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A B S T R A C T   

Practical applications of metal free catalysts are hindered by their innate poor stability for electrocatalytic 
application. Accordingly, in this study, synthesis and functionalization of graphene oxide via a modified Tour’s 
method (GOT) with different amine containing molecules results in excellent catalytic performance and stability 
toward OER in alkaline medium. The as-synthesized polyethyleneimine GOT electrode (P-GOT), produced cur-
rent densities of 10, 50 and 100 mA/cm2 at overpotentials of 240, 350 and 420 mV, respectively, with small Tafel 
slope of 47 mV/dec. The X-ray diffraction analysis (XRD), Raman spectroscopy and X-ray photoelectron spec-
troscopy (XPS) analysis confirms the successful functionalization of GOT by ethylenediamine (E) and poly-
ethyleneimine (P) molecules, respectively. Morphological studies based on field emission scanning electron 
microscopy (FESEM) confirm that the modification via covalent bonding preserved the original wrinkled and 
layered structure of GOT. The P-GOT with cross-linked amine can expose more active sites and is not easy to peel 
off, which corresponds to attaining lower charge transfer resistance (1.01Ω cm2) and remarkable current stability 
in 1.0 M KOH solution, compared to the pristine GOT and E-GOT electrodes. From this perspective, our results 
therefore provide a valuable route for development and practical application of metal free catalytic materials for 
water oxidation reaction.   

Introduction 

Clean energy has been one of the primary quests of the 21st century 
to substitute fossil fuels, which have been the main persistent energy 
source since the industrial revolution. Although fossil fuels have led to 
great industrial, economic, and social developments, it has been asso-
ciated with very harsh environmental impacts, most significantly global 
warming and climate change [1–3]. The other main demerit with fossil 
fuels has recently been their high cost instability or price volatility, 
whereby costs can vary an order of magnitude over short time, hence 
propagating significant challenges to developed and developing econo-
mies [4, 5]. The development of renewable and sustainable energy re-
sources to partially and gradually replace conventional fossil energy 
resources has been the main objective for many research efforts 
worldwide over the last few decades. Renewable energies such as solar, 
wind, tidal, geothermal, and hydro have been gradually developed and 

employed, presenting about 649 million tone oil equivalent (MTOE) in 
2018 [6]. Hydrogen is considered the most sustainable and clean fuel, as 
the only fuel with zero-carbon emissions, since water is the only reaction 
product [7]. Hydrogen has been primarily sourced at large-scale process 
industries by reforming of fossil fuels, mostly natural gas and coal 
[8–10]. Sourcing hydrogen from vastly available water, more specif-
ically seawater, through water electrolysis has been practiced for a long 
time, but has been mainly challenged by high energy consumption [11, 
12]. Falling electricity costs from renewable solar PV or wind technol-
ogies is expected to make operational costs of water electrolysis much 
more favorable in the foreseeable future. Water electrolysis is a simple 
process in which electrical energy is utilized to split the water molecule 
into its two constituents, i.e., hydrogen and oxygen, according to the 
following simple reactions in alkaline media [13–15]:  
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Cathodic hydrogen evolution reaction HER: 2 H2O(l) + 2 e− → H2(g) + 2 
OH− (1)  

Anodic oxygen evolution reaction OER: 2 OH− → ½ O2(g) + H2O(l) + 2 e− (2)  

Overall reaction water-splitting reaction: H2O(l) ↔ H2(g) + ½ O2(g)          (3) 

