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Abstract: In this work, the potential of utilizing a waste latex-based precursor (i.e., natural rubber
glove (NRG)) as a carbon source for carbon nanotube (CNT) fabrication via chemical vapor depo-
sition has been demonstrated. Gas chromatography-mass spectroscopy (GC-MS) analysis reveals
that the separation of the lightweight hydrocarbon chain from the heavier long chain differs in
hydrocarbon contents in the NRG fraction (NRG-L). Both solid NRG (NRG-S) and NRG-L samples
contain >63% carbon, <0.6% sulfur and <0.08% nitrogen content, respectively, as per carbon-nitrogen-
sulfur (CNS) analysis. Growth of CNTs on the samples was confirmed by Raman spectra, SEM
and TEM images, whereby it was shown that NRG-S is better than NRG-L in terms of synthesized
CNTs yield percentage with similar quality. The optimum vaporization and reaction temperatures
were 350 and 800 ◦C, respectively, considering the balance of good yield percentage (26.7%) and
quality of CNTs (ID/IG = 0.84 ± 0.08, diameter ≈ 122 nm) produced. Thus, utilization of waste NRG
as a candidate for carbon feedstock to produce value-added CNTs products could be a significant
approach for eco-technology.

Keywords: waste latex; natural rubber; carbon nanotubes; fractionation; chemical vapor deposition

1. Introduction

Waste management of latex, either natural or synthetic rubber, has become a serious
issue in many countries, as most of the daily and technological applications of latex have a
limited lifetime, such as connector rubber rings, rubber cork/stoppers, tires, shoe soles,
and so on. The use of natural rubber (NR) products such as laboratory gloves and medical
gloves also have increased rapidly due to the advancement of the research sector, as well as
due to the awareness of cleanliness and viral diseases, such as with the recent COVID-19
pandemic crisis [1]. The large portion of waste produce from these industry production
lines, as well as from post-consumers, will increase rapidly without proper solutions for
poor disposal practices, such as land fill dumping and open burning, which expand the
financial and environmental burden [2,3]. For example, disposal of rubber gloves will
be degraded into micro-plastics that cause possible harm to the health of animals and
humans who accidentally ingest them, as they contain heavy metal and organic chemicals.
Micro-plastics also have contaminant absorptive properties that may act as pollutants
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in the environment (air, soil and water) [4]. According to Nuzaimah et al., Malaysia is
one of the biggest producers and exporters of these latex products, with 372.4 thousand
tons of production and 381.9 thousand tons of consumption for natural rubber in 2020,
as mentioned in the Malaysian Rubber Export Promotion Council (MREPC) report. As
for world total consumption, an increment of 2.8% per annum until 2025 is forecasted by
the International Rubber Study Group (IRSG) [5]. Therefore, development of methods for
utilizing these waste matters into value-added products would benefit both the economy
and the environment towards eco-technology.

The conventional treatment of waste latex is by pyrolysis, either thermal or catalytic
pyrolysis. Both methods have been employed to recycle and upcycle the waste latex
by decomposing them into several useful products, such as carbon black, oil, char, fuel
and gas [6–9]. Pyrolysis for waste rubbers has been studied by many researchers, who
have shown the compound mainly consists of hydrocarbon compounds (i.e., poly-isoprene
(C5H8)n) [10–13]. Campuzano et al. recently reported distillation of pyrolysis oil from waste
tires. They confirmed that the most significant molecular classes found in the fractions were
pure hydrocarbons and hydrocarbons containing impurities of one sulfur atom [14]. They
also revealed the existence of light aromatic hydrocarbons such as benzene, toluene and
xylene, as well as aliphatic-like limonene in those compounds. These findings eventually
led to the potential production of a hydrocarbon source from waste NR latex.

