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Abstract: Flood related disasters continue to threaten mankind despite preventative efforts in tech-
nological advancement. Since 1954, the Soil Conservation Services (SCS) Curve Number (CN0.2)
rainfall-runoff model has been widely used but reportedly produced inconsistent results in field
studies worldwide. As such, this article presents methodology to reassess the validity of the model
and perform model calibration with inferential statistics. A closed form equation was solved to
narrow previous research gap with a derived 3D runoff difference model for type II error assessment.
Under this study, the SCS runoff model is statistically insignificant (alpha = 0.01) without calibration.
Curve Number CN0.2 = 72.58 for Peninsula Malaysia with a 99% confidence interval range of 67
to 76. Within these CN0.2 areas, SCS model underpredicts runoff amounts when the rainfall depth
of a storm is < 70 mm. Its overprediction tendency worsens in cases involving larger storm events.
For areas of 1 km2, it underpredicted runoff amount the most (2.4 million liters) at CN0.2 = 67 and
the rainfall depth of 55 mm while it nearly overpredicted runoff amount by 25 million liters when
the storm depth reached 430 mm in Peninsula Malaysia. The SCS model must be validated with
rainfall-runoff datasets prior to its adoption for runoff prediction in any part of the world. SCS
practitioners are encouraged to adopt the general formulae from this article to derive assessment
models and equations for their studies.

Keywords: rainfall-runoff model; curve number; inferential statistics; 3D runoff difference model;
model calibration

1. Introduction

Nearly 8.5 million casualties attributed to flood related disasters were reported be-
tween 1990 and 2020 all over the world, which is equivalent to one death every seven
minutes. In the recent six decades, about 10,000 cases were reported with 1.3 million
deaths and at least $3.3 trillion of financial losses. This financial loss is estimated to be an
equivalent rate of almost USD$1800/s [1]. Floods are not only a nuisance to people but also
impede the financial well-being, economic development, and natural and cultural heritage
preservation efforts of a country. The impact is more profound amidst the COVID-19
pandemic. Uncertainties regarding different scenarios surrounding climate change also
require us to safeguard agricultural production and manage water resources wisely to
ensure sustainable development for the future. As such, there is an imminent need for
hydrologists and modelers to reassess the rainfall-runoff model and improve the modelling
approach for better applications in flood prediction.

In order to comply with the federal flood control program in 1954, the United States
Department of Agriculture (USDA), Soil Conservation Services (SCS) developed a Curve
Number (CN) runoff estimation procedure to implement across the nation. The hydrologic
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methods which were originally developed to address specific situations were adopted
immediately without professional review and critics [2–5]. The work became the basic CN
rainfall-runoff model:

Q =
(P− Ia)

2

P− Ia + S
(1)

Q = Amount of runoff depth (mm)
P = Depth of rainfall (mm)
S = Watershed maximum water retention potential (mm)
Ia = Rainfall initial abstraction amount (mm)

SCS also hypothesized that Ia = λS = 0.2S where λ is the initial abstraction ratio
coefficient and fixed at λ = 0.2 as a constant. This equation was tenuously justified with daily
rainfall and runoff data. The only official documentation source is the NRCS’s National
Engineering Handbook, Section 4 (NEH-4) [5]. Its substitution simplifies Equation (1) into
the existing SCS CN model as:

Q =
(P− 0.2S)2

P + 0.8S
(2)

if P < 0.2S, Q = 0.
The SCS CN methodology has been widely accepted since its inception in 1954. It has

been incorporated in various types of software, adopted by many government agencies in
design and even appears in every hydrology textbook. However, studies around the world
from recent decades reported that Equation (2) inconsistently under and over-predicted
runoff results. Curve Number (CN) selection from the SCS handbook for a watershed
runoff prediction modelling were reported as subjective and often could not represent
other watershed with similar land cover [2–4].

Despite that, many recent studies started to develop and propose extended applica-
tions with Equation (2). Some researchers even proposed a global gridded CN concept
for runoff modelling [6,7] while others incorporated land-use information in their studies
and the GIS modelling technique [8–12]. Contrarily, some reported that the usage of CN in
representing a watershed is often contradictory in describing related land cover areas [13].
Some researchers still reported difficulty to calibrate the existing model [14,15] while other
studies started to incorporate soil moisture and saturation-excess concepts in their mod-
elling approach [16–19]. US researchers [2,20] were first to conduct large scale studies on
the SCS CN model by analyzing more than half a million rainfall events across 24 states
in the USA and reported an optimum λ = 0.05 to achieve better runoff modelling results
than Equation (2) in USA. To date, SCS practitioners do not have a systematic approach to
assess the SCS CN model framework and analyze the impact on runoff prediction when
the model is not calibrated.

2. Data and Methods

The SCS CN model (Equation (2)) has been adopted in Malaysia for runoff prediction
studies and design. However, no attempt has been made to validate previous study
findings by performing hydrological characteristics calibration on the SCS CN model and
to derive the λ value with inferential statistics for the entirety of Peninsula Malaysia. The
impact of not calibrating the SCS CN model and the blind adoption of Equation (2) for
runoff predictions in Peninsula Malaysia are unknown. Therefore, this study extended
study results from US researchers [2,20] to develop assessment methods of the SCS CN
model for SCS practitioners.

Slightly larger than England (130,395 km2), the land area of Peninsula Malaysia is
132,265 km2. It shares a land border with Thailand to the north and Singapore across the
strait of Johor to its south. The formation of the Malaysian Department of Irrigation and
Drainage (DID) in 1932 assumed all works in connection with drainage and irrigation from
the Public Works Department. Flood mitigation and hydrology was made an additional
responsibility of DID from 1972 onwards after the declaration of a national disaster due to
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severe floods in 1971. From 1986, coastal engineering has become an added function of the
DID while river management became its official duty from 1990.

The Department has moved from the Ministry of Agriculture and Agro-based Industry
(MOA) to Ministry of Natural Resource and Environment (NRE) on 27 March 2004. Over the
years, DID took up new and expanded responsibilities. Today, the DID’s duties encompass:
River Basin Management and Coastal Zone, Water Resources Management and Hydrology,
Flood Management and Eco-friendly Drainage projects in Malaysia.

The rainfall-runoff dataset from the DID, Hydrological Procedure no. 27 (DID HP 27)
was used in this study. It is the latest official dataset published by this federal government
agency that consists of 227 different storm events recorded between October 1970 to
December 2000 from 41 different rural watersheds (Figure 1) across Peninsula Malaysia.
The smallest storm event had a rainfall depth of 19 mm with a measurable runoff depth
of 4.8 mm while the largest recorded storm event was 420 mm with 258 mm in runoff
depth [21].
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Objectives of this study are:

1. To assess the 1954 SCS assumption of: Ia = 0.2S in Q = (P−Ia)
2

P−Ia+S and determine its
validity for runoff prediction use in Peninsula Malaysia according to the DID HP
27 dataset.

2. To solve the closed form mathematical equation of the “critical rainfall amount” and
develop a statistically significant SCS CN model calibration methodology.

