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ABSTRACT 

  

 

 

 

Three Term Backpropagation was proposed in 2003 by Zweiri, and has 

outperformed standard Two Term Backpropagation. However, further studies on 

Three Term Backpropagation in 2007 indicated that the network only surpassed 

standard BP for small scale datasets (below 100 instances) but not for medium and 

large scale datasets (above 100 instances). It has also been observed that by using 

Mean Square Error (MSE) as a cost function in Three Term Backpropagation 

network, has some drawbacks such as incorrect saturation and tend to trap in local 

minima, resulting in slow convergence and poor performance. In this study, 

substantial experiments on implementing various cost functions on Three Term BP 

are executed to probe the effectiveness of this network. The performance is measured 

in terms of convergence time and accuracy. The costs functions involve in this study 

include Mean Square Error, Bernoulli function, Modified cost function and Improved 

cost function. These cost functions were introduced by previous researchers. The 

outcome indicates that MSE is not an ideal cost function to be used for Three Term 

BP. Besides that, the results have also illustrated that improve cost function’s 

converges faster, while modified cost function produces high accuracy in 

classification 
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ABSTRAK 

 

 

 

 

Algoritma rambatan balik dengan tiga terma telah diperkenalkan oleh Zweiri 

pada 2003, dan telah berjaya mengatasi prestasi rangkaian rambatan balik tradisi 

iaitu rangkaian rambatan balik dua terma. Walaubagaimanapun, kajian yang telah 

dilaksanakan pada 2007 telah mendapati bahawa rangkaian rambatan balik tiga terma 

hanya dapat mengatasi prestasi rangkaian rambatan balik tradisi pada data yang 

bersaiz kecil (kurang daripada 100 data) dan bukan pada data yang bersaiz sederhana 

atau besar(besar dari 100 data). Oleh yang demikian, boleh dinyatakan bahawa 

fungsi ralat piawai iaitu Ralat Min Kuasa Dua mempunyai beberapa kelemahan 

seperti penumpuan yang amat perlahan, sering terperangkap pada minima setempat 

dan prestasi yang kurang baik. Kajian ini menjalankan eksperimen yang 

komprehensif terhadap beberapa fungsi ralat bagi rangkaian rambatan balik tiga 

terma bagi mencari keberkesanan fungsi kos tersebut. Prestasi rangkaian diukur dari 

aspek kepantasan kadar penumpuan dan ketepatan pengelasan. Fungsi kos yang 

terlibat adalah Ralat Min Kuasa Dua, fungsi ralat ‘Bernoulli’, fungsi ralat yang telah 

‘diubahsuai’, dan fungsi ralat pembaikan. Hasil kajian mempamerkan bahawa fungsi 

Ralat Min Kuasa Dua tidak begitu sesuai untuk algoritma rambatan balik tiga terma. 

Hasil kajian juga telah memperlihatkan bahawa fungsi ralat pembaikan memberi 

kadar penumpuan yang pantas manakala fungsi ralat yang ‘diubahsuai’ memberikan 

kadar pengelasan yang lebih tepat. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Artificial Neural Network (ANN) is a model of reasoning based on the human 

brain. It consists of a number of simple highly interconnected processors known as 

neurons, which are analogous to the biological neural cells of the brain. These neurons 

are connected by a large number of weighted links (Ibrahim dan Al-shams, 1997). 

Learning is a fundamental and essential characteristic of ANN. It is capable of learning 

through the network experiences to improve their performance. When ANN is exposed 

to a sufficient number of samples, it can generalise well to other data that they have not 

yet encountered (Negnevitsky, 2004).  

 

 

Generally, ANN can be trained using backpropagation (BP) developed by 

Rumelhart, Hinton and Williams in 1986. Studies have shown that BP has been proven 

to be very successful in many diverse applications (Hauger, 2003). ANN training usually 

updates the weights iteratively using the negative gradient of a Mean Squared Error 

(MSE) function, multiplied by the slope of a sigmoid activation function. MSE is
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referred to the difference between desired and actual output values. The error signal is 

then backpropagated to the lower layers (Zweiri et al., 2003).  