Utilizing waste resources, such as agro-waste and waste-plastic, as carbon feedstock
has become popular in the promotion of the waste-to-wealth concept [15–18]. Aligned
with this idea, potential value-added products from the upcycling of waste latex as hy-
drocarbon sources, such as scrap rubber, scrap tire and gloves, are carbon nanostructures
(i.e., carbon nanotubes (CNTs) and graphene) [19–22]. Fabrications of CNTs and graphene
have been rapidly gaining attention for various potentials in photonic, electronic, energy
and mechanical applications, as they exhibit excellent mechanical, electrical and chemical
properties [23,24]. As a case in point, multi-walled CNTs can be utilized as fillers in the
development of ceramics and polymer composites, with enhanced optical and mechan-
ical properties [25,26]. Furthermore, multi-walled CNTs also have been employed for
scanning probes on micro-scope tips, bio-sensors and field emission devices in industrial
applications [27]. There are several techniques that have been developed to produce car-
bon nanomaterials from cheap, recyclable carbon sources (organic materials, plastic, etc.),
such as pyrolysis, plasma treatment, arc-discharge and high-temperature spinning disc
processing, depending on the type of precursors and targeted products [28,29]. For CNT
fabrication, chemical vapor deposition (CVD) is the most commonly employed method
due to its low cost and the uncomplex setup of the system, whereas all types of precursors
(i.e., solid, liquid and gaseous) can be exploited. Different vaporization temperatures
required for decomposition depending on the precursors type play an important role in
determining the growth of desired carbon nanostructures [30]. Therefore, by exploiting
the decomposition of hydrocarbon from waste latex, the possibility of its employment as
an efficient carbon feedstock for CNTs growth is worth exploring. In this work, we will
tackle the synthesis of CNTs by utilizing waste NR gloves, as an economic carbon source,
via facile chemical vapor deposition methods. The fabricated CNT product will then be
characterized by Raman spectroscopy, scanning electron microscopy and transmission
electron microscopy.

2. Materials and Methods
2.1. Materials

Waste NR latex employed for this study were commercial NR gloves (NRG) from
laboratory waste (AS ONE Corporation, 1-8449-01, Made in Malaysia). Two different types
of precursors were prepared, which were solid (NRG-S) and liquid-fraction (NRG-L). For
the NRG-fraction process, 50 g of NRG-S placed inside a 1 L round-bottom flask was
first heated up to 120 ◦C for 2 h to remove the water content from the waste. Then, the
fraction distillation setup was prepared in the fume hood, as shown in Figure 1. The NRG-S
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was heated above the boiling point of 450 ◦C until there was only residue left in the flask.
NRG-S vapor was condensed in the condenser column then moved into the collector beaker.
The fraction (NRG-L) was then analyzed for comparison.

Figure 1. Fractional distillation setup for waste NRG fractionation process.

2.2. Precursor Analysis

The elemental composition of the gloves was determined using the Carbon-Nitrogen-
Sulphur analyser (CNS, Version 1.1x, TruMac, LECO Corporation, MI, USA) to determine
the carbon, nitrogen and sulfur contents. Thermal gravimetric analysis (TGA, TGA/ SDTA
851, Mettler-Toledo Inc., Greifensee, Switzerland) was performed to determine the decom-
position temperature. The analysis was done under nitrogen condition, heated up to 800 ◦C.
To investigate the precursors hydrocarbon contents, the waste NRG was injected into a
gas chromatography-mass spectroscopy system (GC-MS, 8060 MS with Cryo 800 module,
Fisons Plc., Loughborough, UK) in the EI (Electron Impact) mode, with the electron energy
set at 70 eV and the mass range at m/z 25–700. The chromatographic separation was per-
formed using a capillary column ZB-5 MS (30 m × 0.25 mm, (length × internal diameter)),
at 0.25 µm film thickness. The temperature program was set as follows: Temperature of
50 to 100 ◦C with a step increment of 20 ◦C/min, 1 min holding time; 100 to 300 ◦C with
step increment of 5 ◦C/min, then 10 min holding time. The splitless injection with a split
ratio of 2:1 was applied at 290 ◦C. The ion source and transfer line temperatures were kept
at 240 and 320 ◦C, respectively. The flow rate of the carrier gas (helium) was maintained at
1.0 mL/min. The chromatographic peaks were recognized using their retention times by
comparing the retention times with those of authentic compounds, and the spectral data
were obtained from the Wiley NIST Spectral Libraries. The peak identification was carried
out by probability-based matching (PBM).

