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Abstract
This paper intends to explore rice yield fluctuations to large-scale atmospheric circulation indices (LACIs) in Bangladesh. 
The annual dataset of climate-derived yield index (CDYI), estimated using principal component analysis of Aus rice yield 
data of 23 districts, and five LACIs for the period 1980–2017 were used for this purpose. The key outcomes of the study 
were as follows: three sub-regions of Bangladesh, northern, northwestern, and northeastern, showed different kinds of CDYI 
anomalies. The CDYI time series in north and northeastern regions exhibited a substantial 6-year fluctuation, whereas a 
2.75- to 3-year fluctuation predominated the northwestern region. Rice yield showed the highest sensitivity of LACIs in 
the northern region. Indian Ocean dipole (IOD) and East Central Tropical Pacific SST (Nino 3.4) in July and IOD index in 
March provide the best yield prediction signals for northern, northwestern, and northeastern regions. Wavelet coherence study 
demonstrated significant in-phase and out-phases coherences between vital climatic variables (KCVs) and CDYI anomalies 
at various time-frequencies in three sub-regions. The random forest (RF) model revealed the IOD as the crucial contribut-
ing factor of rice yield fluctuations in the country. The multifactorial model with different LACIs and year as predictors can 
predict rice yield, with the mean relative error (MRE) in the range of 4.82 to 5.78% only. The generated knowledge can be 
used to early assess rice yield and recommend policy directives to ensure food security.

1 Introduction

Understanding the profound impacts of climate instability on 
agricultural systems is vital for developing appropriate adap-
tation strategies (Challinor et al. 2014; Deryng et al. 2014; 
Moore and Lobell 2014; Siebert and Ewert 2014; Ghose 
et al. 2021a; Hu et al. 2021). ENSO-driven climate anomaly 
can cause crop damage, food insecurity, malnutrition, and 
even famine and losses of life (Marlier et al. 2013; Iizumi 
et al. 2014; Salam et al. 2020a, b). Therefore, the teleconnec-
tion between large-scale atmospheric oscillations and crop 
yields has been widely studied at global and regional scales 
to provide the basis of crop yield forecasting (Falcon et al. 
2004; Ray et al. 2012; Iizumi et al. 2014; Huang et al. 2017; 
Rahman and Islam 2019; Wahiduzzaman and Luo 2020).

Rice is the staple food grain and the most widely grown 
crop variety in many Asian countries, including Bangladesh. 
Many studies have examined the effects of ENSO on rice 
production in different Asian countries (e.g., (Zubair 2002; 
Selvaraju 2003; Falcon et al. 2004)). The studies showed 
an adverse effect of climate fluctuations on rice production. 
For example, Zubair (2002) found a detrimental effect of 

 * Abu Reza Md. Towfiqul Islam 
 towfiq_dm@brur.ac.bd

 * Javed Mallick 
 jmallick@kku.edu.sa

1 Department of Disaster Management, Begum Rokeya 
University, Rangpur 5400, Bangladesh

2 Department of Water and Environmental Engineering, 
School of Civil Engineering, Universiti Teknologi Malaysia 
(UTM), 81310 Johor, Malaysia

3 FMPHT Division, Bangladesh Rice Research Institute, 
Gazipur 1701, Bangladesh

4 School of Hydrology and Water Resources, Nanjing 
University of Information Science and Technology, 
Nanjing 210044, China

5 Agricultural Engineering Dept, Faculty of Agriculture, 
Mansoura University, Mansoura 35516, Egypt

6 College of Environmental and Resource Sciences, Zhejiang 
University, Hangzhou 310058, China

7 Department of Environmental Science and Disaster 
Management, Noakhali Science and Technology University, 
Noakhali 3814, Bangladesh

8 Department of Civil Engineering, King Khalid University, 
Abha, 62529, Saudi Arabia

/ Published online: 15 July 2021

Theoretical and Applied Climatology (2021) 146:29–44

http://orcid.org/0000-0001-5779-1382
http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-021-03725-7&domain=pdf


1 3

El Nino on rainfall, crop growth and yields in one of the 
two main cropping seasons (Yala season), and a positive 
impact on another growing season (the maha season) in Sri 
Lanka. Naylor et al. (2007) showed rice and corn produc-
tion in Indonesia is susceptible to climate variation linked to 
ENSO events. Roberts et al. (2009) found a significant effect 
of El Niño on irrigated and rain-fed rice production in the 
Philippines. Many recent studies also showed the adverse 
effects of El-Niño derived climate variation on agriculture 
of Malaysia, Thailand, and Cambodia (Al-Amin and Alam 
2016; Vimean et al, 2017; Xu et al. 2020). Studies also 
showed El Niño effects on Bangladesh’s agriculture through 
water shortage, soil depletion, and planting season disrup-
tion (Chowdhury 2003). Besides, drought, flood, soil salin-
ity, and cyclone have been described as the ENSO-driven 
main climatic extremes unfavorably influencing agricultural 
crop production in Bangladesh (Harun-ur-Rashid and Islam 
2007; Islam et al. 2017).

Approximately 80% of the total cultivated area in Bangla-
desh is transplanted with rice in various seasons, comprising 
more than 91% of the total crop production (BBS 2017). 
In Bangladesh, the Aus (Upland Rainfed) season starts in 
early March and ends in mid-August. The Aman (wet sea-
son) runs from May to late December, while the Boro (dry 
season-irrigated) runs from mid-November to late May. 
In the rice-growing seasons, the average yield of rain-fed 
Aus rice is 2.16 t/ha accounted for over 6.70% of the total 
rice production of Bangladesh (BBS 2018). However, the 
Bangladesh government wants to use the advantage of lower 
irrigation requirements of Aus rice cultivation to minimize 
water dependence and increase sustainability in agriculture 
(Uddin and Dhar 2018; Islam et al. 2021b). Therefore, the 
government has introduced an incentive program recently for 
small and marginal farmers to rejuvenate the Aus rice culti-
vation (Uddin and Dhar 2018). Given the significant impact 
of rice production on the agricultural system, livelihood, 
and food security, it is crucially essential to understand the 
critical agro-climate parameters and large-scale atmospheric 
circulation indices for Aus rice yield forecasting for different 
sub-regional ecotypes Bangladesh.