3. To assess the impact of not calibrating the existing SCS CN runoff predictive model
(Equation (2)) for runoff prediction in Peninsula Malaysia with the official rainfall-
runoff dataset from DID HP 27 [21].
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2.1. The Reverse Derivation of λ and S Value

In hydrology, the difference between Ia and P is the effective rainfall depth (Pe) to
initiate Q thus Pe = P − Ia. Substitute this relationship into SCS CN model (Equation (1)),
it can be re-arranged to calculate the two key parameters of S and λ values according to
the respective P-Q data pair [2,5,22]. Equation (1) can then be expressed as below after the
substitution of Pe = P − Ia:

Q =
(Pe)

2

Pe + S
(3)

rearrange Equation (3) to isolate S as:

S =
(Pe)

2

Q
− Pe (4)

Equation (4) is subjected to the constraint where S must be a positive integer. SCS also
proposed the correlation of Ia = λ S thus λ can be calculated once Ia and S are known by
rearranging the equation as:

λ =
Ia

S
(5)

Equation (5) is subjected to the constraint defined by SCS that S ≥ Ia [5], and therefore
the range of λ must be (0, 1). The upper limit for λ value is equal to 1 (where Ia = S) which
is hardly realized in the real world as it implies the condition of a thick canopy interception.
The infiltration during early parts of the storm and surface depression storage is equal to
the maximum potential retention value (S) of a watershed [5].

Past studies reported different λ values in their work for model calibration. However,
the statistical assurance of those new values was hardly mentioned [4]. Latest studies in
this area started to report that the modelling approach with multiple CN and Ia values can
reflect the heterogeneity of a watershed and the SCS CN model must be calibrated according
to local rainfall-runoff data to improve the runoff prediction accuracy. Equation (2) may no
longer be valid for runoff prediction modelling [23–25]. SCS defined Ia = λS, the existence
of multiple Ia values implied that multiple λ and S values can be found within a watershed.
These latest study results [24,25] escalate the SCS CN model calibration difficulty to another
level as SCS practitioners must identify a best collective representative Ia value to calibrate
Equation (1). Therefore, this study proposed to use non-parametric inferential statistics as
the guide to make a statistically significant selection of the two key parameters (S and λ

values) to calibrate the fundamental SCS CN runoff framework (Equation (1)).
Under the SCS CN hydrological framework, the initial abstraction (Ia) amount must

be less than the P value because Ia must first be fulfilled to initiate runoff. Therefore, a
reasonable collective representative Ia value for runoff modelling must be less than the
minimum P value from the entire P-Q dataset [5]. Given the P-Q dataset, an initial “Ia”
value which was less than the minimum P value from the dataset was chosen as the first
iterative value in order to calculate the corresponding S and λ values for each P-Q data
pair according to Equations (4) and (5). In the event where either constraint in Equation (4)
or (5) were to be violated, the “collective representative Ia” value must be reduced until
every calculated λ and S values abide to their constraints for each P-Q data pair according
to the SCS CN model framework [5].

The alpha value was set at a stringent level of 0.01 in this study to reduce the type
I error in null assessment so that the SCS CN model will not be unnecessarily calibrated
due to wrong null rejection under objective 1. It will also justify the urgent SCS CN model
calibration need to the DID for runoff prediction work in Malaysia, review any past studies
and projects that used Equation (2) when the null hypothesis is rejected. This study is only
willing to accept 1% error chance because these DID processes are too costly to initiate
by mistake.

According to the U.S. Geological Survey (USGS) Statistical methods in water resources
guide, the minimum required sample size is 100 to be considered as a large dataset for
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water resources related study at the 0.01 alpha level [26]. As such, the DID HP 27 dataset
will be sufficient for this study. Given the 227 rainfall-runoff (P-Q) data pairs from DID
HP 27, corresponding λ and S values can be calculated. These 227 λ and S values will be
bootstrapped independently with the Bias Corrected and Accelerated (BCa) procedure
by using the IBM Predictive Analytics software (PASW) version 18.0 (commonly known
as SPSS) [27]. The method neither assumes data normality nor has limitation to certain
data distribution and performs random sampling with replacement in SPSS [27,28]. In
this study, the Mersenne Twister seed number for random sampling generation was set at
2 million (by default) and 10 million to conduct 2000, 5000, and 10,000 sampling for the
calculated λ and S dataset.

Consequently, the BCa option in SPSS was used to generate a sampling distribution
and 99% confidence interval (CI) to optimize the parameter of interest such as S and λ.
Additionally, it provides standard error statistics and CI for the median value, which are
unavailable under most parametric tests in SPSS [27]. BCa procedure was chosen by this
study for its ability to correct for skewness and bias in the bootstrap distribution [29]. When
the dataset has a high positive skewness, BCa can also correct the issue that the bootstrap
CI range might be too small [26]. BCa 99% CI has wider range than the 95% CI. Therefore,
this study used BCa option in SPSS to generate 99% CI (instead of 95% CI) for both λ and S
dataset so that the assessment of the initial claim from SCS that λ = 0.2 can be inferred from
the wider BCa CI.

2.2. Supervised Numerical Optimization Analyses

Past researchers faced the dilemma of choosing between the mean and median of a
dataset [2,30]. To address this issue, this study utilized an algorithm of numerical analysis
guided by inferential statistics for decision making.

λ and S were optimized using Equation (1) with a supervised numerical analyses
approach. To prevent the optimization algorithm from focusing on residual sum of squares
(RSS) minimization only, the overall model bias (BIAS) will be minimized near to the
value of zero concurrently during the parameter optimization process. This acts as a
check with the BCa technique to ensure that the optimized λ and S value are not biased
towards the dataset during the SCS model calibration. In the event of skewed data nature,
the supervised numerical optimization would be conducted to search for an optimum
value within the BCa median’s confidence interval limits of the derived λ and S dataset,
respectively. The optimized S value and its confidence interval range will lead to the
calculation of CN value to represent the entire DID HP 27 dataset in Peninsula Malaysia
(see Section 3.2).

2.3. Null Hypotheses Assessments with Inferential Statistics

A Null hypothesis was set up to assess the 1954 SCS proposal with inferential statistics
as below:

H0: Ia = λS where λ must be 0.2 in Equation (1) (as proposed by SCS) to model runoff
conditions according to the DID HP 27 dataset in Peninsula Malaysia.

H0 assesses the validity of Equation (2) for this study as pertained to the DID HP
27 dataset. The assessment of H0 will be inferred from the BCa confidence interval of
λ [28]. The rejection of H0 indicates that the SCS CN model (Equation (2)) is invalid to
model the dataset of this study. It requires the acceptance of H0 to adopt Equation (2)
for rainfall-runoff modelling while the rejection of H0 will pave a way to derive a new λ

value for the DID HP 27 dataset. The optimized λ and S values will be used to formulate
a new calibrated runoff prediction model for Peninsula Malaysia. SCS practitioners are
encouraged to validate the existing SCS CN model (Equation (2)) prior to runoff modelling
adoption.



Mathematics 2021, 9, 812 6 of 24

2.4. The S General Formula

Equation (1) was re-arranged into a general form of Sλ = f (P, Q, λ) in a previous
study [4]. When λ = 0.2, the corresponding S0.2 value leads to the derivation of conventional
CN values in use by SCS practitioners. Any other λ values will result in Sλ leading to
the derivation of CNλ values which are different from the SCS tabulated CN values. The
general Sλ formula (see [4] for derivation steps) used by this study is:

Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ− P2 +
[
P− (λ−1)Q

2λ

]2

λ
(6)

Sλ = Total abstraction amount of any λ value (mm).

