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Abstract: Mineral oil has been chosen as an insulating liquid in power transformers due to its superior
characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile,
the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanopar-
ticles into the mineral oil, and this composition is called nanofluids. However, the incorporation
of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and
settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In
addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum
Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the
significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to
obtain a better interaction between the nano-alumina and the base fluid, consequently improving
the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal
conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the
surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge
concept. The breakdown strength and partial discharge characteristics of the nanofluids were mea-
sured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and
thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated
viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the
0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in
electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has
improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions
between the mineral oil and the nanoparticles.

Keywords: mineral oil; alumina nanofluids; atmospheric pressure plasma; partial discharge

1. Introduction

Since 1892, mineral oil has been used as an insulation medium due to its excellent
insulating properties and has effectively served as a dielectric coolant [1]. One of the reasons
that mineral oils have been chosen as a transformer oil is the ability to transfer heat more
effectively than solid-based insulating materials, where solid insulations typically have
issues, such as containing void impurities and poor thermal conductivity. Besides, mineral
oil also has improved self-healing after failure, making it suitable for power transformer
insulation [2]. Previously, significant progress had been made in improving the electrical
breakdown strength and heat transfer of mineral oils by dispersing a certain number of
nanoparticles into the mineral oil to create a liquid called nanofluid or nano-transformer
oil [3]. The main purpose of exploring nanofluids is to enhance the insulation and thermal
properties, consequently prolonging the power transformer’s lifespan and minimizing the
pre-breakdown phenomenon.
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According to the literature, multiple studies have been conducted to determine
nanofluids’ thermal conductivity and viscosity. Ahmadi et al. [4] conducted a compre-
hensive study to compare various machine learning approaches in modeling the dynamic
viscosity of nanofluid. It was found that an increase in the concentration of nanoparticle
causes higher dynamic viscosity [4]. In contrast, an increment in the temperature reduces
the value of dynamic viscosity [4]. Besides, the new approach of enhanced artificial neural
network (EANN) was developed by Bagherzadeh et al. [5] to predict the thermal con-
ductivity of hybrid nanofluids. In addition, Peng et al. [6] highlighted that the artificial
neural network might estimate the nanofluid thermal conductivity with high accuracy.
This method is useful to identify the effectiveness of various input parameters that might
affect the nanofluids’ thermal properties. Ghasemi et al. [7] also pointed out that the neural
network was good predictors in identifying the thermal conductivity of nanofluid. The
study revealed that increasing the solid volume fraction of nanoparticles would increase
the thermal conductivity properties of nanofluids [7].

Giwa et al. [8] recommended using hybrid ferrofluids for engineering applications be-
cause they possess lower viscosity than mono-particle ferrofluids and nanofluids. Moreover,
hybrid nanofluids are also capable of improving electrical conductivity and reduction in
viscosity [8]. Alrashed et al. [9] also conducted a comprehensive study to determine carbon-
based nanofluids’ thermophysical properties. The results showed that using nanoparticles
in a reasonable volume of fractions has improved the working fluids’ thermal conductivity
and viscosity [9]. Furthermore, Mansour et al. [10] reported that a small amount of alumina
nanoparticles increased the heat transfer of the alumina-mineral oil-based nanofluids.

The electrical insulation properties such as partial discharge and breakdown strength
were also enhanced by incorporating the nanoparticles into the base fluids. This has
been proven by numerous studies conducted, such as Jin et al. [11] that investigated
the properties of mineral oil-based silica nanofluids, and the results showed that the
addition of SiO2 nanoparticles had improved the alternating current (AC) breakdown
voltage of the mineral oil. Furthermore, Sridhara et al. [12] reported that alumina nanofluid
could also increase a transformer oil’s dielectric strength and life. Besides, Fan et al. [13]
prepared a transformer oil nanofluid by dispersing TiO2 nanoparticles, and they found an
improvement of 15% to 43%, higher than that of pure transformer oil for the mean value of
breakdown voltage.

Jin et al. [14] studied the partial discharge (PD) behavior of mineral oil and silica oil-
based nanofluids, and the outcome shows that silica/mineral oil nanofluids obtained 20%
higher inception voltage and the total discharge magnitude had been reduced, compared
to using pure mineral oil. In addition, Prasad et al. [15] performed a study on the effect of
silica nanoparticles on partial discharge characteristics of FR3 transformer oil. The results
presented in the work showed that the partial discharge inception voltage and the stable
PD formation voltage had been significantly improved for nano-silica/FR3 oils compared
to the natural ester oil (FR3). On top of that, Makmud et al. [16] also investigated the
characteristics of partial discharge of transformer oil-based Fe2O3 nanofluids under AC
voltage. They found that the PD inception voltage (PDIV) of their nanofluids had increased,
compared to pure transformer oil.