Long-term crop yield oscillation is mainly related to cli-
matic influences and extreme weather events (Ghose et al. 
2021b), while elevated temperatures can increase crop 
production. However, some studies have shown that crop 
yield drops significantly when daytime temperatures reach 
a specific crop-specific threshold (Islam et al., 2019). Each 
crop has optimal minimum and maximum temperature, pre-
cipitation, and relative humidity limits for its reproductive 
and vegetative growth stages. The crop yield changes dra-
matically when the temperature reaches the upper limit or 
falls below the lower threshold limit or humidity surpasses 
the upper threshold limit. Besides, extreme precipitation 
can make conditions for waterlogging and flooding, which 

also reduces crop production. Huang et al. (2017) assess 
the impact of precipitation on the rice yield where they 
found that rainfall adversely affected rice yield. Ara et al. 
(2016) reported that rice yield is negatively associated with 
heavy rain and extreme temperature in Bangladesh. Quan 
et al. (2013) explored the rice yield is responses by average 
temperature and annual rainfall in China. Revadekar and 
Preethi (2012) found that the Kharif rice yield is positively 
responded with the precipitation indices. Huang et al. (2018) 
found that rice yield is affected by precipitation indices in 
China. Tao et al. (2014) assessed the association between 
rice yield and maximum temperature, where they discov-
ered that the relationship is significantly positive. Huang 
et al. (2021) investigated the correlation between several 
meteorological factors and large-scale atmospheric circula-
tion index with maize yield and predicted the maize yield 
in north China.

ENSO effects on rainfall and temperature in Bangladesh 
have been reported in previous studies (Ahasan et al. 1970; 
Chowdhury 2003; Wahiduzzaman 2012). However, the 
impact of ENSO on weather and crop production has only 
received limited attention in the region. Chowdhury (2003) 
reported that the climate has a significant association with 
SOI extremes (despite a poor quantitative correspondence 
between the strength of ENSO and the rainfall anomaly), 
negative SOIs with dry and positive SOIs with wet condi-
tions in Bangladesh. In a moderate SOI anomaly, the index-
climate relationship, especially in Bangladesh, appeared to 
be contradictory during the mild El Nino years’ wet sea-
son. In recent times, Wahiduzzaman and Luo (2020) sug-
gested a strong relationship of ENSO with precipitation and 
temperature over the nation. Ghose et al. (2021a) recently 
revealed an increase in temperature by 1 °C and rainfall by 
1% causes a decrease in Aman rice yields by 33.59% and 
3.37%, respectively, in southwest and southeastern regions 
of Bangladesh. They also suggested that rice yield signifi-
cantly affected by the Indian Ocean Dipole (IOD). However, 
the linkages vary for areas and seasons. However, no studies 
have been conducted to evaluate the effect of ENSO on crop 
yields in Bangladesh, except for the study of Ghose et al. 
(2021a; b).

Because of current anthropogenic climate change, it is 
essential to recognize effective adaptation alternatives for 
improving current food production and reducing crop sys-
tems’ vulnerability to future climatic parameters (Islam 
et al., 2021a). There is also a need to understand the possible 
linkage of global and regional climate variabilities to crop 
yield to improve crop yield prediction capacity. However, a 
few studies have been focused on region-wise prediction for 
such specific rice type in Bangladesh. This study aims to 
assess how ENSO and related climate variability affect rice 
yield in different sub-regions of Bangladesh. The ultimate 
objectives of this work are (1) to evaluate the agro-climatic 
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regionalization of the Aus rice yield in Bangladesh using 
the principal component analysis of annual climate-derived 
yield index (CDYI) time-series estimated for 23 districts 
of Bangladesh for the period 1980–2017; (2) to investigate 
the inter-annual variability of CDYI of Aus rice in different 
climatic sub-regions using Pearson correlations, multiple 
regression, and wavelet coherence analysis; (4) to iden-
tify the critical large-scale atmospheric circulation indices 
(LACIs) affecting the fluctuation of Aus rice yield based on 
the CDYI-LACI association and random forest model; (5) to 
predict rice yield in three sub-regions of the country using 
the key LACIs as input in a multifactorial model. The novel 
aspect of this research is that the current study also contrib-
utes to generating scientific knowledge by investigating the 
response of rice yield to the large-scale atmospheric circula-
tion indices and several meteorological factors. Understand-
ing of Aus rice yield responses to climate oscillations would 
facilitate an early assessment of rice yield and recommend 
policy directives to ensure food security.

2  Data and methods

2.1  Study area

Bangladesh is the world’s leading deltaic country, situated 
in the southeastern part of Asia, extending 20.30 to 26.45° 
N latitudes and 88.00 to 92.45° E longitudes (Fig. 1a). The 

total area of this deltaic country is 147,700 Km2. By and 
large, 80% land area of this country is the floodplain of three 
major trans-boundary rivers: the Brahmaputra, the Padma, 
and the Meghna and their tributaries. The elevation of the 
floodplain varies from 1 to 60 m (Islam et al. 2020). Hills 
and hillocks occupy only a small part of southeastern and 
northeastern regions. The biodiversity-rich Bay of Bengal 
surrounds the southern part of the country. The country is 
blessed with a monsoon climate. The monsoon rainfall is 
an inevitable element for the country’s agricultural crop 
production. Bangladesh has three rice growing seasons: 
Aus, Aman, and Boro, based on climatic characteristics 
(Kamruzzaman et al. 2019). The present study is focused 
on the pre-Kharif Aus rice growing during April − July. 
Figure 1b shows the overview of Aus rice yield in the total 
study period. The country’s average precipitation is about 
2400 mm per year, mainly during June–September (mon-
soon season) (Jerin et al. 2021). On average sub-tropical 
monsoon climate dominates the country. However, the west-
ern and northwestern parts of this country often experience 
moderate to extreme droughts due to inter-annual rainfall 
variability.