The reaction is catalyzed by electrocatalysts used as anodic and 
cathodic material, with noble metal such as platinum (Pt) and iridium or 
ruthenium oxides (IrO2, RuO2) being amongst the most effective for HER 
and OER, respectively, but with limited large scale application due to 
their high costs [16, 17]. Accordingly, different materials have been 
proposed and evaluated for efficient water electrolysis such as an array 
of transition metals [18–21] and carbon-based materials [22–25]. The 
efforts have been equally put to develop highly-efficient and low-cost 
electrodes for cathodic hydrogen evolution reaction (HER), and anodic 
oxygen evolution reaction (OER) [26–30]. Although both reactions are 
equally vital for the overall reaction to proceed, OER is more sluggish 
due to the need for involving the transfer of 4 electrons per O2 molecule 
generation, as compared to the transfer of 2 electrons per H2 molecule 
generation [31–33]. This in turn results in OER having much higher 
overpotentials, relative to the cathodic HER. Hence, extensive research 
efforts have been put into developing OER catalyst with high activity 
and stability from abundant and low-cost materials [34–36]. An interest 
have been devoted recently to develop and evaluate metal-free car-
bon-based electrocatalysts for OER as a promising functionalizable, 
efficient, and cost-effective materials, as this eliminates the requisite of 
incorporating precious metals [37, 38]. Graphene oxide, an oxidation 
product of graphite, has been shown to exhibit efficient electrochemical 
properties for many applications owing to its unique characteristics and 
most importantly ease of functionalization [39–41]. Since GO holds 
many oxygen containing functional groups, such as hydroxyl and epoxy 
groups on the basal plane and carboxyl groups at the edges [42], GO can 
be covalently functionalized in a facile manner by different organic 

molecules, such as aliphatic amines [43], amino acids [44], isocyanates 
and acyl chloride [45, 46]. Recently, tyramine functionalized graphene 
oxide (T-GO) have shown a low onset potential and Tafel slope of about 
0.16 V and 69 mV/dec., respectively, with current density of about 2 
mA/cm2 [47]. Similarly, Lysine-functionalized GO have shown a low 
overpotential of 0.33 V at 10 mA/cm2, but at higher Tafel slope of 80 
mV/dec [48]. Unlike the reported complex steps for the functionaliza-
tion of GO, in this work monomeric and polymeric amines were suc-
cessfully grafted onto GOT nanosheet by a simpler single-step and 
inexpensive synthesis route. Specifically, the protocol for the reaction 
does not require heat and organic solvent, coupled with the advantage of 
attaining a high yield. Moreover, the surface chemistry, structure and 
morphology of the as-synthesized pristine GOT, ethylenediamine 
functionalized graphene oxide (E-GOT) and polyethyleneimine 
functionalized graphene oxide (P-GOT) has been well characterized 
by X-ray diffraction analysis (XRD), Raman spectroscopy, X-ray photo-
electron spectroscopy (XPS) and scanning electron microscopy (SEM) 
techniques. The optimal P-GOT electrode exhibit superior electro-
catalytic performance compared to those of pristine GOT and E-GOT 
toward OER in alkaline medium. Specifically, low OER overpotential of 
240 mV at 10 mA cm− 2 of current density and small Tafel slope (47 mV/ 
dec.) indicating facile kinetics, and a remarkable stability. 

Experimental 

Chemicals 
Graphite powder (GP), phosphoric acid (H3PO4), sulfuric acid 

(H2SO4), potassium permanganate (KMnO4), hydrogen peroxide 
(H2O2), potassium hydroxide (KOH) and ethanol (C2H5OH) were pur-
chased and used without any further purification. Ethylenediamine (E) 
(99.5%), polyethyleneimine (P; Mw 10,000) was purchased from Sigma- 
Aldrich while deionized (DI) water were used for all syntheses. 

Scheme 1.. Schematic representation of the synthesis methods of ethylenediamine (E-GOT) and polyetyleneimine (P-GOT) functionalized graphene oxide.  
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GO synthesis 
Graphene Oxide (GOT) was synthesized from graphite powder (GP) 

by a modified Tour’s method [49]. In a typical synthesis, mixed acid 
solution was first prepared (360 mL H2SO4 and 40 ml of H3PO4) and 
added to the mixture of graphite powder and KMnO4, then heated to 
50⁰− 60⁰ C for 12 h. After that, the mixture was cooled down by 
adding 400 mL of ice cubes, followed by 3 mL of 30% H2O2 added 
drop-wise, while reaction temperature was maintained between 
18⁰⁰¡20⁰⁰ C. The obtained suspension was then filtered and washed with 
deionized water and ethanol several times to remove free ions and dried 
to obtain GOT powder. 