2.5. Correlation Between Sλ and S0.2

According to previous researchers, when the optimum λ value is different from the
conventional value where λ = 0.2, a correlation between the newfound λ value and 0.2
must be used in order to calculate the curve number again [2,3,20]. US researchers termed
the batch of curve numbers derived from any λ value other than λ = 0.2 as “conjugate
curve numbers” denoted by CNλ which are different from the SCS tabulated curve num-
bers [2–4,20]. Given the P-Q dataset, Sλ and S0.2 can be calculated using Equation (6).
A correlation between the Sλ and S0.2 dataset must be established before the calculation
of conventional CN value (see Section 3.2). SCS practitioners must use the correlation
equation between the Sλ and S0.2 to calculate the conventional CN value to avoid the
mistake of using conjugate curve number in their study.

2.6. The 3D Runoff Difference Model

Using P-Q datasets from multiple watersheds or from multiple locations within a
watershed, a 3D runoff difference model can be created as a collective visual representation
of multiple rainfall depths to compare with different CN0.2 scenarios. If Equation (2) fails
the Null assessment, this 3D model can reflect the runoff difference between it and the new
calibrated runoff model for further analyses. The model will be a guide to visualize the
runoff under and over prediction zones between two models. In 1954, SCS correlated S
and CN. The SI unit version of the formula is:

S =
25, 400

CN
− 254 (7)

Equation (7) was derived from the SCS assumption where λ = 0.2, and therefore it will
be more appropriate to denote CN as CN0.2 and S with S0.2. Substituting Equation (7) into
Equation (2), the SCS model can be simplified to become: Q0.2 = f (P, CN0.2) and represented
in SI form of:

Q0.2 =

[
P− 50.8

(
100

CN0.2
− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] (8)

Q0.2 = Runoff depth (mm) of λ = 0.2
where P > 0.2 S0.2 else Q0.2 = 0.

The general form of Equation (1) after the substitution of Ia = λS for any λ value
becomes:

Qλ =
(P− λSλ)

2

P− λSλ + Sλ
(9)

where P > λSλ, else Qλ = 0. As such, the runoff difference between SCS model (uncalibrated)
and the new calibrated runoff model (with new λ) can be quantified as the difference
between Equations (8) and (9) as:
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Qv =

[
P− 50.8

(
100

CN0.2
− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] − (P− λSλ)

2

P− λSλ + Sλ
(10)

Qv = Runoff depth prediction difference between 2 runoff models (mm)
CN0.2 = the conventional curve number

As Equation (2) was widely adopted in many countries, it is important to assess the
runoff prediction difference with Equation (10). It is a general equation that can be used
by SCS practitioners to determine the impact of not calibrating Equation (2) for runoff
predictions under their study.

In Equation (10), Qv will be positive when the conventional SCS runoff model (Equa-
tion (2)) over-predicted runoff when compared to the calibrated new runoff equation and
vice versa. If the newly derived λ < 0.2, Equation (10) is subject to the constraint where
P > λS. When the new derived λ > 0.2, Equation (10) will abide to the constraint of P >
0.2S0.2, else Qv = 0 because there is no runoff difference as Ia of the lower λ value model
is yet to be fulfilled to initiate the runoff process [2,5] and produce a runoff difference
between two runoff models. All in all, the smaller λ runoff model will initiate runoff ahead
of the larger λ runoff model [5].

2.7. Outer Boundary Equation

Equation (2) is subject to a constraint where P > Ia or P > λSλ, else Qλ = 0. The 3D
runoff difference model captures the runoff difference of two different runoff models. When
the Ia constraint of the lower λ value model has been fulfilled, runoff will be initiated. Base
on this concept, the Ia constraint of the lower λ value model becomes the outer boundary
of the 3D runoff difference model which also represents the runoff indifference boundary
with the following general equation:

P = λSλ (11)

2.8. Inner Boundary Equation

The second boundary is the “Inner Boundary” of the 3D runoff difference model. This
boundary separates the runoff under-prediction zone from the over-prediction zone of
the SCS runoff model. The runoff difference is equal to zero at the crossover boundary,
which is also known as the runoff indifference boundary. Therefore, when Qv = 0 (runoff
indifference) in Equation (10), the form can be re-expressed as:[

P− 50.8
(

100
CN0.2

− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] =

(P− λSλ)
2

P− λSλ + Sλ
(12)

Equations (11) and (12) are also general equations that can be used by SCS practitioners
to analyze the 3D runoff difference model (created with Equation (10)) in their study.

2.9. Models Comparison

Runoff models are compared and benchmarked for their model predictive accuracy in
this paper. Model’s residual sum of squares (RSS), predictive model BIAS prediction and
model efficiency index (E), also known as Nash–Sutcliffe index, were calculated with the
following formulae to draw further comparison between them.

RSS =
n

∑
i=1

(
Qpredicted −Qobserved

)2

(13)
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E = 1− RSS
n
∑

i=1

(
Qpredicted −Qmean

)2 (14)

BIAS =

n
∑

i=1

(
Qpredicted −Qobserved

)
n

(15)

n = Total number of data pairs.
Lower RSS implies a better model. Index E lies on a spectrum of minus 1.0 to 1.0

whereby index value = 1.0 shows an ideal conjectured model. In the instance where E < 0, it
is inferior to utilizing an average to predict the dataset. BIAS is the overall model prediction
error indicator. Zero BIAS value indicates an error free model prediction while negative
value indicates the overall predictive model’s under-prediction tendency and vice versa.

2.10. Asymptotic Curve Number Fitting

Other than numerical optimization technique, many researchers [31–35] used asymp-
totic CN fitting method (AFM) to determine the best representative CN for the watershed
of interest with P-Q dataset (λ value remains as 0.20 under this method). Therefore, AFM
will be used to benchmark against the proposed method in this article. Under AFM, CN
cannot be determined for the Complacent behavior watershed, but Standard behavior
watershed follows the following formula [33]:

CN(P) = CN∞ + (100−CN∞)e(−
P
k ) (16)

CN(P) = Fitted CN value of a specific rainfall depth
CN∞ = CN of a watershed of interest
K = Fitting parameter

Violent behavior watershed follows the following formula [33]:

CN(P) = CN∞

[
1− e−k(P−Pth)

]
(17)

Pth = Threshold Rainfall depth (mm).

2.11. Critical Rainfall Amount (Pcrit)

The concept of Pcrit was initially suggested by US researchers [2,20,22] which can only
be obtained through numerical analysis solving technique or by trial and error procedure.
In their work, optimum λ was reported as 0.05 and the Pcrit points were identified through
the intersection of conjugate CN0.05 and CN0.2 curve on the graph in their study.

The concept of Pcrit was built upon the runoff indifference between 2 runoff models.
When Qv = 0 (runoff indifference between two runoff models), Equation (10) becomes
Equation (12). As such, this study introduces runoff difference curves which was created
with numerical analysis technique as the visual presentation of Equation (12). Runoff
difference curves can be plotted for specific CN0.2 classes across multiple rainfall depth
scenarios. Unlike previous research work, it combined two curves into a single curve and
identify Pcrit at where the curve crosses the x-axis.