The historical daily mean minimum temperature, 
maximum temperature, relative humidity, wind speed (at 
2-m height), evapotranspiration, and net radiation for the 
whole country are 21.39 °C, 29.94 °C, 80%, 1.32   ms−1, 
3.72  mm   day−1, and 10.44  MJm−2   day−1, respectively 
(Salam et al. 2020a). Bangladesh is sub-divided into seven 

Fig. 1  (a) Location of meteorological stations and climatic sub-regions of Bangladesh; (b) Overview of  Aus rice production in different districts 
of Bangladesh
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climatic regions (Fig. 1), based on geography and climatol-
ogy: (I) Southeastern; (II) Northeastern; (III) Northern part 
of the northern zone; (IV) Northwestern; (V) Western; (VI) 
Southwestern; and (VII) South-central. Three out of seven 
climatic regions, northern part of the northern zone, south-
western, and northeastern regions, were considered in the 
present study as Aus is widely cultivated in these regions.

2.2  Data sources

Daily precipitation, minimum, maximum, and average 
temperature data for 18 meteorological stations across the 
country were collected from the Bangladesh Meteorologi-
cal Department (BMD) (http:// bmd. gov. bd) for the period 
1980–2017. Besides, monthly cloud cover and potential 
evapotranspiration data for 18 stations were acquired from 
the Bangladesh Agricultural Research Council (www://cli-
mate.barcapps.gov.bd). The percentage of missing data in 
the acquired datasets was less than 5%. The nearest stations’ 
data were used to fill the missing data. The Staff of BMD 
checked all these data to ensure quality. We did not consider 
wind speed and sunshine period in this research work due 
to plenty of inconsistent temporal extent of time series data 
and issues of missing values. Considering missing values 
of daily climatic variables, we tested thoroughly employing 
a seasonally split missing value accusation system with na. 
sea split () (Mortiz et al. 2015) R function.

Some field observed data were used in this study: crop 
growth, rice development stages, and yields. Data of the crop 
growth and Aus rice development stages were acquired from 
Bangladesh Rice Research Institute (BRRI), and Aus rice 
yield data (yield/area, M.t/acre) of 23 districts were obtained 
from the statistical yearbook of Bangladesh Bureau of Sta-
tistics (BBS 2018) for the period 1980–2017. The selected 
18 meteorological stations cover these 23 districts. Qual-
ity control was conducted on the yield time-series datasets 
in every single district, and a linear interpolation method 
was used for some missing yield datasets. Moreover, data of 
the five common atmospheric oscillation indices were also 
used, which are Indian Ocean Dipole (IOD), East Central 
Tropical Pacific SST (Nino 3.4), Southern Oscillation Index 
(SOI), Multivariate ENSO (El Niño-Southern Oscillation) 
index (MEI), and Central Tropical Pacific SST (Nino 4). 
These atmospheric indices’ data were extracted from the 
National Oceanic and Atmospheric Association (NOAA) 
Climate Prediction Center (CPC) Website (http:// www. cpc. 
ncep. noaa. gov/ produ cts/ preci p/CWlin k/pna/nao.shtml) for 
the period 1980–2017. Though these indices are standard-
ized, the large-scale oscillations in some atmospheric and 
oceanic factors happening in the period of El Nino and 
La Nina occurrences can affect the system of Earth’s cli-
mate at the local to the global range. Each monthly LACI 

series had accepted by employing a homogeneity test by 
using the ACMANT homogenization software improved by 
Domonkos (2011).

2.3  Climate‑derived yield index

The climate-derived yield index (CDYI) is a common 
method for assessing climatic variables’ impacts on crop 
yields (Zhao et al. 2015; Huang et al. 2020). The present 
study adopted this method for exploring the relationship 
between different climatic variables and Aus rice yield. The 
CDYI is expressed statistically as:

where Yai
 denotes accurate Aus rice yield, and Ymi

 denotes 
the 5-year moving average of field-induced Aus rice yield 
(Li et al. 2018). The CDYI can be expressed by the follow-
ing equations also:

where a signifies the sensitivity of Aus yield variances to the 
selected key climatic variables (KCV). The effect of climatic 
variables on Aus rice yield can be estimated by multiplying 
a with the linear trend of climatic variables (Huang et al. 
2019). Likewise, the effects of the LACI divergences on Aus 
rice yield can be assessed by multiplying it with LACI’s lin-
ear trend. Adopting assumptions after Fang (2011), the pre-
sent study considered three conditions, which are as follows: 
(i) during Aus rice-growing season, the trend of actual Aus 
rice yield must be equivalents to the management-induced 
Aus rice yield found from simulation curve; (ii) study area 
plays the main role for changing the factors of the man-
agement-induced Aus rice yield, and the variation of actual 
Aus rice yield varies with climatic variability of the respec-
tive area; and (iii) the impacts of the KCVs on the Aus rice 
growth must be analogous to the feature of Aus crop growth 
and the response of Aus crop to the KCV.

2.4  Key climatic variables limiting the CDYI of Aus 
rice

The field investigation explored the growing period of 
Aus rice and selected the KCVs, which affect the Aus rice 
yield. The variables that may affect the Aus rice yield, like 
field management and soil conditions, were omitted from 
the analysis. The present study determined the KCVs for 
seven climatic sub-regions of Bangladesh based on the 
Pearson correlation coefficient (PCC). The average pre-
cipitation (PRE), average temperature (TMP), potential 

(1)CIYi = 100 ∗

(
Yai

Ymi

− 1

)

(2)CIYI = a × KCV + b

(3)CIYI = a × LACI + b

B. Ghose et al.32
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evapotranspiration (PET), average maximum temperature 
(TMX), average minimum temperature (TMN), and aver-
age cloud coverage (CLD) from April to July were estimated 
during the entire growth period of Aus rice. Finally, the rela-
tion between KCVs and the Aus rice CDYI were assessed.