2.3. Fabrication of CNTs

The synthesis of CNTs was conducted in two phases by using two different CVD
techniques. For phase 1, investigation of the potential of NRG-S and NRG-L as carbon
precursors was performed using CVD with a single furnace setup, as shown Figure 2a.
The commonly used precursor (i.e., ethanol) was employed for CNTs product comparison,
as liquid precursors have a lower cost and are easier to handle than gaseous precursors
in our CVD system [30]. A total of 5 wt% of ferrocene was mixed with the precursor in
the heating flask as catalyst nanoparticle, which assisted as seed for CNTs growth, while
nickel foil (2 cm × 2 cm) was placed in the ceramic boat at the center of tube furnace
(cylindrical quartz tube, length = 100 cm and diameter = 5 cm) as a substrate. Before the
start of the CNTs synthesis process, Ar gas was introduced at 150 sccm into the tube while
increasing the furnace temperature to 700 ◦C, whereby the synthesis reaction occurred at
this temperature [31]. When the furnace reached the reaction temperature, the precursor
was vaporized above the boiling point using heating mantle at 450 ◦C for NRG and 80 ◦C
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for ethanol, respectively. The carbon feedstock was injected into the tube reactor by by-
passing the Ar gas flow for 30 min. Afterwards, the samples were left to cool by switching
off the furnace power until room temperature was reached, while maintaining the Ar
environment. The synthesized samples were then collected from the nickel substrate.

Figure 2. Chemical vapor deposition setup for CNTs synthesis process. (a) Single furnace CVD for phase 1 and (b) double
furnace CVD for phase 2.

For phase 2, investigation of the effect of NRG-S precursor vaporization temperature
and sample reaction temperature on CNTs growth was performed via double furnace CVD
(DFCVD), as in Figure 2b. A total of 5 wt% of ferrocene was mixed with the precursor
(0.4 g) in the ceramic boat at the ‘precursor furnace’, while nickel foil (1 cm × 1 cm), as a
substrate, was placed in the ceramic boat at the ‘sample furnace’ (cylindrical quartz tube,
length = 90 cm and diameter = 4 cm). Before increasing the temperature, Ar:H2 gas flow
with 90:10 sccm were introduced in the reactor for 10 min. Then, the ‘sample furnace’
temperature was increased until it reached the desired reaction temperature. For this
study, the sample reaction temperature performed at 700–900 ◦C. After that, the ‘precursor
furnace’ temperature was increased to the studied vaporization temperature of 350–450 ◦C.
Upon reaching the studied temperature, the synthesis processes were done for 15 min.
Afterwards, the samples were left to cool by switching off the furnace power until room
temperature was reached, while maintaining the Ar environment. The synthesized samples
were then collected from the nickel substrate.
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2.4. Characterizations

For CNTs yield analysis, the weights of the catalyst and synthesized samples were
measured to calculate the carbon deposition yield percentage [32]:

Yield =
mf − mi

mi
× 100 (1)

where mi denotes the catalyst initial weight and mf is the total weight of the substrate
after carbon deposition. A scanning electron microscope (SEM, JSM 5600, JEOL Ltd.
Tokyo, Japan; accelerating voltage: 15 kV) was employed for the morphology observa-
tion of the samples surface. Raman spectroscopy (NRS 3300 laser Raman spectrometer,
JASCO Inc., Tokyo, Japan; laser excitation energy = 532.08 nm, spectral grating = 600 L/mm;
laser power = 7.8 mW; integration time per spectra = 15 s; accumulation per spectrum = 3x)
was used to analyze the quality of the synthesized CNTs. Additionally, 4 more spectra were
measured per sample in order to complete the average ID/IG ratio calculation. Fourier
transform infrared spectroscopy (FTIR, FT/IR-4200A, JASCO Inc., Tokyo, Japan; stan-
dard light source; triglycine sulphate detector; accumulation per spectrum: 235, aperture:
7.1 mm; scanning speed: 2 mm/s; filter: 30 kHz) was used to characterize the structure
and surface property of the samples using the attenuated total reflectance (ATR) technique.
High-resolution nano-structural observation and element confirmation of the synthesized
CNTs were conducted using scanning transmission electron microscopy (STEM, JEM-
ARM200F, JEOL Ltd., Tokyo, Japan; accelerating voltage = 200 kV) equipped with bright
field (BF), annular dark field (ADF) and energy dispersive X-ray analysis (EDX) detector.