Unfortunately, the addition of nanofillers or nanoparticles in base fluids may result
in sedimentation in nanofluids due to their surface incompatibility. Moreover, the incom-
patibility between the surface of the nanoparticles and base fluid causes the nanoparticles
to agglomerate, thereby limiting the improvement of the insulation properties. Thus, the
trends of studies have focused primarily on the technique to improve the dispersion and
compatibility between the nanoparticles and the base fluids. Conventionally, previous re-
searchers have introduced surfactants or dispersants to address sedimentation problems in
the nanofluids, but the functionality of the surfactants at high temperatures is also a major
concern, especially for high-temperature applications. Typically, introducing surfactants
could involve chemical solvents that are difficult to be decomposed, have high toxicity,
and require a complex handling process to incorporate the nanoparticle and the base fluid.



Materials 2021, 14, 3610 3 of 27

Even though the surfactants approach can avoid premature sedimentation, the precise
number of surfactants required to maximize nanofluids’ insulation properties remains a
question. The most suitable and effective type of surfactants is also the main challenge in
overcoming the agglomeration issue [17,18].

Recently, plasma discharge has been introduced as a surface modification technique to
improve the compatibility in nanomaterials application. Plasma is a state of matter formed
through the photoionization process that can be exhilarated using high voltage sources.
Previously, plasma treatment has been utilized to improve the compatibility between the
nanoparticles and solid-based polymer. Likewise, the main purpose of this treatment is to
overcome the agglomeration of the nanoparticle and obtain a uniform dispersion of the
nanoparticles into the polymer matrix. Plasma treatment is typically used to functionalize a
certain chemical functional group on the surface of nanoparticles, which effectively anchors
a new covalent bond during the mixing process of nanoparticles into base fluids. Besides,
the plasma treatment is also useful to strengthen the covalent bond of the nanoparticles
by producing radical species such as an oxygen-containing compound and a hydroxyl
group. Thus, the combination of plasma treatment and nanoparticles seems to have a
great outcome in terms of the insulation properties’ enhancement, such as an increase
in the breakdown strength and partial discharge resistance of the nanofluids due to the
advantages and benefits of this technique. Plasma is also an alternative method of the
treatment process that does not require a chemical solvent to functionalize the surface
of the nanoparticles. Therefore, this could be another reason for choosing plasma as a
modification technique.

Previously, Musa et al. [19] pointed out that atmospheric pressure plasma treatment
was effective in forming uniform dispersion of nanoparticles within the polymer matrix.
Besides, this technique was also attributed to forming strong covalent bonds with the
molecules of the base insulating materials [19]. Yan et al. [20] also conducted a compre-
hensive study to investigate the dielectric breakdown strength of epoxy resin filled with
atmospheric pressure plasma-treated nano-silica. The results showed that plasma treatment
was a great technique to improve the compatibility of the nanoparticles and the polymer
matrix, improving the dielectric breakdown strength. Furthermore, Awang et al. [21]
revealed that the partial discharge resistance of nanomaterials was highly achievable by
treating the nanofillers with cold plasma compared with the pure insulating materials.

The implementation of plasma treatment on the nanoparticles in preparing nanofluid
seems necessary to explore intensively since this technique has great potential to improve
the dispersion of nanoparticles, indirectly enhancing the insulation and thermal properties
of the nanofluids. Currently, a limited number of studies have been conducted regarding
the performance of plasma treatment in improving the properties of nanofluids. Thus,
it seems necessary to fill this gap by exploring the effectiveness of plasma treatment in
modifying the surface morphology of nano-alumina before it is dispersed into mineral oil.

In this work, cold atmospheric pressure plasma treatment was used to treat Al2O3
nanoparticles to enhance the AC breakdown strength, viscosity properties, and thermal
conductivity of nanofluids using helium gas as discharge working gas. Some researchers
tackled agglomeration problems in nano-mixtures by using thermal non-equilibrium
atmospheric-pressure plasma to change the nano-silica surface [22]. Meanwhile, other
researchers claimed that plasma-treated nanoparticles with the desired surface function-
ality could interact strongly with liquid molecules that are better dispersed into the base
fluid to form a stable suspension [23]. The interaction and compatibility between alu-
mina nanoparticles and mineral oil can be improved using the cold atmospheric pressure
plasma method.