2.12. The Closed Form Equation of Critical Rainfall Amount (Pcrit)

Through algebraic manipulation, this study successfully rearranged Equation (10) and
solved the general closed-form equation of Pcrit in terms of CN0.2 when Qv = 0. The break-
through has also proven to be able to solve for Pcrit value precisely of any pairing runoff
models and replace the trial and error procedure used by previous researchers [2,20,22].
SCS practitioners can derive the Pcrit equation for their study with proposed method in
this article (see Section 3.10).
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2.13. Critical Curve Number (CNcrit)

With a similar concept (based upon Equation (12)) as the critical rainfall amount (Pcrit),
this study also introduces “critical curve number(s)” (CNcrit) to supplement the use of
Pcrit. Under a specific rainfall scenario, critical curve number value(s) can also be identified
from the points where Qv = 0 between 2 runoff models. Unlike the success of the Pcrit
closed-form equation derivation, the effort to realize the closed-form equation of CNcrit
in term of P is still unfruitful to date. Therefore, the numerical analysis technique was
applied to estimate CNcrit value(s) with visual aid from the runoff difference curves graph.
Runoff difference curves methodology as Section 3.9 covered can be adopted to show that
Equation (2) or Equation (8) will under-predict runoff amount in any curve number areas
below the critical curve number value and vice versa.

2.14. Soft Computing and Data Mining of the 3D Model

In general, Equation (10) represents the runoff prediction errors of Equation (2) under
multiple P and CN0.2 scenarios but it is difficult to visualize the quantified effect by looking
at Equation (10) and solve for the global maxima and minima in order to represent the
worst under and over runoff prediction amounts between two runoff models.

Based on the rainfall depth range of the dataset [21], a numerical table can be compiled
with Equation (10) through the substitution of different P, CN0.2 scenarios and the λ

value to quantify runoff depth prediction difference between two runoff models in a
table. A 3D model can also be constructed with the collective information from the table
(Section 3.7). With the visual aid of a 3D runoff difference model, it is possible to extract
all minimum and maximum runoff prediction difference amount and represent them
with statistically significant equations. The minimum under-prediction difference amount
equation represents the worst under-design case incurred by Equation (2) and vice versa.

3. Results and Discussion
3.1. The Reverse Derivation of Optimum λ and S for Peninsula Malaysia

In all, 227 λ and S values were calculated according to corresponding rainfall-runoff (P-
Q) data pairs. The calculated λ dataset was checked for normality in SPSS with Kolmogorov–
Smirnov and Shapiro–Wilk test statistics, both tests concluded the λ dataset to be non-
normal (p < 0.001). Nearly 95% (214 out of the 227) storm events calculated λ value below
0.2 while none was equal to 0.2 as proposed by SCS.

According to Section 2.1, as defined by the SCS [5], the “collective representative Ia”
was reduced to 5.9 mm to fulfil both constraints of Equations (4) and (5) for the entire
dataset of DID HP 27 [21]. 227 calculated λ and S values were independently used for 2000,
5000, and 10,000 random samplings prior to CI generations and cross checking (This study
found that the CI upper and lower limits only differ at the fourth decimal places with 2000,
5000, and 10,000 random samplings while there were no difference between the use of
2 million (by default) and 10 million Mersenne Twister seed numbers for random sampling
generation) in SPSS. The inferential statistics of the derived λ and S values are tabulated in
Tables 1 and 2.

Table 1. Inferential Statistics of the derived λ dataset from Malaysian Department of Irrigation and
Drainage (DID) Hydrological Procedure (HP) 27.

λ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Interval

Lower Upper

Skewness 5.125
Kurtosis 36.456

Mean 0.071 −0.00006 0.006 0.056 0.089
Median 0.042 0.00023 0.003 0.034 0.051
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From Table 1, neither the mean nor the median BCa λ’s 99% CI include the λ value of
0.2 (In comparison, the BCa 95% mean and the median CI for λ span across smaller range
(0.036, 0.084)). Therefore, H0 can be rejected at alpha = 0.01 level. As such, Equation (2) is
statistically insignificant (not even significant at alpha = 0.05) and cannot be used to predict
runoff conditions in this study. λ dataset is skewed (skewness of 5.125 in Table 1) thus
the search of the optimum collective representative λ value via numerical optimization
technique focusses on median λ’s confidence interval [0.034, 0.051].

On the other hand, data distribution of the S dataset is somewhat skewed with a
skewness of 1.624 (Table 2). The definition of skewness is non-uniform, some guidelines
suggested skewness value less than 3.0 to be considered as normal while some set a more
stringent limit at 1.0. To avoid the ambiguity of skewness determination, the search of the
optimum S value was widened to include the lowest and the highest confidence interval
limit of both mean and median values (118.125, 196.332) on S [2,30].

Table 2. Inferential Statistics of derived S dataset from DID HP 27.

S Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Interval

Lower Upper

Skewness 1.624
Kurtosis 4.392

Mean 172.297 0.002 8.649 150.952 196.332
Median 141.54 −0.053 10.005 118.125 170.170

The optimum λ value was recognized as 0.051 (rounded) while 150.46 mm was the
optimum S value in formulating the best runoff predictive model (based on Equation (1))
according to the entire dataset of DID HP 27 with an overall predictive model’s BIAS near
to zero. The collective representation of the Ia for the entire dataset was found from the
product of the optimum λ and S and therefore, the best collective representative value of Ia
to model the entire dataset in Peninsula Malaysia is 8.3 mm from this study.

As mentioned in Section 2.1 and 2.2, BCa technique produced confidence intervals
(Tables 1 and 2) for the optimization of λ and S value to calibrate the SCS CN model. It also
generated a range of λ and S value to enable the calculation of multiple Ia and CN values
which is in line with the latest research development in this area [23–25]. Other than the
best collective representative Ia value, SCS practitioners who use the proposed method in
this article have an option to compare other possible Ia values with other research results
in future.

3.2. The Correlation between Sλ and S0.2 for Peninsula Malaysia

The derivation of Sλ formula (Equation (6)) proved mathematically that even with
the same P-Q dataset, as λ varies, the corresponding total abstraction amount (S) varies
as well and therefore, the corresponding CN value will change also. As such, it is more
appropriate to re-represent Equation (7) in general form as:

CNλ =
25, 400

Sλ + 254
(18)

CNλ = Curve number of any λ value (dimensionless)
Sλ = Total abstraction amount of any λ value (mm)

Given the P-Q dataset and λ value, the corresponding CNλ can be derived from Equa-
tion (18). When λ = 0.2, its corresponding S0.2 value gives rise to deriving the conventional
curve number compiled by SCS. To differentiate the conventional SCS CN, the notation of
“CN0.2” is used in the remaining of this paper. When λ 6= 0.2, its corresponding Sλ value
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derives “Conjugate Curve Number” (CNλ) [2,20,22]. As the optimum λ value = 0.051, the
correlation between S0.051 and S0.2 was identified with SPSS for this study as:

S0.051 = 1.176S0.2
1.063 (19)

S0.051 = Total abstraction amount (mm) of λ = 0.051
S0.2= Total abstraction amount (mm) of λ = 0.2

Equation (19) has a R2-adj of 0.946, standard error of 0.15 and p < 0.001. Equation (19)
is also the key to convert S0.051 back to its equivalent S0.2 value for the calculation of
CN0.2 for SCS practitioners. The optimum S0.051 is 150.46 mm (alpha = 0.01) from the
range of 118.125 to 196.332 (Table 2) in Section 3.1. The equivalent S0.2 value of S0.051 =
150.46 mm is 95.97 mm (calculated from Equation (19)). By substituting S0.2 = 95.97 mm
into Equation (18), CN0.2 = 72.58; thus, new λ of 0.051 derives an equivalent CN0.2 value of
72.58 to model the entire DID HP 27 dataset. The 99% confidence interval of S0.051 ranges
from 118.125 to 196.332, those values can also be used to calculate its equivalent upper and
lower CN0.2 limits in the same manner through Equation (18) and therefore, for the DID
HP 27 dataset [21], the best collective CN0.2 = 72.58 (99% CI ranges from 67 to 76) for runoff
predictions in Peninsula Malaysia.