3. Results and Discussions
3.1. Analysis of Waste NRG as Carbon Precursor

In order to explore the potential of NRG as precursors, TGA analysis was performed
to identify the temperature where NRG liberated most of its compounds. The thermal
gravimetric analysis and differential thermo-gravimetric (TGA-DTG) profile, in Figure 3,
shows a single-step weight loss in the temperature range of 170–470 ◦C, reaching a peak at
380 ◦C. The weight loss from room temperature up to 200 ◦C resulted from the removal
of water content inside the sample. A further significant weight loss trend was seen at
300–450 ◦C, which suggested that most of the compounds were liberated in this temper-
ature range. The remaining 24.94% was the carbonaceous residue left after hydrocarbon
compound evaporation.

Figure 3. TGA and DTG curves of waste NRG.
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From CNS analysis, the percentages of elements are shown in Table 1. It shows that
both the NRG and its fraction contain >63% of high carbon, with only a very low amount
of sulfur and nitrogen, being <0.6% and <0.08%, respectively. The remaining percentage
might be contributed to by other elements such as oxygen and hydrogen. The majority
content percentage being carbon means it will comply as a potential carbon source, while
the small amount of sulfur and nitrogen will assist the growth of CNTs [33,34].

Table 1. Composition of waste NRG from CNS analysis.

Sample Carbon (%) Nitrogen (%) Sulfur (%)

NRG-S 64.858 0.0706 0.6669
NRG-L 63.820 0.0769 0.4791

GC–MS analysis was performed to identify the waste NRG compounds. The chro-
matogram profiles of the waste NRG-S and NRG-L are shown in Figure 4a,b, respectively.
Both of the chromatograms show the presence of a noise peak, thus the peaks from the
wastes were counted if the peak matched 80% to specific compounds with high intensity.
The peak identification was carried out by probability-based matching (PBM) [35]. The
major compounds in the NRG are tabulated in Table 2 and listed in order of the corre-
sponding peaks in each GC spectrum. The results revealed that NRG-S contains more
carbon elements of heavy hydrocarbon compounds ranging from C16 to C29, compared
to NRG-L with C8 to C10. This is due to the fractionation process, whereby the NRG-L
was reacted with an oxygen element in the samples and the environment before releasing
the carbon component in the form of CO2, CO or another light hydrocarbon compound
into the surrounding [36,37]. From the chromatogram profile, the compounds inside the
NRG-S mostly cracked after the 20 min retention time of heating process, which was at
170 ◦C, due to the presence of high hydrocarbon molecular weight components. Whereas
for NRG-L the compound started to vaporize early, at 3 min retention time, due to its
lower molecular weight components. The presence of compounds such as limonene and
dimethyl benzene is in agreement with the literature [13]. The long hydrocarbon chains
(i.e., aliphatic and aromatic) were derived from the additive and thermal degradation
process [38]. Branched aliphatic hydrocarbon- and benzene-based compounds with high
molecular weight are suspected as the major hydrocarbon structures present in the solid
sample, as depicted in the unknown peaks of Figure 4a [23]. Expected compounds were
determined as hexacontane, cyclohexylmethyl hexyl ester, di- and trimethyl benzene and
aliphatic alcohol. They could be tetramer, pentamer or hexamer, which would appear at a
high retention time due to their high molecular weight.

Table 2. Major compounds analyzed from GC-MS for waste NRG-S and its fraction (NRG-L).

Retention Time (Min) Expected Compound Formula

NRG-S
4.111 D-Limonene C10H16
23.21 Dibutyl phthalate C16H22O4

27.841 Nonadecyl acetate C21H42O2
31.206 Heneicosyl acetate C23H46O2
33.135 1,2-benzenedicarboxylic acid C16H22O4
43.946 Fucosterol C29H48O
48.475 Tetrapentacontane C54H110
50.398 Hexacontane C60H122

NRG-L
3.343 Benzene, 1,3-dimethyl- C8H10
4.111 D-Limonene C10H16
4.35 2,6-Dimethyl-2-trans-6-octadiene C10H18
4.479 1,5-Heptadiene,2,3,6-trimethyl- C10H18
4.896 D-Limonene C10H16
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Figure 4. GC-MS chromatogram profile of waste NRG and its fraction. (a) NRG-S and (b) NRG-L.