Amine-Functionalization 
For functionalization, the first 250 mg of the above-synthesized GOT 

was dispersed in 200 ml deionized water and then probe-sonicated for 5 
min at 2 s ON / 3 s OFF pulsing by the addition of a specific amount of 
ethylenediamine/polyethyleneimine. After that, the mixture was 
sonicated for an additional 10 min and left to react overnight under 
slow stirring in an inert atmosphere at ambient temperature. The 
resulting suspension was then washed to remove unbounded ethyl-
enediamine /polyethyleneimine and finally collected by vacuum filtra-
tion (Scheme 1). 

Materials characterization 
Powder X-ray diffraction (XRD) data were collected to analyze the 

crystal structure and stacking of GOT, E-GOT and P-GOT using Ultima 
IV X-ray diffractometer with Cu-α radiation (λ = 0.154148 nm oper-
ating at 40 kV and 20 mA in step scan mode, between 2⁰θ to 40⁰θ while 
the interlayer d-spacing was calculated from Bragg’s Law. Raman data 
were obtained to study the effect of functionalization on the order/ 
disorder structure of GOT, E-GOT and P-GOT by Raman spectroscopy 
(DXR Dispersive Raman, Thermo Fisher Sci.). The surface chemistry of 
GOT, E-GOT and P-GOT were analyzed by Fourier transform infrared 
spectroscopy (FTIR, Bruker Vertex 70) and X-ray photoelectron 
spectroscopy (XPS) (Escalab 250 Xi, Thermo Fisher Sci.) with 20 eV pass 
energy for high-resolution scans and 100 eV for survey scans. The sur-
face morphology was analyzed using a scanning electron microscope 
(SEM). 

Electrode preparation 

The active area of stationary glassy carbon electrode (GCE) was first 
cleaned with isopropanol and polished with diamond suspension. The 
polished GCE was then sonicated with DI water for 10 min to remove the 
traces of diamond suspension. 2.0 mg of the GOT/E-GOT /P-GOT 
powder was ultrasonically dispersed in a suspension of 200µL n-prop-
anol, 200 µL DI water and 25 µL of Nafion 117 solution. 15 µL of the 
prepared suspension was then drop-casted onto the active GCE area and 
dried at 80 ◦C for 30 min. 

Electrochemical measurements 

All electrochemical measurements (cyclic voltammetry, linear sweep 
voltammetry, chronoamperometry and electrochemical impedance 
spectroscopy) were performed on an electrochemical workstation, 
Reference 3000 potentiostat (Gamry, PA, USA) at room temperature in 
1.0 M KOH aqueous solution. Platinum wire and Ag/AgCl (saturated in 
KCl solution) electrode were used as a counter and reference electrode, 
respectively. All potentials were measured with respect to Ag/AgCl and 
normalized to reversible hydrogen electrode (RHE) according to Nernst 
equation: E (RHE) = E (Ag/AgCl) + (0.059 pH) + 0.197 V. 

Results and discussions 

Physicochemical studies 

The surface morphology of pristine and functionalized graphene 
oxide were investigated by SEM image analysis. The SEM image of 
pristine GOT in Fig. 1(A), shows the typical wrinkled morphology while 
the dark and light areas show layered structure of GOT. It is worth 
noting that the images of E-GOT and P-GOT in Fig. 1 (B and C) showed 
morphology that is quite similar to pristine GOT, which suggested that 
the modification via covalent bonding preserved the original wrinkled 
and layered structure of GOT. Although the pristine and modified GOT 
have similar structure, the darker color and more wrinkled in modified 
GOT could be due to the amination [50, 51]. Further, the XRD patterns 
of GOT, E-GOT and P-GOT electrodes are shown in Fig. 2(A), where the 

Fig. 1. SEM images for prepared (A) pristine GOT (B) E-GOT and (C) P-GOT powder.  
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oxidation of graphite by the modified Tour method was confirmed by 
the standard diffraction peak located at 2θ value of 10̊ corresponded to 
the d001 crystal plane [52], which indicates the presence of oxygen rich 
functional groups [53, 54]. A slight shift of (002) carbon representative 
peak toward lower diffraction angle (2θ=8.2̊) and higher d-spacing 
(1.08 nm) for E-GOT electrode can be associated with the introduction of 
ethylenediamine monomer (Fig. 2 (A&C)). On the other hand a sharp 
shift of (002) carbon representative peak from 2 value of 10̊ to 4.1̊ for 
P-GOT can be associated with insertion of polyethyleneimine macro-
molecule into the GOT laminates. The increase in the d-spacing of P-GOT 
could possibly be due to larger steric hindrances effect of the poly-
mer/GOT interaction (Fig. 2(C)). The structural characteristics of pris-
tine GOT, E-GOT and P-GOT electrodes were further analyzed by Raman 
spectroscopy, as presented by the spectra shown in Fig. 2(B). Typically, 
Raman spectra for all the electrodes exhibited two distinct bands, 
namely a D-band located at ~1358 cm− 1 originated from a second 
order scattering due to the A1g in-plane breathing vibrational 
modes of Sp2 rings and reflects the inherent defects and edge ef-
fects of graphene microcrystals and G-band located at 1590 cm¡1 

