004009456

μA2 0.950339141128186 0.949644608421631 0.949645708882955

our computed values of μ1 and μ2 with those computed values of Reichel [41] and
Kokkinos et al. [42] and computed values of cD , cA, μA1 and μA2.

Example 4 Consider the region Ω of connectivity fifteen [43],

z j (t) = ξ j + eiσ j (a j cos t + ib j sin t), j = 0, 1, . . . , 14, (72)

where a = −0.5− i0.5, b = −0.833− i2.165 and the values of the complex constants
ξ j and the real constants a j , b j and σ j are as in Table 7. We chose the symbols μDj

and μAj for radii in previous two canonical slits regions, respectively. The numerical
results are presented in Figs. 8 and 9. See Table 8 for our computed values of cD , cA,
μDi and μAi, i = 1, 2, . . . , 14.

Example 5 Consider a region Ω with complicated boundaries,

Γ0 : {z(t) = 0.2 − i0.5 + 6e(it)},
Γi : {z(t) = ξi + 0.303 (0.3 cos t − i sin t) }, i = 1, 3, . . . , 17,

Γî : {z(t) = ξî + 0.303e(−it)}, î = 2, 4, . . . , 18,

Γ j : {z(t) = ξ j + (0.24 + 0.08 cos(2t))e(−it)}, j = 19, 20, . . . , 22,

Γk : {z(t) = ξk + (0.24 + 0.08 cos(4t))e(−it)}, k = 23, 24, . . . , 30,

Γl : {z(t) = ξl + (0.24 + 0.08 cos(6t))e(−it)}, l = 31, 32, . . . , 45,
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Table 7 Values of constants a j ,
b j , ξ j and σ j for Example 4

j a j b j ξ j σ j

0 4.0000 3.0000 −0.5000 − i0.5000 1.0000

1 0.2976 −0.6132 −0.8330 − i2.1650 5.7197

2 0.5061 −0.6053 −1.7059 + i0.3423 0.5778

3 0.6051 −0.7078 0.3577 − i0.9846 4.1087

4 0.7928 −0.3182 1.0000 + i1.2668 2.6138

5 0.3923 −0.4491 −1.9306 − i1.0663 4.4057

6 0.3626 −0.1881 1.1621 + i0.2940 3.3108

7 0.2126 −0.1281 2.1621 − i0.1940 1.3108

8 0.1026 −1.0881 −2.2621 − i2.6040 0.3108

9 0.4026 −0.1481 −0.7621 + i1.2940 0.8108

10 0.4323 −0.3091 −2.9306 − i1.0663 4.4057

11 0.5626 −0.1881 −0.3162 + i0.2940 3.3108

12 0.7126 −0.3281 0.1621 − i2.6940 1.3108

13 0.1343 −0.6088 −1.6262 − i2.6040 0.3108

14 0.9826 −0.1481 −0.0621 + i1.9294 1.5108

Table 8 Numerical values of
μDi, μAi, i = 0, 1, . . . , 14 for
Example 4

n 128 128

cD 0.958839834685 cA 0.727086504473837

μD1 0.655387540047 μA1 0.263139768211170

μD2 0.652855856306 μA2 0.795189128780614

μD3 0.438194901021 μA3 0.631085833724993

μD4 0.770609823433 μA4 0.888036202358146

μD5 0.687552253206 μA5 0.650832670370219

μD6 0.665588949931 μA6 0.819714480468402

μD7 0.833926908774 μA7 0.909621579356991

μD8 0.826554569829 μA8 0.681910170813936

μD9 0.732975049356 μA9 0.868320321161987

μD10 0.823406075334 μA10 0.783706566483901

μD11 0.503431905127 μA11 0.770523414951779

μD12 0.729111334251 μA12 0.608651517744375

μD13 0.748924920496 μA13 0.481212351120337

μD14 0.786618243471 μA14 0.900734272223493

Γm : {z(t) = ξm + (0.24 + 0.08 cos(8t))e(−it)}, m = 46, 47, . . . , 90,

Γ91 : {z(t) = 5.4419 + i0.6903 + (0.24 + 0.08 cos(8t))e(−it)}, 0 ≤ t ≤ 2π,

where a = 3.9 + i0.2 and b = −4.6871 − i1.3355 and the values of the complex
constants ξ j are as in Table 9. Mapping function from the original region onto the disk
and annulus with slits region and the inverse mapping functions from the disk and
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Fig. 12 Shahid Aso Hospital MR imaging process

annulus with slits region onto the original region. The numerical results are presented
in Figs. 10 and 11.