3.2. Characterization of Synthesised CNTs

The investigation of the potential of NRG-S and NRG-L as carbon precursors was
performed with ethanol as a comparison precursor. The surface morphology of the three
samples were shown in FESEM images (see Figure 5). Figure 5a shows that a high carbon
yield percentage of 114.6% and an average CNTs diameter of 95.38 ± 65.66 nm were
synthesized from the ethanol precursor. Other than fibrous CNTs structures, flake-like
carbon protrusions and debris were also spotted. In comparison, the NRG precursors
show a lower yield percentage with smaller carbon nanostructured products, as shown in
Figure 5b,c. NRG-S showed better results, with 27.4% carbon yield, compared to NRG-L
with only 6.7%, whereas both of their average diameters were approximately 25 nm.

Figure 5. FESEM images of samples synthesized from (a) ethanol, (b) NRS-L and (c) NRG-S precursors.

Raman spectroscopy was employed to characterize the quality of synthesized CNTs.
In general, the Raman peaks used for carbon analysis contained the G peak to indicate the
degree of the graphitization and the D peak to indicate the degree of defect in the graphite
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structure. Raman peaks for carbon analysis containing the G peak (indicating the graphiti-
zation) arise from highly ordered sp2-bonded carbon materials, and those containing the
D peak (indicating the defect in the carbon structure) arises from disordered sp3-bonded
carbon materials and carbonaceous impurities [39].The Raman spectra in Figure 6a indi-
cate that all the samples produced D and G peaks in the range of 1349.89–1351.53 and
1596.89–1610.53 cm−1, respectively, proving the presence of the carbon materials on the
samples. The small shift of the peaks and the variance of the intensities indicate the differ-
ent crystallinity degrees of the CNTs produced. The intensity is proportional to the amount
of disorder (crystallite boundary) in the sample. The ratio between the intensities of the
defect (D band) and the graphitization (G band), that is, ID/IG, provides a parameter that
can be used for quantifying disorder. The lower ID/IG ratio indicating a higher quality syn-
thesis of CNTs [40]. For the sample using ethanol as the precursor, the D peak was higher
compared to the G peak, indicating there were more defects compared to graphitization of
carbon. In contrast, for NRG-S and NRG-L cases, the G peaks were higher compared to
D peaks. The average ID/IG ratio of the samples from ethanol, NRG-L and NRG-S were
1.11 ± 0.10, 0.89 ± 0.01 and 0.87 ± 0.03, respectively (see Figure 6b). Samples from ethanol
contained a lot of defects and amorphous carbon, which was due to the non-optimized
vaporization temperature of the precursor (above boiling temperature of 80 ◦C), thus re-
sulting in an excessive amount of carbonaceous supply during deposition. For NRG cases,
the peak vaporization temperature was high (i.e., 380 ◦C). Therefore, condensation into
liquid form may have occurred along the connection tube, which was at room temperature,
before entering the reaction chamber, resulting in a low amount of carbon feedstock for
CNTs growth. Higher intensity peaks for NRG-S compared to NRG-L indicate a higher
percentage of carbon yield on the samples.

Figure 6. (a) Raman spectra of samples synthesized from ethanol, NRS-L and NRG-S precursors. (b) Corresponding average
ID/IG ratio.