 

 

Then an activation function will transform the input into its own value range 

accordingly. There are many activation functions available such as step, sign, linear and 

sigmoid. The most popular activation function is sigmoid function. The sigmoid function 

transforms the input, which can have any value between plus and minus infinity into 

reasonable value in the range between 0 and 1 (Hauger, 2003). BP network’s neuron 

uses this function to produce a standard outputs.  

 

 

The outputs will be compared with the targeted output and it will backpropagates 

to adjust the weights. There are two parameters used in controlling weight adjustment of 

standard backpropagation. These are learning rate (LR) and momentum factor (MF). 

Recently, a new term known as proportional factor is added to the formulation to speed-

up the weight adjusting process by Zweiri et al. (2003). This formulation is known as 

three term BP.  

 

 

 The derivative of the cost function is one of the factors in the equation of weight 

adjustment. This is important to determine the success of the application, to train the 

network with an error function that resembles the objective of the problem at hand 

(Falas and Stafilopatis, 1999). In most practical applications, MSE is the most 

commonly used cost function in BP network.  
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1.2 Problem Background 

 

 

Three Term Backpropagation was proposed by Zweiri et al. (2003). It involves 

Proportional Factor (PF) besides Learning Rate (LR) and Momentum Factor (MF) for 

error adjustment in the algorithm. According to Zweiri et al., it has outperformed 

standard Two Term Backpropagation with less complexity, low computational cost and 

easy tuning to suit a particular application. It is noted that the new algorithm archives 

efficiency while maintaining a similar computational complexity to the conventional BP 

algorithm. This is in contrast to other alternative BP algorithms, which requires complex 

and costly calculations at each iteration to archive faster rates on convergence. Moreover 

in contrast to the proposed algorithm, most standard acceleration techniques must be 

tuned to fit particular application. This new term also can be viewed as being analogous 

to the common three term proportional integral derivative (PID) algorithm used in 

feedback control. PID controller is a generic control loop feedback mechanism widely 

used in industrial control systems. However, further studies on Three Term 

Backpropagation by Shamsuddin, Darus and Saman (2007) indicated that the network 

only outperformed standard BP for small scale datasets (less then 100 instances) but not 

for medium and large scale datasets (more then 100 instances). 

 

 

Meanwhile, researches have identified proper cost function is being an important 

factor to improve the performance of Two Term BP in terms of convergence speed 

(Humpert, 1994; Neelakanta, 1996; Dhiantravan, 1996; Oh and Lee, 1999; Taji et al., 

1999; Shamsuddin et al., 2001; Jiang et al., 2003; Wang et al., 2004; Lv and Yi, 2005; 

Choi et al., 2005; Otair and Salameh, 2006; Zhang, 2007), in terms of higher accuracy 

(Telfer and Szu, 1994; Rimer and Martinez, 2006) and to overcome the problems of 

getting stuck into local minima (Telfer and Szu, 1994; Oh and Lee, 1999; Jiang et al., 

2003; Wang et al., 2004; Bi et al., 2004; Zhang et al., 2007). 
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It has been observed that, Mean Square Error cost function employed has 

drawbacks such as incorrect saturation and tend to trap in local minima, resulting in slow 

convergence and poor performance (Rimer and Martinez, 2006). Besides that, it gives 

more emphasis on reducing the larger errors as compared to smaller errors due to the 

squaring that takes place.  Also due to the summation of the errors for all input patterns, 

if a class is not well presented and happens to have small errors, it may be completely 

ignored by the learning algorithm (Falas and Stafylopatis, 1999). 