attributed to the first order scattering of the E2g in-plane vibration 
mode of Sp2 graphitic carbon atoms [55]. It is well known that the 
relative band intensity ratio of D and G (ID/IG) reflects the disorder 
caused by lattice defect of graphene structure [56]. The controlled 
functionalization of GO introduced defects in structure of GO and 

decreased its graphitization, as indicated the intensity ratios of D 
band to the G band of E-GOT (0.94) and P-GOT (0.95) were 
comparatively higher than that of pristine GOT (0.92), which sug-
gested that defects originated from effective grafting of amines 
groups of ethylenediamine/polyethyleneimine in the GOT 
framework. 

The functional groups of pristine GOT, E-GOT, and P-GOT were 
characterized by FT-IR (Fig. 2(D)). The characteristic peaks of 
pristine GOT shows the presence of carboxyl groups (C¼;O 
andC–OH) at 1730 and 1632 cm¡1, stretching vibration of epoxy 
groups (C–O) at 1230 and 1042 cm¡1, and the hydroxyl groups at 
3431 cm¡1, respectively [57]. After modification with EDA, the 
characteristic peaks ofC¼O and C–OH groups were disappeared, 
while two new peaks representing the amide-I and amide-II bond 
were observed at around 1650 and 1540 cm¡1, respectively while, 
a new amide-I bond at 1584 cm¡1 was observed after the modifi-
cation with PEI (marked by red arrows along with high magnifi-
cation). The vanish and generation of new bonds show that the 
amine group of EDA and PEI possibly reacted with carboxyl groups 
(C¼ O and C–OH) and formed amide group. 

Furthermore, the surface chemistry and chemical compositions 
of pristine GOT, E-GOT, and P-GOT electrode were investigated by 
XPS analysis. As seen in the full survey spectrum of pristine GOT only 
two peaks located at 284.8 and 531.9 eV are present and they 

Fig. 2. (A) XRD patterns, (B) Raman spectra, (C) diffraction angle and D-spacing and (D) FTIR spectra for prepared pristine GOT, E-GOT and P-GOT powder. The inset 
image shows high magnification for the marked area. 
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Fig. 3. (A) Full scan XPS (B), C1s spectra of pristine GOT, (C) C1s spectra of E-GOT, (D) C1s spectra of P-GOT, (E) N1s spectra of E-GOT, (F) N1s spectra of P-GOT and 
(D) elemental composition for prepared pristine GOT, E-GOT and P-GOT powder. 
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correspond to C1s and O1s, respectively (Fig. 3(A)). Clearly, the full 
survey spectrum of E-GOT and P-GOT, shows a new peak at 399 eV, 
corresponding to the N1s along with the common signals corresponding 
to C1s and O1s (Fig. 3(A)). The high-resolution C1s spectra of pris-
tine GOT shows five characteristic peaks at ≈ 284.6, 286.3, 286.9, 
287.2 and 288.5 eV corresponding to theC–C/C¼>C, C–O, C–O-C, 
C ¼ O and O–C ¼ O species, respectively (Fig. 3(B)). As shown in 
the Fig. 3 (C-D), after modification by EDA and PEI, two new peaks 
appeared at 285.6 and 288.7 eV which are assigned to the binding 
energy of C–N and N–C¼O species, respectively. According to the 
high-resolution N1s spectra of E-GOT and P-GOT (Fig. 3 (E and F)), 
there are two types of nitrogen groups located at ~398.8 and 
~399.9 eV attributed to the pyridinic-N and amine-N groups. 
[58-61]. Obviously, the N1s spectra of E-GOT (Fig. 3(E)) show a 
weakened peak of C–N compared to the N1s spectra of P-GOT 
((Fig. 3(F)). According to (Fig. 3(G)), nitrogen atomic percentage is 
maximum in P-GOT and minimum in E-GOT, while the oxygen 
atomic-concentration dramatically decreased and the carbon to oxygen 
ratio of E-GOT and P-GOT significantly increased compared to GOT 
(Fig. 3(G)). Accordingly, these observations clearly indicate that the 
anchoring sides of pristine GOT was successfully functionalized with 
ethylenediamine/polyethyleneimine, molecules. However, XPS results 