3.3. Effect of Precursor Vaporization Temperature on CNTs Growth

Even though the TGA analysis shows that the NRG totally decomposed at 450 ◦C,
the previous results in Section 3.1 suggested that the vaporization temperature played an
important role in supplying the carbon source for CNTs growth in the reaction chamber.
Therefore, a double-furnace CVD was employed to eliminate the NRG-S precursor conden-
sation factor during the synthesis process. The SEM images of the CNTs synthesized at
the vaporization temperature of 300–450 ◦C are shown in Figure 7. Figure 7f shows that
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the yield percentage trend increased at the vaporization temperature of 300–350 ◦C, then
decreased at 400–450 ◦C. The results indicate that below the vaporization temperature of
350 ◦C, insufficient energy produced a low quantity of carbon supply, resulting in a low
growth rate of CNTs. Figure 7a–c presents a highly dense, short fibrous structure, where
the diameter of CNTs became smaller with increments of temperature. The large diameter
of the CNTs was due to large Fe clusters attaching to the substrate, resulting in the poor cat-
alytic effect, as the ferrocene did not fully vaporize at low temperature. On the other hand,
at the vaporization temperature of 400 ◦C and above, an excessive amount of hydrocarbon
supply was produced onto the catalyst surface, including hydrocarbon radicals. Hence, the
catalyst encapsulated by the carbon particles resulted in the reduction of catalytic activity
which hindered the growth of CNTs [41,42]. Figure 7d,e shows chaplet-shaped carbon was
dominant on the sample surface, with some of the fibrous structure attached. The larger
CNTs diameter was also due to agglomeration of Fe and Ni catalysts into larger particles at
high temperature, hence affecting CNTs growth.

Figure 7. SEM images of samples synthesized at various precursor vaporization temperatures of (a) 300, (b) 325, (c) 350,
(d) 400 and (e) 450 ◦C, and (f) carbon yield percentage.

Figure 8a shows the Raman spectra of the fabricated CNTs at different precursor
vaporization temperatures. All samples showed the two prominent peaks D and G in the
range of 1349.89–1362.53 cm−1 and 1597.26–1610.53 cm−1, respectively, indicating that the
carbon materials successfully diffused on the samples of the CNTs produced with varying
crystallinity. A clear pattern of average ID/IG ratios were observed in Figure 8b. At low
vaporization temperatures of 300–350 ◦C, the ID/IG ratios were in the range of 0.76–0.92,
indicating good quality of CNTs crystallinity. As the temperature increased to 400–450 ◦C,
the ID/IG ratios increased in the range of 1.09–1.19. These results are in agreement with SEM
images in Figure 7, which indicate that, at low vaporization temperature, sufficient energy
needs to be supplied to obtain both a percentage of high carbon yield and high quality
(small diameter and good crystallinity) CNTs. Contrarily, too high energy of vaporization
temperature will result in an excessive amount of hydrocarbon supply, including radical,
which will reduce the catalytic activity of the catalyst. This will produce CNTs with a
highly disordered structure, amorphous chaplet-shaped carbon and other carbonaceous
impurities. One more factor to be considered is that the release of low molecular weight
hydrocarbon was dominant at low vaporization temperature compared to high molecular
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weight hydrocarbon, as per GC-MS results. It is reported that simpler hydrocarbon favors
the formation of CNT, hence resulting in a higher yield of CNTs [43,44].

Figure 8. (a) Raman spectra of samples synthesized at various precursor vaporization temperatures of 300, 325, 350, 400 and
450 ◦C. (b) Corresponding average ID/IG ratios, respectively.

3.4. Effect of Sample Reaction Temperature on CNTs Growth

To investigate the effect of sample reaction temperature, the vaporization temperature
of the precursors was fixed at 350 ◦C, while the reaction temperature was set in the range of
700–900 ◦C, with a step increment of 50 ◦C. Figure 9a–e shows SEM images of the surface
morphology of the samples. The carbon yield percentages (see Figure 9f) and diameters
of the CNTs showed similar upward trends and then reduced at 900 ◦C, respectively. In
terms of carbon yield percentages, as the temperature increased, it enhanced the ferrocene
pyrolysis for fine Fe clusters, producing more nucleation sites on the Ni substrate, which
increased the chance for the growth of CNTs. However, the formation of iron carbide
particles can easily occur at very high synthesis temperatures, so that can be another factor
that reduces the growth of CNTs at 900 ◦C. In relation to the diameter of CNTs, larger
diameters were attributed to by agglomeration of Fe and Ni catalysts. For samples at
850 and 900 ◦C, even though the diameter of CNTs were in the range of approximately
83–93 nm, they were mixed and attached with the background of large particles and the
chaplet-shaped structure, which is believed to be impurities of amorphous carbon.