3.3. Conjugate Curve Numbers (CNλ) for Peninsula Malaysia

Given the P-Q data pairs from DID HP 27, conjugate curve number values (CNλ) of
each storm event can be calculated with aforementioned equations in the following steps:

Since the optimum λ value obtained was 0.051, Equation (18) becomes:

CN0.051 =
25, 400

S0.051 + 254

Substitute Equation (19) into Equation (18) will yield:

CN0.051 =
25, 400

(1.176S0.21.063) + 254
(20)

where S0.2 values can be calculated using Equation (6) (the S general formula) when P-Q
data pairs are given. CN0.051 is the conjugate curve number of CN0.2. Equation (20) proves
that conjugate curve number (CNλ) is not the same as the conventional curve number
CN0.2 which was derived using Equation (7). Thus, it is inappropriate to use any conjugate
curve number (CNλ) with Equation (2) in any rainfall-runoff modelling work.

3.4. The 3D Runoff Difference Model for Peninsula Malaysia

According to the discussions from Sections 2.4 and 2.5, the S amount is specific to its
corresponding λ value. The optimum λ value = 0.051 to model runoff conditions for the
DID HP 27 dataset thus by substituting λ with 0.051 into Equation (9) yields a calibrated
rainfall-runoff predictive model on Equation (1) in the form of:

Q0.051 =
(P− 0.051S0.051)

2

P− 0.051S0.051 + S0.051

The substitution of Equations (19) and (7) further simplifies it as:

Q0.051 =

[
P− 21.606

(
100

CN0.2
− 1
)1.063

]2

[
P + 402.547

(
100

CN0.2
− 1
)1.063

] (21)

Equation (21) re-expressed the runoff model in term of P and CN0.2 and subjects to
the constraint.
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P > 21.606
(

100
CN0.2

− 1
)1.063

else Qv = 0 on the 3D model
CN0.2 = Conventional SCS tabulated curve number
Q0.051 = Runoff depth (mm) of λ = 0.051
Equation (8) is the re-expression of Equation (2) in term of P and CN0.2.

Q0.2 =

[
P− 50.8

(
100

CN0.2
− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] (22)

It subjects to the constraint P > 50.8
(

100
CN0.2

− 1
)

else Qv = 0.
Equation (8) or Equation (2) represents the un-calibrated SCS CN model. The runoff

depth prediction differences between Equations (8) and (21) were collectively quantified
by Equation (22) of which the 3D runoff difference model (Section 3.7 and Figure 2) was
constructed with. Equation (22) also quantifies type II errors from Equation (2) (existing
SCS model) if it is not calibrated for runoff prediction in Peninsula Malaysia.

3.5. Outer Boundary Equation

As per Section 2.7, the calibrated new λ value (0.051) is less than 0.2; thus, its model’s
constraint can be adopted to represent the runoff indifference boundary where runoff
has not been initiated. Therefore, Equation (22) is also subject to the constraint, P > 0.051

S0.051 or P > 21.606
(

100
CN0.2

− 1
)1.063

else Qv = 0. Equation (19) can be substituted into 11 to
preserve the conventional curve number (CN0.2) through following the steps.
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Substitute λ with 0.051, Equations (7) and (19) into Equation (11) yields:

P = 21.606
(

100
CN0.2

− 1
)1.063

(23)

Equation (23) is the runoff indifference boundary equation between two runoff models.
It is otherwise recognized as the “Outer Boundary” equation of the 3D runoff difference
model (Figure 2a,b).

3.6. Inner Boundary Equation

When Qv = 0 in Equation (22), the form can be expressed as:

[
P− 50.8

(
100

CN0.2
− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] =

[
P− 21.606

(
100

CN0.2
− 1
)1.063

]2

[
P + 402.547

(
100

CN0.2
− 1
)1.063

] (24)

Equation (24) is also known as the “Inner Boundary” equation of the 3D runoff
difference model for Peninsula Malaysia that demarcates the runoff under-prediction and
over-prediction zones between two runoff models in this study.

3.7. The Construction of the 3D Runoff Difference Model

DID HP 27 dataset consist of 227 storm events ranging from 19 mm to 420 mm. In
order to analyze and quantify the runoff prediction depth difference between Equation (2)
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(or Equation (8)) and 21 under multiple rainfall and CN0.2 scenarios, rainfall depth (P)
ranging from 10 mm to 430 mm across different CN0.2 values (from 26 to 98) were entered
into Equation (22) to calculate the runoff depth prediction difference that can be found
in Figure 3. Those tabulated values are runoff prediction errors (or type II errors) from
Equation (2) which are in line with previous studies that reported more profound error
in forested watersheds represented by CN0.2 values < 60 [2,20,22] Similarly, for Peninsula
Malaysia, both runoff under and over prediction errors worsen when the value of CN0.2
reduces (Figure 3).
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Figure 3. Runoff differences generated from Equation (22) for various rainfall (P) and Curve Number (CN0.2) scenarios.
Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

Red zone cells in Figure 3 are where Equation (2) under-predicted runoff amount
against Equation (21). On the other hand, the white zone cells are where Equation (2)
over-predicted runoff amount. The empty cells on the upper left corner of the figure are
where Ia has not been fulfilled yet to initiate any runoff amount. Collectively, Figure 3 can
also be presented as a 3D model as seen in Figure 2a,b. Equations (23) and (24) represent
boundary lines as indicated on the 3D model, respectively. SCS practitioners can refer to
Figure 3 to perform runoff prediction correction on Equation (2).

For areas in Peninsula Malaysia with CN0.2 value from 67 to 76 (marked by the
dash line), the existing SCS model underpredicts runoff amount as indicated in red zone
when rainfall depth of a storm is < 70 or 85 mm. SCS model tends to overpredict runoff
amount after 85 mm and its overprediction tendency worsens toward larger storm events
as indicated in white zone. Without model calibration, the SCS model worst runoff un-
derprediction within these areas happens at CN0.2 = 67 area at rainfall depth of 55 mm,
the model underpredicted runoff amount by 2.4 million liters in 1 km2 area while it nearly
overpredicted runoff amount by 25 million liters when the storm depth reaches 430 mm in
Peninsula Malaysia. Blind adoption of the existing SCS CN model is likely to over-predict
runoff amount when the rainfall depth of a storm event is larger than 85 mm in Peninsula
Malaysia. As such, any past study or engineering projects based upon the return period
concept of rainfall amount below 70 mm might be under-designed.
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3.8. Soft Computing and Data Mining of the 3D Runoff Difference Model

Even though the 3D runoff difference model can be expressed using the closed form
Equation (22), it is not easy to obtain the minimum (global minima) or maximum (global
maxima) runoff depth difference equations. However, with the 3D runoff difference model
as a visual aid accompanied by soft computing techniques, the data mining of this vital
information becomes attainable.