2.5  Generating relationships between KCVs and Aus 
rice CDYI

The present study used multiple linear regression (MLR) to 
assess the functional relation between KCVs and Aus rice 
CDYI. The statistical equation of MLR is as follows:

where Y is the CDYI of Aus rice, �0 is the regression con-
stant,�k are the coefficients of partial regression, and xk are 
the KCVs. This regression model is convenient to the scien-
tific community by dint of its user-friendliness and easiness.

Weather and climate vary geographically and temporally, 
and therefore, the impacts of climatic variables on the crop 
yields in space and time. The correlation between KCVs and 
the CDYI of Aus rice in each station was used to demon-
strate the comparable mean sub-zone status. However, this 
representation is not correct for all the sub-zones. Therefore, 
PCA was used for detecting the spatial variations of KCVs 
based on the likenesses and contrasts (Polong et al., 2019). 
In PCA, the non-correlated elements are excluded from the 
main rotating element to generate principal components 
(PC). The loadings of PCs indicate the correlation between 
the accompanying PC scores (PCS) and time-series data 
(Capra and Scicolone 2012). Based on the outcomes of the 
PCA analysis of Aus rice CDYI, the present study identified 
three climatic sub-regions of Aus-rice cultivation.

2.6  Evaluating spatiotemporal changes of Aus rice 
CDYI using multistatistical models

This study involves multiple models or models to evaluate 
spatiotemporal changes of Aus rice yields in Bangladesh. A 
multifactorial model is linked with the convergence of envi-
ronmental and climatic phenomena (Ghose et al. 2021b). 
Such a model recognizes that depending on several factors, 
especially climatic and physical factors. For example, Pear-
son’s correlation coefficient (PCC) was used for assessing 
the relationship between the time–frequency domain link-
age between the Aus rice yield and the key LACI (Salam 
et al. 2020). The ensemble empirical mode decomposition 
(EEMD), proposed by Wu & Huang (2009), was used to 
decompose the non-linear and non-stationary time series sig-
nals into oscillatory modes, called intrinsic mode functions 
(IMFs) (Adarsh & Reddy, 2016; Alizadeh et al. 2019). The 
EEMD was used for detecting the variability of LACI and 

(4)Y = �0 + �1x1 + �2x3 +…… .. + �kxk

decomposing the time series data. To explore the oscillation 
features of climatic factors, EEMD was used in this research 
work (Johny et al. 2019; Huang et al. 2020). EEMD can be 
employed to exceed the mode mixing point without show-
ing an intermittent subjective check as in the EMD that is 
used due to time series decomposition in this research also, 
since it can divide ranges and necessities no previous crite-
rion of subjective choice (Wu and Huang 2009). The EEMD 
estimates IMF using the following steps: (1) superimpose 
white noise with the finite amplitude on the original data; (2) 
estimation of signal variation to get IMF1 implementation 
of the EEMD; (3) superimpose a noise with a similar ampli-
tude on the original data sequence which has been visible 
with IMF1; and (4) perform EEMD on the new sequence 
to obtain IMF2. The abovementioned phases are iterated 
until various IMFs and the trend objects are originated. The 
details of EEMD technique can be observed in the paper of 
Wu and Huang (2009).

The wavelet transform coherence (WTC) (Guo et al. 
2018; Rahman and Islam 2019) was used to find the cor-
relation between two time-series. The WTC measures the 
covariance magnitude between two time-series that fluc-
tuates between 0 and 1 (0 ≤ R^2 ≤ 1), where 0 denotes no 
consistency and 1 means a flawless consistency (Iqbal et al. 
2020). With the increase of the consistency, the symphony 
of time series variables also increases. The correlation is 
estimated using the following formula:

The present study utilized WTC for exploring the con-
sistency or correlation between the CDYI of Aus rice and 
the KCVs.

2.7  Random forest model

Nowadays, various machine learning algorithms are com-
monly used in science, technology, engineering, and math-
ematics to solve complicated non-linear problems. Random 
forest (RF), proposed by Breiman (2001), is a supervised 
algorithm that uses two bagging and random tree algo-
rithms. The RF has been widely employing in the literature 
for detecting features’ importance (Salam and Islam 2020; 
Salam et al. 2020b, Rahman and Islam, 2019). This study 
utilized the RF model for exploring the importance of Aus 
rice CDYI against the LACI. An RF model with 100 trees, 
1 execution slot, 7 seeds, and a maximum depth of 1 was 
used in this study. The scholars constantly use this model for 

(5)R2(m, n) =

||
|
N
(
N−1Wxy

)
(m, n)

||
|

2

N

(

N−1||Wx(m, n)||
2
N

(

N−1|||
Wy(m, n)

|||

2
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its robustness, reliable outcomes, flexibility, and scientific 
strength.

3  Results

3.1  Calculation of Aus rice CDYI for Bangladesh

Crop yield data is often not an accurate estimate of a 
region’s yield as it is affected by various management fac-
tors. Filters are generally used to remove the inherent prob-
lem in yield data and estimate the regional field average 
(Zhao et al. 2017). Therefore, filters were used to estimate 
the CDYI of Aus rice of every district. Different filters, 
including exponent, power, HP, logarithmic, and quad-
ratic, were fitted to CDYI to estimate the average regional 
CDYI. The estimated regional average CDYI using differ-
ent filters were correlated with the meteorological disaster 
indicators. The meteorological disasters considered in this 
study include drought, flood, cold wave, and waterlogging 
indicators. Three indicators related to each disaster were 
considered, as described in Table 1. The first indicator of 
each catastrophe is the total crop planting area’s ratio to 
the disaster-affected area. The second indicator is the crop 

planting area’s ratio of the disaster suffered area. The third 
indicator is the intensity of the disaster or the second to 
the first indicator ratio. Three indicators of four disasters 
produced a total of 12 indicators.