Figure 10a shows the Raman spectra of the fabricated CNTs samples at different
reaction temperatures. All samples showed the two prominent peaks D and G in the
range of 1353.53–1361.53 and 1593.89–1613.53 cm−1, respectively, indicating that the carbon
materials successfully diffused on the samples of CNTs produced with varying crystallinity.
A clear pattern of ID/IG ratios were observed in Figure 10b. At the low reaction temperature
of 700 ◦C, the average ID/IG ratio was 1.11 ± 0.01, indicating the poor crystallinity of CNTs.
At the temperature of 750–850 ◦C, the ID/IG ratio was lower, in range of 0.61–0.97, indicating
the higher quality of crystallinity of the produced CNTs. However, as the temperature
increased to 950 ◦C, the ID/IG ratio increased again up to 1.47 (average ID/IG = 1.12 ± 0.21).
These results are in agreement with SEM images in Figure 9, which indicate that a too
low reaction temperature contributed to low catalyst–precursor activity, while a too high



Polymers 2021, 13, 3409 11 of 17

reaction temperature contributed to agglomeration of catalysts and the formation of iron
carbide, resulting in the poor quality of the produced CNTs.

Figure 9. SEM images of samples synthesized at various sample reaction temperatures of (a) 700, (b) 750, (c) 800,
(d) 850 and (e) 900 ◦C, and (f) carbon yield percentage.

Figure 10. (a) Raman spectra of samples synthesized at various sample reaction temperatures of 700, 750, 800, 850 and
900 ◦C. (b) Corresponding average ID/IG ratio, respectively.

Figure 11 depicts the FTIR spectra of samples (700–900 ◦C). In Figure 11 a (wavenum-
ber ranged from 400 to 600 cm−1), the FTIR spectra displayed transmission bands at
432 and 455–469 cm−1, which corresponded to the Fe-O bonding from the metal cata-
lyst [45,46]. The samples exhibited metal cation lattice modes at 407 cm−1 [47], magnetite
structure at 483 cm−1 [48] and ferrocene structure at 494 cm−1 [49]. Additionally, the
sulfur component from the precursor (waste glove) contributed to the transmission band
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at 413 and 438 cm−1, with respect to S-S stretching and SO4
2- [45,50]. The FTIR spectra in

Figure 11b, ranging in wavenumber from 600 to 4000 cm−1, displayed the carbon compo-
nent within the samples. The main transmission bands were related to –CONH bonding at
1014 cm−1, CH-CH3 stretching at 1246 cm−1, the C=C bond at 1507 cm−1, the C=O bond at
1697 cm−1 and the non-conjugate carboxylic group at 2358 cm−1 [46,51–53]. The transmis-
sion band at 1507 cm−1 formed due to the graphitic carbon E1u mode which underwent
sp2 hybridization.

Figure 11. FTIR spectra of samples synthesized at various sample reaction temperatures of 700, 750, 800, 850 and 900 ◦C.
(a) The wavenumber ranged from 400 to 600 cm−1 and (b) the wavenumber from 600 to 4000 cm−1.

Figure 12 shows transmission electron microscopy (TEM) observations of the synthe-
sized CNTs at 800 ◦C. The TEM images in Figure 12a depict an overview of the distribution
of the CNTs, with an average diameter of approximately 25 nm. The high magnification
image in Figure 12b reveals the graphitic layers of the multi-walled CNTs with inner and
outer diameters of 10.95 and 26.10 nm, respectively. The lattice profile and the selected area
electron diffraction (SAED) image shown in Figure 12a,b, inset, confirmed the characteristic
0.33 nm inter-wall spacing and (002), (101) ring planes of C that indicate the graphitic
layers. Nearby crystallinity of catalysts were also detected as (110), (211) ring planes of
Fe and (111) ring planes of Ni. Other shapes of carbon nanostructures are also revealed
in Figure 12c–e, such as bundles of short CNTs, the large diameter of amorphous carbon
nanofibers with slight graphitization and chaplet shape of the amorphous carbon.