The minimum and maximum runoff depth prediction errors across multiple P and
CN0.2 scenarios between the two runoff models can be extracted from Figure 3. The
statistically significant equations can then be determined using the SPSS to formulate the
worst under and over-estimated runoff prediction error equations from Equation (2) or
Equation (8) against Equation (21).

The data mining process extracts all the minimum and maximum runoff prediction
differences (bold numbers, highlighted in red and yellow color, respectively in Figure 4)
according to each rainfall depth scenarios (in row).
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Figure 4. Soft computing, data mining of minimum and maximum runoff depth difference of each rainfall class (in row).
Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

Two statistically significant and best correlation equations were identified through
SPSS regression modelling as:

Min Qv = 5.14 × 10−5 P2 − 0.052 P − 0.222 (25)

Max Qv = 5.14 × 10−5 P2 + 0.045 P − 0.734 (26)

where Min Qv represents worse under-predicted runoff scenarios while Max Qv repre-
sents the maximum over-predicted runoff scenarios. Equation (25) has an R2-adj of 0.999,
standard error of 0.037 and p < 0.001 while Equation (26) has an R2-adj of 0.999, standard
error of 0.191 and p < 0.001. Given a specific rainfall depth, the worst under-estimated and
over-estimated runoff prediction errors of Equation (2) or Equation (8) due to a specific
rainfall depth can be estimated by Equations (25) and (26), respectively.

It is also possible to employ soft computing technique to derive similar runoff predic-
tion error equations in term of curve number. From Figure 5, the minimum and maximum
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runoff prediction differences can be extracted as per their respective curve number (in
column) which induced the runoff difference (bold numbers, highlighted in red and yellow
color, respectively in Figure 5).

Two statistically significant and best correlation equations from SPSS regression mod-
elling results are:

Min Qv = 2.594 − (329.896/CN0.2) (27)

Max Qv = 2.2 × 10−4 CN0.2
3 − 0.061 CN0.2

2 + 4.77 CN0.2 − 86.519 (28)

where Min Qv, Max Qv and CN0.2 have been defined earlier. Equation (27) has an R2-adj
of 0.992, standard error of 0.242 and p < 0.001 while Equation (28) has an R2-adj of 0.999,
standard error of 0.255 and p < 0.001. Given a specific curve number, the worst under-
estimated and over-estimated runoff prediction errors of Equation (2) or Equation (8) due
to a specific CN0.2 area can be estimated with Equations (27) and (28), respectively.
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Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

The dash line on the 3D model in the valley of the red zone is described by Equa-
tions (25) and (27) while Equations (26) and (28) represent the dash line found on the
ridge of the 3D runoff difference model (see Figure 2a). SCS practitioners can adopt Equa-
tions (25)–(28) to estimate the worst-case runoff prediction errors of Equation (2) when
compared to the newly found λ (0.051) model in Peninsula Malaysia. On the other hand,
regional or watershed specific equations can also be established by SCS practitioners for
their study as proposed.

3.9. Runoff Difference Curves of the Critical Rainfall Amount

This study introduced runoff difference curves which were created with numerical
analysis technique to visually present Equation (22) and to identify Pcrit. Runoff difference
curves graph combines two runoff curves (of conjugate curve numbers) into a single runoff
difference curve to represent the concept of 2 previous studies [2,20,22] in another view.
The graph can be plotted for specific CN0.2 classes across multiple rainfall depth scenarios
to show Pcrit at where the curve crosses x-axis (Figure 6).
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Figure 6. Runoff difference curve graph of Peninsula Malaysia. The graph was created to identify
Pcrit point(s) of different CN0.2 classes. Pcrit is/are the point(s) where the runoff difference curve
crosses x-axis, marked by circle(s) with solid down arrow lines. The dotted down arrow line estimates
the rainfall depth of maximum “under-design” risk for CN0.2 = 46. Note: When CN0.2 = 46 (dash
line curve), Equation (29) solved Pcrit = 199.6 mm (right bold down arrow). Equation (23) calculated
the outer boundary is at P = 25.6 mm while the lower Pcrit value = 45.2 mm (left bold down arrow).
In conclusion, for CN0.2 = 46, Equation (2) under predicts runoff amount from any rainfall depth
>25.6 mm until 199.6 mm (Pcrit) and over predicts runoff amount for any rainfall depths >199.6 mm
when compared to Equation (21).

Runoff difference curve can be used as a visual aid to identify the Pcrit amount where
the curve intersects the x-axis (when Qv = 0). Possible true solution(s) as initial guess(es) of
the trial and error process from the curve can be visually identified rather than guessing an
arbitrary starting point for numerical solution as proposed by previous researchers [2,20].
Equation (22) is a quadratic model that yields two potential Pcrit solutions.

Figure 6 illustrates the use of runoff difference curves to identify the “critical rainfall
amount” (Pcrit) of several CN0.2 scenarios. For example, at CN0.2 = 46 (dash line curve), Pcrit
is approximately 40 mm and 205 mm (eyeballed from the graph, Pcrit points are marked
by solid downwards arrow where the curve intersects the x-axis, implying that Qv is near
to 0). However, the Ia amount has not been initiated for rainfall less than 40 mm according
to Figure 3 and therefore, only 205 mm was used as the original trial and error estimate to
satisfy Equation (22) and solve for the final solution of Pcrit of CN0.2 = 46.

Runoff difference curve provides a brief overview and shows that Equation (2) will
under-predict runoff amount at CN0.2 area of 46 with any rainfall depths below the Pcrit
value (around 205 mm) and becomes an over-prediction thereafter. A non-linear under-
design risk is therefore exhibited in the curve, with a peak of approximately 115 mm in
rainfall depth (shown as dotted downwards arrow). Runoff difference curve provides
additional insight of the worst under-estimated and over-estimated runoff prediction errors
due to Equation (2) of specific rainfall depth which can be estimated with Equations (25)
and (26), respectively.

3.10. The Critical Rainfall Amount (Pcrit) Closed Form Equation

Through completing the square technique, this study has successfully used Equa-
tion (22) to obtain the closed form equation of Pcrit in terms of CN0.2. The closed form
equation can be applied to solve for the Pcrit in any pairing runoff models with any λ

values. The equation can calculate the Pcrit amount precisely and replace the trial and error
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procedure mentioned in Sections 2.11 and 2.12. SCS practitioners can refer to the proposed
method in this article to derive the specific Pcrit equation for their studies.

The derivation of the closed form equation of the critical rainfall depth (Pcrit) from this
study is shown below. From Equation (22),

Qv =

[
P−50.8

(
100

CN0.2
−1
)]2[

P+203.2
(

100
CN0.2

−1
)] −

[
P−21.606

(
100

CN0.2
−1
)1.063

]2

[
P+402.547

(
100

CN0.2
−1
)1.063

]

Let : A = 21.606
(

100
CN0.2

− 1
)1.063

Let : B = 50.8
(

100
CN0.2

− 1
)

When Qv = 0 (Runoff indifferent between 2 models), substitute A and B and solve for
P (Pcrit).