 

 

The need to improve Three Term BP is foreseen, where if a better cost function 

is applied in the Three Term it could perform better. This is due to the successfulness of 

researches that claims Two Term BP performed better with their novel cost functions 

instead of MSE (Wang et al., 2004; Lv and Yi, 2005; Choi et al., 2005; Otair and 

Salameh, 2006; Zhang, 2007; Rimer and Martinez, 2006) 

 

 

 

 

1.3 Problem Statement 

 

 

In Three Term Backpropagation, MSE is employed as its cost function. It has 

been observed that, MSE cost function employed has drawbacks resulting in slow 

convergence and poor performance. Falas and Stafilopatis (1999) studied on impact of 

cost function in neural network classifier. Their result showed that a cost function other 

than the usual mean square gives a better performance, both in terms of the number of 

epochs needed for training, as well as the obtained generalization ability of the trained 

network. 
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Thus, in this study Mean Square Error, Bernoulli Cost Function of Chow et al. 

(1994), Modified Cost Function of Shamsuddin et al. (2001) and Improved Cost 

Function of Zhang et al.  (2007) are exploited in Three Term BP to probe the 

convergence time and accuracy. These cost function were selected because of the 

simplicity of the formulation that helps to incorporate easily into the Three Term BP. 

Besides that those cost functions has been tested on various classification problems and 

proven to be performed well in the Two Term BP. The classification domain was 

selected or this study since BP is successful in this domain.  

 

Subsequently, the hypothesis of this study can be stated as: 

 

Three Term BP would yield faster convergence speed and better classification accuracy 

with cost functions other then MSE.  

 

 

 

 

1.4 Project Aim 

 

 

The aim of this project is to study the effectiveness of exploiting novel cost 

functions introduced by researches in past years to improve the Two Term BP to be 

applied in Three Term BP to increase the convergence speed and to produce high 

accuracy. 
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1.5 Objectives 

 

 

In order to accomplish the hypothesis of the study, few objectives have been identified. 

 

1. To study the cost functions of previous researches especially Mean Square Error 

(MSE) cost function, Bernoulli (BL) cost function, Modified (MM) cost function 

and Improved (IC) cost function.  

 

2. To conduct experimental comparisons of MSE cost function, BL cost function, 

MM cost function and IC cost function in Three Term BP for classification 

problems. 

 

 

 

 

1.6 Project Scope 

 

 

The scopes of this project are defined as follows: 

 

I. Datasets that will be employed are Balloon with 16 instances, Cancer with 

500 instances, Diabetes with 768 instances and Pendigits with 1000 instances. 

 

II. Three Term BP with the following cost functions are used in this study: 

 

a. Three Term BP with MSE cost function 

b. Three Term BP with BL cost function of Chow et al. (1994) 

c. Three Term BP with MM cost function of Shamsuddin et al. (2001) 

d. Three Term BP with IC cost function of Zhang et al. (2007) 
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III. Develop Three Term BP with MSE cost function, Three Term BP with BL 

cost function, Three Term BP with MM cost function and Three Term BP 

with IC cost function using Microsoft Visual C++ 6.0. 

 

IV. Experiments will be conducted for Three Term BP only. Two Term BP will 

not be tested. 

 

V. The network architecture is three layers consist of one input layer, one hidden 

layer and one output layer to standardize the comparison criteria. 

 

VI. Experimental setting with ‘K+10 or K+100 Increment Rule’ for the number 

of epochs. 

 

 

 

 

1.7 Significance of the Project 

 

 

This project studied the performance of Three Term BP with MSE cost function, 

Three Term BP with BL cost function, Three Term BP with MM cost function and 

Three Term BP with IC cost function. The outcomes of this study will contribute to 

verify the performance of those cost functions for Three Term BP. Furthermore, this 

study will spark future research in Three Term BP algorithm. 
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1.8 Organization of Report 

 

 

This report consists of five chapters. The chapter 1 presents introduction to 

project, problem background, objective, scope and significant of this study. Chapter 2 

reviews the ANN, Two Term BP, Three Term BP, Research trends of BP Learning, 

Research trends of cost function in BP Network, MSE cost function, BL cost function, 

MM cost function and IC cost function and also importance of cost functions. Chapter 3 

discusses on the methodology used in this study. It also explains details of datasets being 

used and network architectures. Chapter 4 is the experimental result study. Chapter 5 is 

the conclusion and suggestion for future work. 
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