9 Medical Image Processing Applications

Medical image processing has experienced a dramatic expansion. Experts from
applied mathematics, engineering, computer sciences, biology and medicine have
been attracted by biomedical research. One of the important parts of clinical routine
is computer analytic processing. Image processing is a very important process for
analyzing images and gives high-quality information that helps in diagnosing diseases
and making treatment easier.

A conformalmapping is a one-one and onto transformationw = f (z) that preserves
both local angles and shape of infinitesimal small figures but not necessarily their size
which is necessary factor in medical image processing.

Conformal mapping can be effectively applied in the field of brain surfacemapping.
Parameterization of anatomical surfaces in brain imaging is valuable to help analyze
anatomical shape. Conformal mapping involving slits has been applied byWang et al.
[3] to study the difference in cortical surface of the brain. It helps in disease diagnosis
related to cortical surface such as Alzheimer’s disease. Conformal mapping can be
used to map an irregular surface onto a disk and annulus while preserving the angle,
which is useful for visualization of magnetic resonance imaging (MRI). MRI is a
tomographic imaging procedure which uses strong magnetic fields and radio-waves to
create images of internal physical and chemical characteristics of an object. An MRI
scanner is shown in Fig. 12.

The conformal mapping method of a simply and multiply connected region is
applied to a brain surface image onto a disk and annulus with circular slit regions. The
results based on our method are presented in Figs. 13 and 14 . Different values of a
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Fig. 13 Application of the proposed method on the human brain. Computation times with n = 212 are b
2.239811s, c 2.260020 s, d 2.270281s, e 2.258278s, f 2.262168s

Fig. 14 Original image and the transformed images based on conformalmapping by choosing different point
in the original image. Computation times with n = 214 are b 11.409960 s, c 11.714795s, d 16.170715s, e
16.219867s, f 16.323288s

has the same effect as “warping” and “zooming” to get better and clearer pictures of
different parts of the brain. Since conformal mappings are one-to-one, no information
is lost. One is able to see how the zoomed part of the brain relates with the other parts.
Thus conformal maps help preserve some essential features of visual information of
the brain.
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Fig. 15 Original MR image and the transformed images based on conformal mapping by choosing different
point in the original image. Computation times with n = 212 are b 2.470122 s, c 2.515067s, d 2.313659s,
e 2.414645s, f 2.563450 s

Fig. 16 Original MR image and the transformed images based on conformal mapping by choosing dif-
ferent point in the original image. Computation times with n = 214 are b 16.915156s, c 16.106628s,
d 15.326305s, e 45.435839s, f 42.948651s

For our test experiments, we have considered real MR test brain image of a patient
from Shahid Aso Hospital, to help diagnose diseases and treatment by obtaining better
quality information. The results based on our method are presented in Figs. 15 and 16
.
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10 Conclusions

In this paper, we have constructed new boundary integral equations for conformal
mapping of bounded multiply connected regions onto the disk and annulus with circu-
lar slits regions. The advantage of the proposed method is that the boundary integral
equations are all linear. Also in contrast to the boundary integral equation used in
Nasser [10,11], the right-hand sides of newly constructed boundary integral equations
are much simpler and do not contain any singular operator. Moreover, several map-
pings of the test regions of connectivity one, two, three, fifteen and ninety-two were
computed numerically using the proposed method. After computing the boundary
values of the mapping function, the interior values of the mapping function and its
inversewere calculated bymeans of Cauchy integral formula. The numerical examples
presented have illustrated that the innovative boundary integral equation method has
high accuracy. Luckily, this rate of accuracy is highly vital for medical application of
image analysis. This paper used MATLAB functions graythresh, imfill, bwareaopen
and bwboundaries to recognize and extract object boundary from medical images
reproducibly and accurately. Consequently, this led to the achievement of better and
clearer images. In the end, one should bear this in mind that such results were achieved
after applying the proposed method to the medical image objective that helps in diag-
nosing diseases and making treatment easier.
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