[P− B]2

[P + 4B ]
=

[P−A]2

[P + 18.631A]

After grouping and simplifying, P (Pcrit) can be solved via quadratic form as below:

a = 4B− 2A + 2B− 18.631A

b = A2 − 8AB− B2 + 2(18.631)AB

c = 4BA2 − 18.631AB2

Pcrit =
−b±

√
b2 − 4ac

2a
(29)

Pcrit = Critical rainfall depth (mm)
CN0.2= Conventional curve number of a watershed

Equation (29) is a quadratic model that yields two potential Pcrit solutions. The outer
boundary (Equation (23)) can be used as checkpoint to determine if the lower Pcrit value is
a valid solution because any rainfall depths beyond the outer boundary will start to yield
runoff difference between the two models after fulfilling the Ia requirement. The lower Pcrit
value is usually discarded due to its proximity to (or less than) the outer boundary.

If the Pcrit value < the P value of Equation (23) (outer boundary equation), the Ia is yet
to be fulfilled thus it is impossible to have any runoff or runoff difference amount. Runoff
difference curves graph is also an effective visual aid to supplement the Pcrit closed-form
equation (refer to Figure 6 example).

Results from several derived formulae were compiled in Table 3 to provide another
quick overview of the Pcrit for Peninsula Malaysia across multiple CN0.2 scenarios. Accord-
ing to the DID HP 27 dataset, the lowest calculated CN0.2 is 48.8; hence, column A tabulates
CN0.2 range from 47 to 99 to cover the entire possible CN0.2 scenario in Peninsula Malaysia.
Column B and D were calculated using Equation (6), column C used Equation (20) and
column E used Equation (29). Column F calculated CN0.2 percentage change into CN0.051.

Column A and E can be used to construct another Pcrit overview curve across multiple
CN0.2 scenarios (Figure 7) with a statistically significant equation regressed via SPSS as:

Pcrit = −245.4 ln(CN0.2) + 1132.6 (30)

Equation (30) has an R2-adj of 0.997, standard error of 3.047 and p < 0.001. Given CN0.2
value of a watershed, the corresponding Pcrit value can be estimated with Equation (30).
Equation (2) under predicts runoff amount at any rainfall depths below the Pcrit overview
curve in Figure 7 and vice versa. Figure 7 is also in line with the research outcome reported
by [2] that Equation (2) had the tendency to under-estimate runoff amount in rural and
forested watersheds as CN0.2 decreases.
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Table 3. Conjugate CN0.051 and Pcrit for Peninsula Malaysia.

(A) (B) (C) (D) (E) (F)

CN0.2 S0.2 CNλ (0.051) S0.051 Pcrit (mm) %

99 2.57 98.76 3.20 7.38 0.2%
97 7.86 96.02 10.52 12.65 1.0%
95 13.37 93.20 18.52 17.83 1.9%
93 19.12 90.36 27.10 22.86 2.8%
91 25.12 87.52 36.23 27.85 3.8%
89 31.39 84.69 45.92 32.85 4.8%
87 37.95 81.89 56.18 37.91 5.9%
85 44.82 79.11 67.05 43.05 6.9%
83 52.02 76.38 78.57 48.31 8.0%
81 59.58 73.68 90.75 53.71 9.0%
79 67.52 71.02 103.67 59.26 10.1%
77 75.87 68.40 117.35 65.00 11.2%
75 84.67 65.83 131.88 70.94 12.2%
73 93.95 63.30 147.29 77.11 13.3%
71 103.75 60.81 163.68 83.53 14.4%
69 114.12 58.37 181.14 90.22 15.4%
67 125.10 55.98 199.74 97.22 16.4%
65 136.77 53.63 219.60 104.56 17.5%
63 149.18 51.33 240.84 112.26 18.5%
61 162.39 49.07 263.60 120.38 19.6%
59 176.51 46.86 288.03 128.94 20.6%
57 191.61 44.69 314.31 138.00 21.6%
55 207.82 42.57 342.65 147.61 22.6%
53 225.25 40.49 373.28 157.83 23.6%
51 244.04 38.46 406.49 168.74 24.6%
49 264.37 36.46 442.59 180.41 25.6%
47 286.43 34.51 481.96 192.95 26.6%
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Figure 7. Pcrit overview curve for Peninsula Malaysia. Equation (2) under predicts runoff amount for
any rainfall depths below the curve at respective CN0.2 area. The underprediction tendency worsens
as CN0.2 value decreases.

Using the same concept as presented in ?? and Section 3.10, the closed form Pcrit
can also be derived to verify previous study results where the optimum λ value was
identified as 0.05 in the USA. The correlation between Sλ and S0.2 is best represented by
S0.05 = 1.33S0.2

1.15 [2,20,22]. It is noteworthy to mention that US researchers used inches
in their dataset; hence, Equation (18) (CN formula, SI version) needs to be converted and
CNλ = 1000

Sλ+10 should be used instead. The closed form Pcrit equation can be derived with
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the same method as proposed in Section 3.10 to verify their published Pcrit (inches) values
(Table 4) in USA [2,22].

Table 4. The Pcrit (inches) values with its corresponding CN0.2 and CN0.05 values for runoff prediction
studies in USA (Modified from [2,22]).

Conjugate Curve Numbers and Pcrit Values

CN0.2 S0.2 (in) CN0.05 S0.05 (in) Pcrit (in)

100 0 100 0 -
95 0.526 94.02 0.636 2.44
90 1.111 86.95 1.501 1.72
85 1.765 79.64 2.556 1.95
80 2.5 72.39 3.815 2.27
75 3.333 65.31 5.311 2.63
70 4.286 58.51 7.091 3.05
65* 5.385 52.03 9.219 3.52 (4.51)*
60 6.667 45.9 11.785 4.04
55 8.182 40.14 14.915 4.64

50** 10 34.74 18.787 5.33 (5.35)**
45 12.222 29.71 23.663 6.15
40 15 25.03 29.947 7.13
35 18.571 20.71 38.285 8.35

Note: (4.51)* old value for CN0.2 = 65. (5.35)** old value for CN0.2 = 50.

The closed form Pcrit equation verified all Pcrit values in Table 4 except for CN0.2 =
50** and 65*. For CN0.2 = 50**, the calculated Pcrit using the closed form equation method
is 5.33 inches (instead of 5.35 inches)**. The variance to the published value is about 0.5
mm. However, for CN0.2 = 65*, the calculated Pcrit is 3.52 inches (instead of 4.51 inches)*,
which is much lower than the published value by about 25 mm.

Verification of Table 4 Pcrit values prove that the Pcrit closed form equation can
be used to calculate the exact Pcrit value for any comparing SCS CN models for SCS
practitioners. The success in the closed form equation derivation narrows the study gap
from previous work. It can be adopted to replace the trial and error technique used by
previous researchers [2,20,22].

3.11. Critical Curve Number (CNcrit)

Equation (29) will yield two possible CNcrit solutions (when Qv = 0 in Equation (22)).
Although it is possible for those CNcrit values to exist, all values must be verified. Potential
CNcrit solution(s) as the initial guess(es) to the trial and error process to satisfy Equation (22)
can be identified when visually aided by runoff difference curves.