The correlation of CDYI generated by different fitting 
models with the disaster indicators is given in Table 2. The 
table shows that CDYI has a notable negative association 
(r <  − 0.4) with the first two drought indicators, DD1 and 
DD2 (described in Table 1). These are analogous with the 
past studies on Aus rice’s response to climate change in dif-
ferent sub-regions. Ghose et al. (2021a) found a stronger 
association of yield with precipitation than the other cli-
matic factors. The average areal CDYI obtained using a high 
pass (HP) filter showed higher negative associations with 
DD1 and DD2 than other fitted models. Therefore, an HP 
filter was used to extract the average CDYI of each of the 
23 districts.

3.2  Regional temporal variability of CDYI using PCA

PCA of Aus rice CDYI series of 23 districts was used to 
estimate the variance contributions and eigenvalues. Fig-
ure 2a shows the variance contributions of different PCs. 
The results showed that the first three PCs were adequate to 

Table 1  Definition of meteorological disaster indicators

Types of agro-meteorological disasters Disasters indicators Definition Units

Drought disaster (DD) DD1 Ratio of the DD-affected area to crop planting area %
DD2 Ratio of the DD-suffered area to crop planting area %
DD3 DD intensity (DD2/DD1) %

Flood disaster (FD) FD1 Ratio of the FD-affected area to crop planting area %
FD2 Ratio of the FD-suffered area to crop planting area %
FD3 FD intensity (FD2/FD1) %

Cold wave disaster (CD) CD1 Ratio of the CD-affected area to crop planting area %
CD2 Ratio of the CD-suffered area to crop planting area %
CD3 CD intensity (CD2/CD1) %

Waterlogging disaster (WD) WD1 Ratio of the WD-affected area to crop planting area %
WD2 Ratio of the WD-suffered area to crop planting area %
WD3 CD intensity (WD2/WD1) %

Table 2  Correlation of regional average CDYI generated using different fitting models and disaster indicators

Bold faces indicate a significance level (p<0.05)

DD1 FD1 CD1 WD1 DD2 FD2 CD2 WD2 DD3 FD3 CD3 WD3

5-year moving average  − 0.43 0.005 0.20 0.003  − 0.41 0.15 0.23  − 0.23 0.008 0.05 0.13 0.10
Linear regression  − 0.40 0.02 0.17 0.02  − 0.4 0.23 0.15 0.28 0.18  − 0.19  − 0.09 0.21
Exponent curve  − 0.42 0.12 0.15  − 0.06  − 0.48 0.004 0.006 0.14 0.19 0.14 0.18 0.03
Power curve  − 0.40 0.08 0.16 0.18  − 0.44 0.09 0.08 0.09 0.20 0.005 0.03  − 0.08
HP filter  − 0.52  − 0.09 0.20 0.023  − 0.49 0.07  − 0.09 0.07  − 0.19  − 0.19 0.02 0.09
Logarithmic curve  − 0.45 0.08 0.18 0.08  − 0.40 0.05 0.04  − 0.01 0.17 0.05 0.09 0.11
Quadratic curve  − 0.41 0.23 0.11 0.06  − 0.44 0.18  − 0.08 0.08 0.15  − 0.03  − 0.19  − 0.10

B. Ghose et al.34
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elaborate on the interannual variations of CDYI for the study 
period of 1980–2017. Therefore, the top-loading (> 0.8) of 
each PC was employed (Fig. 2b) for climatic regionalization 
analysis. The three temporal forms with different CDYI of 
Aus rice alterations were grouped based on PCA as follows: 
PC1 represents the northern part of Bangladesh, denoted as 
region I, PC2 characterizes the southwestern part (region II), 

and PC3 represents the northeastern part (region III). The 
strong synchronicity between corresponding regional mean 
CDYI and PCS is presented in Fig. 3. The higher climate-
driven yield losses were observed before 1995 for all the 
regions and also after 2005 in region I.

EEMD revealed several periodic CDYI oscillation in each 
sub-region (Fig. 4). However, there was a noticeable regional 

Fig. 2  (a) Results of PCA of the annual CDYI time series in 23 districts. a: eigenvalues and explained variances by different principal compo-
nents (PCs); (b) loading patterns of three first PCs of CDYI series in each district; (c) climatic regionalization based on PCA loadings

Rice yield responses in Bangladesh to large‑scale atmospheric oscillation using multifactorial… 35



1 3

variability in the prominent CDYI oscillation modes. The 
CDYI series exhibited a more noteworthy quasi 6-year fluc-
tuation for northern and northeastern regions, with the IMF2 
reaching maximum values ranging from 12.72 to 19.71% 
(Fig. 4a, c). On the other hand, the IMF1 of CDYI time 
series was 87.48%, demonstrating a quasi 2.75- to 3-year 
fluctuation in CDYI time series in the northwestern region 
(Fig. 4b). Besides, notable short-term fluctuations were 

observed in the northern and northeastern regions and 
medium-range fluctuations in the northwestern region.