indicates the formation of new covalent bonds of C–N and 
N–C¼O, which further evident that ethylenediamine and poly-
ethyleneimine molecules successfully grafted onto GOT laminates 
via the formation of amide groups. 

Electrochemical studies toward OER 

The oxygen evolution reaction (OER) is an energy intensive multi-
step process in water splitting and requires a large overpotential (OER, 
4H+/4e− ) [62–64]. In addition, it is well known that OER activity 
mainly depends on electrolyte solution. In fact, changes in the alkaline 
electrolyte concentration influenced the current density but do not have 
significant impact on the onset potential [65, 66]. 

Consequently, the electrocatalytic OER activity of pristine GOT, 
E-GOT and P-GOT were evaluated along with RuO2 (for comparison 
purpose) in 1.0 M KOH solution by using linear sweep voltammetry 
(LSV) technique with the potential range of 1.0 to 1.8 V (vs. RHE). It 
is also worth mentioning that the presence of metallic contami-
nations (i.e., nickel and iron) in graphene are ubiquitous, origi-
nating from starting material (graphite powder) and significantly 
influencing their catalytic properties [67, 68]. Therefore, 
elemental analyses on pristine GOT, E-GOT, and P-GOT were 

Fig. 4. (A) OER measurements in 1 M KOH recorded at a scan rate of 10 mVs− 1 (B) Over-potential to reached the current density of 10, 50 and 100 mAcm− 2 and (C) 
Tafel plot for prepared pristine GOT, E-GOT and P-GOT electrode. 
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performed using the ICP-MS technique before the electrochemical 
investigations. It can be seen in (SI Table.1.) that both the GOT 
(unfunctionalized and functionalized) samples, as expected, con-
tains traces of metals include Fe, Co, Cu, Ni, Mo, and Mn, with the 
existence of Fe as most abundant element. Further, it can be 
observed that both the GOT (unfunctionalized and functionalized) 
showed quite similar metal contaminations for all the elements, 
which suggest that the modification via covalent bonding did not 
have substantial impact on metallic contaminations. However, 
comparative OER polarization curve in Fig. 4(A) shows that P-GOT 
electrode exhibited an optimal current response toward OER with early 
onset potential (85 mV) compared to the E-GOT (92 mV) and pristine 
GOT (110 mV). Interestingly, E-GOT and P-GOT electrode’s OER current 
response and overpotential (η) is even comparable to the state-of-art 
RuO2 (Fig. 4(A)) [69]. The OER current density response of the pris-
tine GOT recorded at η =370 mV vs. RHE (1.6 V) at a current density of 
~3.5 mA/cm2. However, the E-GOT and P-GOT electrodes displayed 
significantly high OER current density response of 20 and 50 mA/cm2, 
respectively, at the same η values of 370 mV vs. RHE (1.6 V). Moreover, 
to reach the current density of 10, 50 and 100 mA/cm2, the P-GOT re-
quires overpotentials of 240, 350 and 420 mV, respectively, which are 
significantly lower than that of E-GOT (310, 460 and 630 mV) (Fig. 4 

(B)). The observed overpotential value for P-GOT (240mV@10 
mA/cm2) is much lower than many reported metal-free OER catalysts 
such as N,S-CNT (360 mV) [70], ONPPGC/OCC (410 mV) [71], NFPGN 
(340 mV) [72], GO-PANi-FP (520 mV) [73] and Ly-rGO (330 mV)[48] as 
shown in Fig. 7(A). Further, P-GOT required an overpotential lower 
than those of previously reported carbon-metals based systems such 
as Co3O4/NPC (270 mV) [74], Ni@NC (280 mV) [75], Co-Gr (350 mV) 
[76], CoP/N,P-Gr (270 mV) [77] and FeN4/CF/EG (290 mV) [78] as 
shown in Fig. 7(B). On the other hand, pristine GOT electrode deliver 
the current density of only 10 mA/cm2 within the same tested potential 
range (Fig. 4(B)). 