For an example, when rainfall = 100 mm (dash line curve in Figure 8), potential CNcrit
value is about 66 (marked by bold solid down arrows where the curve intersects with the
x-axis or Qv = 0). Other possible CNcrit value were discarded because the dash line curve
intersects the x-axis at the left end at CN0.2 around 22 and 99 on the right end, those values
remain as a theoretical CN0.2 value only.

3.12. Asymptotic Curve Number of Peninsula Malaysia

According to the AFM (Section 2.10), the DID HP 27 dataset resembles the standard
behavior pattern (Figure 9) and thus Equation (16) was adopted to derive CN∞ as the best
representative CN0.2 value for the dataset. Through least square fitting method under AFM,
the fitting parameter k was identified to be 40.79 and CN∞ = 67.77. When rounded to the
closest positive integer, CN∞ = CN0.2 = 68.
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Figure 8. Runoff difference curves between Equation (2) or Equation (8) and (21). CNcrit is the point
that the runoff difference curve intersects the x-axis, marked by circle with solid down arrows lines.
The dotted down arrow lines estimate the rainfall depth of maximum “under and over-design” risk
for P = 100 mm, respectively. Note: when rainfall = 100 mm (dash line curve), runoff difference
curve also suggests that the return period design base on rainfall depth of 100 mm is likely to cause
under-design risk (negative Qv) in watersheds where CN0.2 value(s) is (are) <66, meanwhile incurring
over-design risk (positive Qv) in CN0.2 values >66. Estimated worst under-design risk (marked with
dotted down arrows) occurs around CN0.2 = 42 while the worst over-design risk at about 86. The
worst under and over-estimated runoff prediction errors due to Equation (2) of those CN0.2 area can
be estimated with Equations (27) and (28), respectively.
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Figure 9. Asymptotic CN fitting of the dataset. For standard behavior pattern, CN∞ is the point
where a near to stable state of CN0.2 fits to the higher rainfall depths.

The AFM CN∞ result is in proximity to the equivalent CN0.2 value of 72.58 which was
derived in Section 3.2, whereas CN∞ = 68 also falls within the 99% CN0.2 confidence interval
of this study. This proves that the proposed SCS CN model calibration methodology in
this article is capable to produce results that are in line with other method introduced by
previous study.

Using Equation (18), the calculated S0.2 value of the AFM CN is 120.78 mm and Ia
= 0.20 × 120.78 mm = 24.16 mm. These numbers are used in formulating the SCS runoff
model with Equation (1) for benchmarking (Table 5).
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Table 5. Asymptotic CN fitting method (AFM) and new λ runoff model’s residual analyses compari-
son with descriptive and inferential statistics at alpha = 0.01 level.

AFM Model New λ Model

λ value 0.20 0.051
E 0.910 0.919

RSS 69,933 62,926
Residual Standard Deviation 17.083 16.556

Residual Standard Deviation: BCa 99% CI [14.200, 19.552] [13.875, 18.898]
Residual Skewness 0.401 −0.098

Mean Residual: −4.188 −2.079
Mean Residual: BCa 99% CI [−6.953, −1.035] [−4.814, 0.920]

Residual: Range 96.89 101.45
Residual Variance 291.822 274.091

Residual Variance: BCa 99% CI [201.207, 382.593] [192.434, 358.014]

The newly calibrated λ model has lower RSS with higher E index compared to the
runoff model formulated with the Asymptotic CN value. The models’ residual skewness
is near to zero, thus the mean residual value can act as an indicator for the predictive
model’s accuracy. The new λ model has lower mean residual with 99% confidence interval
range which spans across zero, indicating its capability to achieve zero (residual) runoff
prediction error. On the other hand, the AFM model tends to under-predict runoff volumes
since their mean residual confidence interval range is within negative value range. The
descriptive statistics indicates that the AFM model has a lower residual range. However,
the standard deviation and variance in the model’s residual are lower in the new λ model
with smaller confidence interval ranges. Hence, the new λ model has higher stability and
reliability for the dataset of this study.

AFM model faced another issue, whereby the calculated Ia value (24.16 mm) is larger
than nearly 3.10% (seven recorded rainfall events) of the DID HP 27 dataset. According to
the runoff constraint defined by SCS (as stated in Section 2.1) any rainfall depths < Ia value
would not initiate any runoff; hence, AFM model failed to comply with the SCS constraint
for those seven P-Q data pairs. On the other hand, New λ model does not have this issue.

4. Conclusions

This article presented the methodology to perform the SCS CN model calibration
under the guide of inferential statistics with regional rainfall-runoff data. The study
honed the runoff prediction accuracy of a popular rainfall-runoff model and based on its
mathematical framework to develop engineering applications. Key highlights are as below:

1. The methodology to reassess the validity of a popular runoff model was presented.
Under this study, the existing SCS runoff model is invalid for runoff modelling (alpha
= 0.01), and therefore the model must be calibrated. λ = 0.051 (99% CI ranges from
0.034, 0.051) and CN0.2 = 72.58 (99% CI ranges from 67 to 76) are the calibrated results
for runoff prediction in Peninsula Malaysia according to the dataset of this study.
Within these CN0.2 areas, SCS model underpredicts runoff amount when rainfall
depth of a storm is <70 to 85 mm and its overprediction tendency worsens toward
larger storm events if it is not calibrated. The SCS CN model underpredicted runoff
amount the most (2.4 million L/km2 area) at CN0.2 = 67 area and rainfall depth of
55 mm while it nearly overpredicted runoff amount by 25 million L/km2 area when
the storm depth reaches 430 mm in Peninsula Malaysia.

2. The closed form equation of the “Critical Rainfall Amount (Pcrit)” was solved (Sec-
tions 2.12 and 3.10) to narrow the research gap. Figure 6 example illustrated its use
and past publication errors were detected (Table 4). The “Critical Curve Number
(CNcrit)” concept and the use of the runoff difference curves graph were also intro-
duced in this article (Sections 2.11–2.13 and Sections 3.9–3.11) with demonstrated
applications shown in Figures 6–8.
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3. The 3D runoff difference model (Figure 2a,b) was created with Equation (22) to assess
the runoff prediction results of the existing SCS CN model and its type II errors.
Equations (25)–(28) to estimate the worst-case runoff prediction errors of the SCS CN
model when it is not calibrated with λ = 0.051 for runoff predictions in Peninsula
Malaysia. Any past study or engineering projects using this model and based upon
the return period concept of rainfall amount below 70 mm might be under-designed
while the model has over-design risk when a storm depth is larger than 85 mm. SCS
practitioners are encouraged to refer to the general formulae (Equations (10)–(12))
and proposed methods in this article to derive the specific model and equations for
their studies. Equation (2) must be validated with rainfall-runoff dataset prior to its
adoption for runoff prediction in any part of the world.

4. Authors cautioned that there are several limitations of the proposed methodology.
Minimum sample size should be at least 100 observations while the alpha level setting
for Null assessment is pending upon research need. BCa should be used instead of
bootstrapping and the choice of the statistical software must come with the option
to provide confidence interval for median value to cater for model calibration need
when the dataset is skewed. Runoff error analyses beyond the confidence interval or
dataset limit may not be meaningful for interpretations.
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