3.3  Connection of CDYI with KCVs and LACIs

Figure 5 shows the correlations of Aus rice yield with dif-
ferent KCVs in three sub-regions of the study area. The 
results showed large variability in the influence of different 

Fig. 3  Annual time series 
of PCs and regional average 
CDYI in three sub-regions 
during the observation period 
(1980 − 2017)

Fig. 4  Major cycles (MC) in 
regional CDYI and their contri-
butions to CDYI variance
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KCVs in different sub-regions. CDYI showed the strongest 
association of − 0.69 with Apr_PRE in the northern region 
(region I), the largest correlation (− 0.43) with Jul_TMP in 
the northwestern region (region II), and the highest correla-
tion (− 0.47) with May_TMN in the northeastern (region 
III) (Fig. 5a, 5b, 5c). The CDYI correlations were signifi-
cant seven indices in the northern region at p < 0.01. Among 
them, positive association with Apr_ TMX and Jun_ TMP, 
and negative association with Apr_ PRE, CLD May_ TMP, 
TMN, CLD (Fig. 5a). In region II, CDYI showed a positive 
association with Apr_ PRE and May_ PET and a negative 
association with Apr_ TMP, Jul_ TMP, and TMN at p < 0.01 
(Fig. 5b). In region III, only May_ PET showed a signifi-
cant positive association with CDYI, while Mar_ PET, May_ 
TMN, PRE, and Jun_TMN showed a significant negative 
association at p < 0.01 (Fig. 5c). The results indicated higher 
sensitivity of Aus rice yield to different climate variables in 
the northern region.

The stepwise multiple regression model relating CDYI 
with KCVs also revealed Apr_ PRE for region I, Jul_ TMP 
for region II, and May_ TMN for region III as the most 
influencing variable define CDYI fluctuation. These three 
KCVs showed significant influence on Aus yield at p < 0.05, 
indicating substantial sensitivity of Aus rice yield to differ-
ent climatic variables.

The correlation coefficients between Aus rice CDYI and 
LACI for the Aus rice-growing season (March to July) were 
also estimated (Fig. 6). The most remarkable CDYI-LACI 

relationship was noticed for region I (northern region), 
where its highest negative value was − 0.42 and the positive 
value was more than 0.3. The maximum positive and nega-
tive correlations were 0.33 and − 0.40 for regions II and 0.36 
and − 0.41 for region III, respectively. All the negative asso-
ciation of CDYI with LACIs was significant at p < 0.01, indi-
cating the potential of CDYIs in Aus rice yield prediction in 
the study area. The stepwise multiple regression of CDYI 
with LACIs identified IOD in April (Apr_IOD), NINA3.4 
in July (Jul _NINA3.4), and IOD in March (Mar_ IOD) as 
the most influencing LACI of Aus rice yield fluctuation in 
regions I, II, and III, respectively (Fig. 6).

A 10-year moving correlation between CDYI and LACI 
(Fig. 7) revealed noticeable temporal variations in CDYI_
LACI relationship. A decrease followed by an increase and 
then again decreased CDYI_LACI relationship was observed 
in all three sub-regions. The highest negative correlations 
between CDYI and IOD_ Apr were found during 1992–2004 
in region I (Fig. 7a). A significant positive correlation 
between CDYI and LACI was observed during 1988 − 1992, 
2004 − 2007, and 2012 − 2016 in region II (Fig. 7b), and 
1988 − 1993, 2002 − 2006, and 2013 − 2016 in region III 
(Fig. 7c).

The relationship between KCVs and LACIs for 0 to 
4 months lags for the study period 1980–2017 is shown 
in Fig. 8. Many of the KCVs were found significantly cor-
related to different LACIs with different lag months. The 

Fig. 5  Correlations between  Aus rice yield and climate variables in 
regions ((a) region I, (b) region II, (c) region III; the number within 
a solid line frame indicates; the bold fonts denote the key climate 
variables (KCVs) affecting yield, estimated using multiple stepwise 
regression analysis) Fig. 6  Correlation between CDYI and LACIs in different sub-regions 

((a) region I, (b) region II, (c) region III; the solid line frame denotes 
the key LACIs screened by the multiple stepwise regression analysis)
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KCV showed a positive relationship with IOD and MEI with 
lag periods of 0 to 3 months, indicating early forecasting of 
KCVs, and thus, Aus yield using IOD and MEI. Besides, 
NINO3.4 and NINO4 showed a significant positive associa-
tion with May_TMN with a lag of 3 months.

Interestingly, MEI showed a significant negative impact 
with a lag period of 3_month, and SOI showed no significant 
influence on Aus yield. Furthermore, except the 3-month lag 

MEI, there was no discrepant impact of LACI on Aus rice 
yield. The maximum correlation values of 0.37, 0.38, and 
0.39 for MEI, NINO3.4, and IOD, respectively, explaining 
a potential influence of those LACI on Aus rice yield. How-
ever, the dominance of KCVs on LACI varies significantly 
with time.

3.4  Impacts of KCVs on rice yield fluctuation

Figure 9 shows the wavelet transform coherence between 
KCVs and PCs in three sub-regions of Bangladesh. The 
arrows unto the right side indicate a positive association 
(in_phase) between the KCVs and PCs and vice versa. Fig-
ure 9a exhibits arrows on the left side, stating a negative 
(out _phase) relationship between PC1 and PET_Apr dur-
ing 1985–1990 and 1995–2003 in region I. Figure 9b shows 
no significant relationship between PC2 and TMP_Jul in 
region II (Fig. 9b). In region III, a strong significant positive 
relationship was noticed between PC3 and TMN_May in 2 
to 4 years (Fig. 9c). The red circle in Fig. 9 indicates a cor-
relation value of 0.80, representing a significant relationship.

The RF was used to explore the relative importance of 
contributing factors. This technique confirmed the signifi-
cance of the contributing factors of Aus rice yield in Bang-
ladesh. The results presented in Table 3 revealed IOD and 
NINO3.4 as the principal contributing LACIs. The most 

Fig. 7  The 10-year moving 
Pearson correlation series in 
each sub-region (histograms 
represent the correlation time 
series and red dashed lines 
represent its smooth curve)

Fig. 8  Correlations between KCVs and LACIs in different sub-
regions ((a) region I, (b) region II, (c) region III; the number within a 
solid line frame indicates significant correlation at p < 0.01)
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influencing factors for all three regions were IOD (89.00, 
21.17, and 20.23 for regions I, II, and III respectively). 
The NINO3.4 was the second largest contributing factor 
of Aus rice variability followed by SOI, MEI, and NINO4. 
The stronger influence of all LACIs was in region I (89.00, 

88.14, 63.17, 62.65, and 62.13 for IOD, NINO3.4, SOI, 
MEI, and NINO4 respectively) compared to the other two 
regions.