The Tafel slope derived from LSV curve is an important parameter 
used for revealing the inherent kinetics of the electrode and can eluci-
date the rate determining step involved in the catalytic reactions [79]. 
The linear regions of the Tafel slope were fitted by Tafel equation (ƞ =
blog (j/j0), where η is the overpotential, b is the Tafel slope, j is the 
current density, and j0 is the exchange current density. Accordingly, 
Fig. 4(C) reveals smaller Tafel slope of 47 mV/dec for P-GOT relative to 
E-GOT (67 mV dec− 1) and pristine GOT (164 mV dec− 1). These results 
further demonstrate better intrinsic OER kinetics of the P-GOT contrary 
to its pristine GOT counterparts. The catalytic stability is an important 
parameter for anodic materials in water oxidation technology. 

Fig. 5. (A) Chronoamperometry measurements and (C-D) Deviation in over potential after 10 h chronoamperometry measurements for pristine GOT, E-GOT and P- 
GOT electrode, respectively. 
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Typically, the practical application of metal free catalysts is hindered by 
their poor stability. Therefore, to check the long term stability of the 
pristine GOT, E-GOT and P-GOT electrodes toward OER, the electro-
catalysts were examined by the chronoamperometric (CA) technique at 
a constant potential vs. RHE for over 10 h in 1.0 M KOH solution and the 
results are shown in Fig. 5(A)). As seen, pristine GOT electrode showed 
considerable decrease in the attained OER current density. On the other 
hand, E-GOT and P-GOT electrodes showed stable current density 
response with no significant change after 10 h of CA operation. In 
addition, (Fig. 5 (B-D)) shows the OER polarization curves before and 
after CA measurements. As seen, there was a significant change towards 
the requirement of higher overpotentials after 10 h CA measurements 
for both pristine GOT and E-GOT electrodes, relative to the initial 
overpotential before CA (Fig. 5 (B-C)). Notably, the overpotential for 
P-GOT electrode was only increased by 4 mV after 10 h of CA mea-
surements (Fig. 5(D)). Moreover, after 10 h chronoamperometric 
test, no significant change in morphology of P-GOT was observed 
(supporting information, Figure S2). We consider that the GOT 
cross-linked with amine have a strong bond to the electrode, which 
endows the catalyst with excellent stability and durability. In order to 
understand the reason behind the improved catalytic performance of 

P-GOT toward OER, the electrochemical active surface area (ECSA) of 
three electrodes (pristine GOT, E-GOT and P-GOT) can be compared 
through the double-layer capacitance (Cdl) values measured from the CV 
curve within a non-faradic narrow potential window. Normally, the 
double-layer capacitance represents the ECSA and extracted by plotting 
the Δj = (Ja − Jc) against the scan rates [80]. Therefore, to measure the 
electrochemical double layer capacitance, CV measurements were per-
formed under increasing scan rates. As shown in Fig. 6(C), the elec-
trochemical double layer capacitance values obtained from the CV 
curves (supporting information, Figure S1) for P-GOT is 3.9 mF/cm2, 
which is almost 4 and 32 times larger than E-GOT and pristine GOT, 
respectively. The ECSA results are consistent with the OER activity 
(Fig. 4(A)) as high active surface area often lead to improve the catalytic 
activity [81]. Therefore, the improved OER activity of P-GOT may be in 
part due to the large ECSA. 

In order to gain more insights into the improved catalytic activity of 
P-GOT, electrochemical independence spectroscopy (EIS) of pristine 
GOT, E-GOT and P-GOT under the OER reaction conditions were per-
formed and the results are presented in Fig. 6(A&B) and summarized in 
Table 1. The recorded charge-transfer resistance (Rct) value of P-GOT 
(1.01Ωcm2) is much smaller than E-GOT (2.13 Ωcm2) and pristine GOT 

Fig. 6. (A) EIS, (B) high magnification EIS image and (C) Electrochemical surface areas (ECSA) for prepared pristine GOT, E-GOT and P-GOT electrode.  
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(47.11 Ωcm2), suggesting an enhanced charge transport upon incorpo-
ration of cross-linked amine groups. Interestingly, this finding is 
consistent with the results of current density, Tafel slopes and ECSA 
(Figs. 4 and 6). 