The growth mechanisms suggested from these finding were by tip growth model or
base growth model, depending on the reaction of the nanoparticle catalyst interaction with
the substrate [54,55]. There is not enough evidence to clarify the catalyst reaction as it
was encapsulated inside CNTs during the growth process. As the NRG-S and ferrocene
pyrolyzed to become the hydrocarbon chain and Fe nanoparticles, respectively, the vapor
would have been dissolved and adsorbed on the Ni substrates in the reaction chamber.
Fe nanoparticles will introduce more nucleation sites on the Ni substrates, while Ni will
elevate hydrocarbon decomposition to aid the growth of CNTs [56]. When the vaporized
precursor reached the reaction temperature, the hydrocarbon chains were decomposed,
and carbon adsorption and dehydrogenation of the hydrocarbon occurred on the catalyst.
Lastly, carbonization and graphitization occurred on the catalyst surface. Tubular or fibrous
structures would continue to grow with the continual supply of suitable hydrocarbon. The
suggested growth mechanism of CNTs is illustrated and summarized in Figure 13.
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Figure 12. HRTEM images of the samples synthesized at 800 ◦C. (a) Low magnification image of CNTs (inset is corresponding
SAED pattern), (b) high magnification image of CNTs (inset is corresponding lattice profile), (c) bundles of short CNTs,
(d) amorphous carbon nanofiber and (e) chaplet shape of the amorphous carbon.

Figure 13. Illustration of the suggested growth mechanism of CNTs during the CVD process.

The elemental composition was analyzed using energy dispersive spectroscopy (EDS)
of samples in Figure 14. Figure 14a shows bright field STEM images of the CNTs, whereby
heavy elements as metal catalyst can be observed clearly. Figure 14b,c shows element
composition and mapping in the area. High intensity of C indicates the domination of
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CNTs growth in the samples. Fe, Ni, and O were contributed by the catalyst itself, which
might be oxide produced by oxygen in the precursors and the environment. The low
presence of sulfur, S, was contributed to by NRG, which aids in improving the growth of
CNTs [34,57]. Additionally, Figure 14c shows that Ni and Fe were mixed and agglomerated
among the CNTs, indicating both catalysts play a role in assisting the growth process of
CNTs. The obtained results suggest that there is the possibility of NRG being a candidate
as a carbon precursor for the fabrication of CNTs. Further optimization will need to be
carried out for other parameters, such as growth time and catalyst factor that effect the
formation of CNTs. These factors will be discussed in our forthcoming papers.

Figure 14. Scanning transmission electron microscopy (STEM) image in the selected area of the CNTs. (a) Bright-field image,
(b) corresponding EDX spectra, and (c) EDX element distribution mapping.

4. Conclusions

In this study, we successfully fabricated CNTs using the chemical vapor deposition
methods by utilizing waste NRG as carbon precursor. The fractional distillation of NRG-S
under an inert environment was performed to produce NRG-L. CNS analysis showed both
NRG samples had carbon content higher than 63%, while sulfur and nitrogen contents
were lower that 0.6% and 0.08%, respectively. GC-MS analysis revealed the separation of
the lightweight hydrocarbon chain from the heavier long chain, with differences in the
hydrocarbon contents in the NRG fraction (NRG-L). The morphology and Raman spectra
exhibit that NRG-S produces a higher yield of CNTs with similar quality, compared to
NRG-L under the same synthesis conditions. The yield percentage of CNTs, diameter
and crystallinity were shown to be dependent on synthesis conditions, (i.e., precursor
vaporization temperature and sample reaction temperature varied in this study). The
results revealed that vaporization of precursors at low temperatures below 350 ◦C resulted
in low carbon yield percentage and low quality of CNTs due to insufficient energy supplied.
In contrast, the higher energy of high vaporization temperatures resulted in an excessive
amount of hydrocarbon supply, including radical, which reduced the catalytic activity of the
catalyst. On the other hand, a too low sample reaction temperature of 700 ◦C contributed to
low catalyst–precursor activity, while a too high reaction temperature of 900 ◦C contributed
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to agglomeration of the catalyst and the formation of iron carbide, resulting in the poor
quality of the produced CNTs. In this work, the optimum precursor vaporization and
sample reaction temperatures were 350 and 800 ◦C, respectively, considering the balance
of good yield percentage (26.7%) and quality of the produced CNTs (ID/IG = 0.84 ± 0.08,
diameter ≈ 122 nm). Further optimization of the process and oxidative treatment will be
explore in our forthcoming work in order to improve the quality, yield and purity of the
product for application purposes [27]. Thus, our findings show that NRG can be utilized as
a good candidate of a carbon source for CNTs production towards eco-technology.
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