3.5  Yield prediction for Aus rice using LACI

The multiple linear regression models were developed to 
predict Aus rice yield. Two types of models were developed 
in this study, multifactor and single-factor model. In the mul-
tifactor model, the most influencing LACIs of a sub-region 
and year were used as input. For example, IOD_Apr and 
year were used for multifactor development model in region 
I. For the single-factor model, the only year was used as 
input. The multifactor and single-factor models developed 
for different sub-regions using simple multiple regression 
analysis are presented in Table 4. The model performance 

Fig. 9  Wavelet coherence and phase difference between PCs and KCVs in different sub-regions ((a) region I, (b) region II, (c) region III). The 
thick black contour designates the 95% confidence level against red noise)

Table 3  The outcomes of significance analysis of LACI in different 
regions in Bangladesh using random forest (RF) model. Values in the 
table indicate importance degree of different LACIs

Sub-region IOD NINO 3.4 SOI MEI NINO 4

Region I 89.00 88.14 63.17 62.65 62.13
Region II 21.17 21.01 18.28 18.05 17.10
Region III 20.23 19.11 19.03 17.70 17.25
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was evaluated using coefficient of determination (R2). The 
R2 values for multifactor models were highest for region I 
(0.63), followed by region III (0.60), and region I (0.58). 
The performance of single-factor model was a less than the 
multifactor models. The R2 for single-factor models for the 
three sub-regions were in the range of 0.44 to 0.49. The best 
performance of single-factor model was in region I, like the 
multifactor model.

The performance of the models in replicating observed 
yield in different sub-regions was also evaluated through 
visual inspection of observed and simulated yield time series 
(Fig. 10). The figure shows a good analogy between simu-
lated and observed yield series in different sub-regions. The 
maximum relative error in predicted yield was higher before 
1998. The prediction precision of the multifactorial model 
in region III was best, with the mean relative error (MRE) 
of only 4.82%, followed by region II with MRE of 5.51%. 
The prediction error was relatively higher in region I than 
in the other two regions.

4  Discussions

The present study evaluated the influence of KCVs and 
LACIs on Aus rice yield in various sub-regions in the coun-
try for 1980–2017. Three climatic regions, north, northwest, 
and northeast, were identified based on different Aus yield 
response to climate variability. This outcome is analogous 
to Ghose et al. (2021a). They explored six climatic regions, 
including north, northwest, west, southwest, south-central, 
southeast, based on the susceptibility of rain-fed rice yield 
to climate variability for the whole of Bangladesh (Ghose 
et al. 2021a and b). The present study revealed Aus rice 
yield in the northern part of Bangladesh is more susceptible 
to climatic anomalies. Climate variables oscillated in the 
range of 2.75 to 3 years as identified in the northwestern 
sub-region, while quasi of 6-year fluctuation was noticed in 
the northern and northeastern regions. These findings are 
similar to the findings of Ghose et al. (2021a). The precipita-
tion showed a negative correlation with yield in the northern 
part. The wavelet coherence analysis outcomes ensured this 

Table 4  Linear relationship 
between  Aus rice yield with 
LACI and year in different sub-
regions of Bangladesh

Sub-region Model type Yield prediction models R2 p

Region I Multifactorial
Single-factor

Yield = 69.1 * Year − 511 * IOD_Apr − 13,344.2
Yield = 65.5 * Year − 122,366.3

0.63
0.49

0.001
 < 0.001

Region II Multifactorial
Single-factor

Yield = 75.9 * Year − 212 * NINA3.4_Jul − 668,378.1
Yield = 72.3 * Year − 108,710.2

0.58
0.44

 < 0.001
 < 0.001

Region III Multifactorial
Single-factor

Yield = 37.5 * Year − 432 * IOD_Mar – 322,363.5
Yield = 71.9 * Year − 116,409.3

0.60
0.51

 < 0.001
 < 0.001

Fig. 10  Simulation results for  
Aus rice yield using multifacto-
rial model
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association (Fig. ). Sarker et al. (2012) showed a signifi-
cant relationship between Aus rice yield and precipitation, 
consistent with this study. The outcome of this result is 
also in line with Huang et al. (2018). However, this study’s 
findings are inconsistent with Amin et al. (2015), where an 
insignificant association between Aus rice yield and rainfall 
has been shown. During the primary stage of Aus grow-
ing period, it needs supplementary irrigation (BRRI, 1991). 
About 10–25% of the annual precipitation occurs during the 
pre-monsoon hot season (March–May). This pre-monsoon 
mean rainfall varies from 200 mm northwest to 800 mm in 
the north and the northeast (Cottam 1997). The extreme 
droughts in the northern part of Bangladesh, where yearly 
mean rainfall is relatively more minor, often bring water 
scarcity and long-term environmental calamities (Sheffield 
et al. 2009).