Remarkable improved OER activity of P-GOT might be directly 
correlated with decreased charge transport resistance and increased 
ECSA. However, based on these results, we surmised that the overall 
activities of P-GOT might be attributed to the strong electronic inter-
action at GOT and polymeric amine interfaces, which are highly bene-
ficial for electrocatalytic active sites. In addition, the modified electronic 
structure of the GOT by cross-linked polymeric amine molecule could 
introduced extra electrons to boost O2 adsorption on GOT surface. 
Further, the polymeric amine functionalities break the electroneutrality 
of sp2 carbon atom of graphene oxide, which could activate the π elec-
trons of carbon, in turn activating P-GOT towards more efficient OER. 

We assume that the GOT cross-linked with polymeric amine can 
create electron rich or deficient sites. These sites could be 
responsible for abundant defective edges, which favorably pro-
vides multidimensional electron transport pathways toward the 
OER. The GOT cross-linked by monomeric amine can efficiently 
enhance the catalytic activity of E-GOT towards OER. The intensity 
ratios of D band to the G band of GO-PEI (0.95) showed highly 
defective structure, which might alter atomic orbital and generate 
localized electronic states that could also be associated with higher 
OER activity [82]. 

It is well-known that the OER mechanism over the metal-free elec-
trocatalysts are more complex than the metallic electrocatalyst. How-
ever, based on the experimental data, the possible mechanistic path for 
OER over the modified electrode could be as follows: 

The OER reaction was first, initiated by adsorption of hydroxide ion 
(OH− ) from the water on the active site of (P − GOT) followed by the 
removal of an electron, which results in formation of (P − GOT)OH∗

abs via 
the following reaction: 

(P − GOT) + OH − →(P − GOT)OH∗
abs + e− (4) 

Further, (P − GOT)OH∗
abs is converted to (P − GOT)O− species by 

simultaneous removal of proton and an electron via the following 
reaction: 

(P − GOT)OH∗
abs + OH− →(P − GOT)O− + H2O + e− (5)  

Whereas, OH− combines with (P − GOT)O− to form the hydroperoxide 
intermediate (P − GOT)OOH via the following reaction: 

(P − GOT)O− + OH− →(P − GOT)OOH + e− (6) 

Finally, OH− can react with (P − GOT)OOH intermediate and 
generate O2 molecule via the following reaction: 

(P − GOT)OOH + OH− →(P − GOT) + O2 + H2O + e− (7) 

The above-mentioned mechanistic pathway for the electron transfer 
is in good agreement with previous work [83–91]. 

Conclusion 

Typically, stability is the main dilemma facing the metal-free elec-
trocatalysts, as most of the metal-free materials dissolve in reaction 
media of interest for OER. Accordingly, we demonstrated that the GOT 
sheets cross-linked with amine could have a strong bond to the elec-
trode, which endows the catalyst with excellent performance and sta-
bility in an alkaline medium. Amine groups were successfully pillared 
between GOT nanosheets by a simple one-step solvent-free amination 
technique. The obtained data demonstrates that the modified GOT (P- 
GOT) is highly active toward OER in alkaline medium, as low over-
potentials of 240, 350, and 420 mV are required to achieve current 
densities of 10, 50, and 100 mA cm− 2, respectively, with a Tafel slope of 
47 mV/dec. Also, the P-GOT electrode exhibit remarkable stability for 
10 h of chronoamperometric operation. Although the effect of 
metallic contamination on the electrochemical properties of GO 
cannot be rule out, we attributed the main electrolytic response to 
the role of amine groups. This performance is superior to most of the 
reported metal free catalyst for OER reaction. The obtained data 
demonstrate that the fabricated electrode could be a promising and cost- 
effective candidate for practical application upon further optimization 

Fig. 7.. Comparative study for P-GOT versus (A) metal free electrocatalyst and 
(B) metal based electrocatalyst toward oxyen evolation reaction in 1.0 M 
KOH solutions. 

Table 1. 
Summary of information over various catalysts.  

Catalysts Onset Potential (V) η@10 (mA/cm2) η@50 (mA/cm2) η@100 (mA/cm2) Tafel slope (mV/dec.) ECSA Rct Ωcm2 

GOT 1.10 470 – – 164 0.12 47.11 
E-GOT 0.92 310 460 630 67 1.01 2.13 
P-GOT 0.85 240 350 420 47 3.90 1.01  
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oxide: chemical reduction to graphite and surface modification with primary 
aliphatic amines and amino acids, Langmuir 19 (2003) 6050–6055. 

[45] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of 
isocyanate-treated graphene oxide nanoplatelets, Carbon N Y 44 (2006) 
3342–3347. 

[46] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film 
composite nanofiltration membrane modified with acyl chlorided graphene oxide, 
J. Memb. Sci. 535 (2017) 208–220. 

[47] V.S. Sapner, B.B. Mulik, R.V. Digraskar, S.S. Narwade, B.R. Sathe, Enhanced 
oxygen evolution reaction on amine functionalized graphene oxide in alkaline 
medium, RSC Adv. 9 (2019) 6444–6451. 

[48] V.S. Sapner, P.P. Chavan, B.R. Sathe, L-Lysine-Functionalized Reduced Graphene 
Oxide as a Highly Efficient Electrocatalyst for Enhanced Oxygen Evolution 
Reaction, ACS Sustain. Chem. Eng. 8 (2020) 5524–5533. 

[49] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. 
B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 
(2010) 4806–4814. 

[50] R. Li, Z. Wei, X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon 
nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution, 
ACS Catal. 5 (2015) 4133–4142. 

[51] S.Y. Sawant, T.H. Han, M.H. Cho, Metal-free carbon-based materials: promising 
electrocatalysts for oxygen reduction reaction in microbial fuel cells, Int. J. Mol. 
Sci. 18 (2017) 25. 

[52] F.T. Johra, J.-.W. Lee, W.-.G. Jung, Facile and safe graphene preparation on 
solution based platform, J. Indust. Eng. Chem. 20 (2014) 2883–2887. 

[53] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and 
characterization of graphene nanosheets, J. Phys. Chem. C 112 (2008) 8192–8195. 

[54] S.R.B. Nazri, W.-.W. Liu, C.-.S. Khe, N. Hidayah, Y.-.P. Teoh, C. Voon, H.C. Lee, 
Adelyn, Synthesis, characterization and study of graphene oxide, in: AIP 
Conference Proceedings, AIP Publishing LLC, 2018, 020033. 

[55] J.-.L. Chen, X.-.P. Yan, A dehydration and stabilizer-free approach to production of 
stable water dispersions of graphene nanosheets, J. Mater. Chem. 20 (2010) 
4328–4332. 

[56] K.M. Aujara, B.W. Chieng, N.A. Ibrahim, N. Zainuddin, C.Thevy Ratnam, Gamma- 
Irradiation Induced Functionalization of Graphene Oxide with Organosilanes, Int. 
J. Mol. Sci. 20 (2019) 1910. 

[57] K. Zahri, K. Wong, P. Goh, A. Ismail, Graphene oxide/polysulfone hollow fiber 
mixed matrix membranes for gas separation, RSC Adv. 6 (2016) 89130–89139. 

[58] L. Zhang, B. Chen, A. Ghaffar, X. Zhu, Nanocomposite membrane with 
polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant 
filtration performance, Environ. Sci. Technol. 52 (2018) 5920–5930. 

[59] J.-l. YAN, G.-j. CHEN, C. Jun, Y. Wei, B.-h. XIE, M.-b. YANG, Functionalized 
graphene oxide with ethylenediamine and 1, 6-hexanediamine, New Carbon 
Materials 27 (2012) 370–376. 

[60] J.-l. Yan, G.-j. Chen, J. Cao, W. Yang, B.-h. Xie, M.-b. Yang, 1595201. 
Functionalized graphene oxide with ethylenediamine and 1, 6-hexanediamine, 
Carbon N Y 52 (2013) 624. 
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