Mean temperature and minimum temperature were found 
as the critical climatic factor in the northwestern and north-
eastern regions. These two climatic factors showed nega-
tive impacts on Aus rice yield. Sarker et al. (2017) stated 
that maximum temperature positively influences whether 
the minimum temperature negatively affects the rice yield, 
which is relatively consistent with the results found in this 
study. Due to the ENSO connected indices, seasonal drought 
occurs during the El Nino stage (Chen et al. 2018). In the 
current study, indices like IOD, NINA4, NINA3.4, MEI, 
and SOI showed a significant relationship with rice yield 
in different sub-regions. The most influencing indices were 
IOD_Apr, NINA3.4_Jul, and IOD_Mar for northern, north-
western, and northeastern regions. This result is similar 
to Chen et al. (2020), where they found that NINO1 + 2, 
PDO, NAO, and SOI strongly influence winter wheat yield 
in Henan province, North China. Huang et al. (2021) used 
different LACIs, including NINO3, PDO, TSA, NINO4, 
and NP as the influencing factors of summer maize yield in 
Henan province in North China which is also in good agree-
ment with the present study. Ahmad et al. (2019) also identi-
fied the CDYI and LACI relationship. A good association 
between KCVs and LACI in different sub-regions in Bang-
ladesh, found in this current study, indicates ENSO-climate 
associations in Bangladesh. Aus rice yield is most influenced 
by 0 to 3 month lagged IOD followed by NINO3.4 and SOI. 
The previous studies showed less dominance of NINO4 and 
NINO3.4 on rice yield (Li et al., 2015; Lizumi et al., 2014; 
Ray et al., 2012), which is in line with the present study. 
Limsakul (2019) also showed a less negative relationship 
between rice yield and MEI in Thailand.

In Bangladesh, the northern part often experiences Rabi 
droughts, preliminarily connected to MEI and El-Nino (Zhao 
et al. 2016; Zhang et al. 2014). They emphasize the demand 
for adaptation and maintenance of drought during the Rabi 
(winter) season, particularly in March. A significant Aus rice 
yield deficit, specifically before 1995 in the northern and 

northwestern zone, while after 2005 in the north of region 
may be linked to droughts in the area in 1991, 1992, 1994, 
1995, 1997, 1998, 2000, 2003, 2005, 2007, 2009, and 2010 
(Afrin et al. 2018; Islam et al. 2014; 2017; Shahid and Beh-
rawan 2008). El-Nino occurrences are linked to rice yield’s 
heavy retrenchment during 1994/1995 and 2015/2016, as 
Rahman et al. (2017) reported.

The mean relative error (MRE) in yield prediction based 
on the multifactorial model with LACI and year as input was 
between 4.82 and 5.78% for different sub-regions of Bang-
ladesh. The yield prediction technique with LACI and year 
as inputs showed powerful aptness, stronger exactness, and 
more accessible actions. Overall, the yield prediction error 
was high in the northern region. This region has experienced 
prolonged drought, water scarcity, groundwater depletion, 
and extensive cultivation management (Afrin et al. 2018; 
Rokonuzzaman et al. 2018). Thus, fluctuations of Aus rice 
yield in the northern region were comparatively more com-
prehensive and more difficult to predict. There is the prec-
edent that such climate occurrences like drought, flood, and 
cyclone are the consequences of global warming, bringing 
catastrophic outcomes to rice yield’s retrenchment (Zinat 
et al. 2020). This study concentrated on association with 
the CDYI of Aus rice anomalies to the LACIs and KCVs in 
Bangladesh. Climate change response to Aus rice yield in 
Bangladesh of the last three decades has also been differenti-
ated in this study. The outcomes provide an unprecedented 
basis for sustainable Aus rice production in Bangladesh to 
cope with the forthcoming climate change. The connection 
between KCVs of Aus rice and CDYI depends on the use 
of data, i.e., the observed Aus rice yields. In this way, if the 
observed yields were accurate and representative or not, it 
would affect the evaluation precision of CDYI. However, 
maximum observed rice yields were found on manual data-
sets. Some observation mistakes may present that were not 
trimmed in this research study and may have outperformed 
the associations between them.

Furthermore, the potential anomalies in the several Aus 
rice growing-stages in response to regional climatic features 
and kind of crop management have not been considered, 
making these correlations questionable. However, these 
shortcomings demonstrate a profound insight into the cor-
relations among Aus rice CDYI and LACIs and KCVs at 
the region period in Bangladesh. This study signifies that 
climate anomalies influence several climatic regions in sev-
eral ways. The outcomes are cautionary performing policies 
for coping at the country level, which would not be fruitful. 
It provides evidence that coping guidelines should be estab-
lished for the climatic region and regional specific basis, 
which further gives surety the necessity for a region-specific 
research work crop production and climate anomalies. Thus, 
this will assist in launching micro-level or local adaptation 
policy to decline the Aus rice yield, ensure food guaranty, 

Rice yield responses in Bangladesh to large‑scale atmospheric oscillation using multifactorial… 41



1 3

and lessen poverty to earn sustainable development goals in 
the aspect of climate variation.

5  Conclusion

The linkage of Aus rice yield in Bangladesh with large-scale 
atmospheric oscillation indices is explored in this study. The 
primary outcomes of this research study are as follows: the 
temporal modes of rice CDYI time series of 23 districts 
of Bangladesh for the period 1980 − 2017 identified three 
analogous sub-regions: north, northwest, and northeast. 
IOD_Apr, NINA 3.4_July, and IOD_March were recog-
nized as the vital LACIs significantly influencing CDYI in 
north, northwest, and northeast sub-regions, respectively. 
The higher IOD_Apr causes a more significant rice yield 
reduction in the northern region. The PET_Apr revealed a 
substantial negative (anti_phase) coherence with yield fluc-
tuations at 0 − 3- and 9 − 10-year frequency in the north. 
The RF model revealed IOD as the most influencing LACI 
in describing Aus rice yield fluctuation in the study area. 
The yield prediction using LACIs and the year as predictors 
revealed their potential to predict Aus rice yield in Bang-
ladesh. The new knowledge generation and the novel rice 
yield prediction pathway shown in this study would certainly 
help in mitigating crop loss due to climate variability and 
climate-resilient sustainable agricultural development in 
Bangladesh. The novelty of this research is that this study 
explored the prediction on a regional basis for the Aus rice 
yield and also investigated the relationship between Aus rice 
yield and different type of meteorological factors. However, 
future research should highlight working the performance 
of anthropological effects on regional climate change. Fur-
ther studies should explore the extreme climate occurrence 
mechanisms, promote early warning, and take sufficient 
adaptation and mitigation guides for a better policy response 
to future agricultural crop water management and food secu-
rity in Bangladesh.
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