Hence, this paper introduces plasma-treated nano alumina into mineral oil-based
nanofluids to enhance the AC breakdown strength and partial discharge resistance and
boost two important thermophysical properties: viscosity and thermal conductivity. Nano
transformer oil has the potential for better heat transfer characteristics relative to conven-
tional transformer oils used for cooling purposes [24].
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2. Materials and Methods

The base fluid used in this work was Hyrax Hypertrans mineral oil supplied by
Hyrax (Klang, Malaysia), which is good as a dielectric and coolant. It has a density of
0.895 g/mL and a minimum dielectric strength of 30 kV. The Alumina (Al2O3) nanofiller
was purchased from Sigma Aldrich (Petaling Jaya, Malaysia) with an average particle size
of 13 nm. Nanofluid samples were prepared with 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.3 wt%,
respectively. In this work, plasma was applied to the nanoparticles for surface modification
to prevent early sedimentation in oil and improve the dielectric properties. The alumina
nanofillers were treated using atmospheric pressure plasma in the plasma chamber that
applied the dielectric barrier discharge (DBD) concept. These plasma discharges were
applied on the alumina nanofiller to form functionalized surfaces of major reactive species.

The plasma discharges were applied on the surface of the nanoparticles to avoid early
sedimentation in the oil. A 50 Hz power supply produced the cold atmospheric air pressure
plasma with a maximum of 10 kVrms of applied voltage, and the output power consumed
was 9 to 10 W. The plasma setup consisted of two glass plates, and the nanoparticles were
placed on the plates. A tin-coated copper coil electrode was mounted 2 mm above the top
of the nanoparticles layer. Helium gas was used as the working gas for discharge. The
duration of the treatment was 30 min. The nanoparticles were stirred for 30 s for every
5 min of surface treatment to obtain a homogenous plasma treatment as recommended
and indicated in the reference [12]. The schematic diagram of the experimental setup for
dielectric barrier discharge (DBD) plasma treatment is shown in Figure 1a, while the setup
for the DBD chamber is shown in Figure 1b. After the treatment, the treated nanoparticles
were combined with the base oil according to the two-step method.

Figure 1. Cont.
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Figure 1. Plasma experimental setup: (a) Schematic diagram of plasma treatment setup, (b) setup of the DBD plasma chamber.

The two-step method is the most economical method of producing nanofluids on
a broad scale, as nanoparticles’ synthesis techniques have already been scaled up to
industrial production standards [24]. In this experiment, as shown in Figure 2, the two-step
method was used to prepare mineral oil-based nanofluid, where the nanoparticles were
first weighed. Nanoparticles were initially distributed in mineral oil. The mixture was
stirred within 30 min with a magnetic stirrer and then sonicated to ensure good dispersion
of the mixtures. Next, the alumina nanofillers with different concentrations of 0.3 wt%,
0.1 wt%, 0.05 wt%, and 0.01 wt% mass fraction were added to the 100% by weight of
mineral oil to study the impact of nanoparticles concentration. The samples were then
dried in a vacuum oven at 60 °C for at least 24 h [11].

Figure 2. Flowchart for the preparation of mineral oil-based alumina nanofluids.
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3. Results
3.1. AC Breakdown Voltage

The breakdown voltage test was carried out in compliance with the IEC 60156 standard.
The configuration of the electrode consists of two spherical brass electrodes with a gap of
2.5 mm. The AC voltage (50 Hz) with an increased rate of 20 kV/s was applied until a
breakdown occurs. Three sets of six measurements of breakdown tests were recorded for
each type of nanofluid. The results were analyzed using Weibull analysis. Figure 3 shows
the oil test set to run the AC breakdown voltage for alumina nanofluids.

Figure 3. Oil test set.

Figure 4 shows the average AC breakdown voltage for mineral oil-based plasma-
treated and untreated alumina nanofluids. Meanwhile, the average AC breakdown voltage
for mineral oil-based 0.1 wt% of plasma-treated, untreated, and cetyl trimethylammonium
bromide (CTAB) treated alumina nanofluids is shown in Figure 5. The results showed
48.37 kV, 55.77 kV, 46.35 kV, and 43.05 kV for untreated alumina nanofluid of 0.3 wt%,
0.1 wt%, 0.05 wt%, and 0.01 wt% samples, respectively. Previously, Kong et al. [25] and
Tendero et al. [26] carried out work to modify alumina nanoparticles using the atmospheric
pressure plasma treatment method.
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Figure 4. Average AC breakdown voltages of mineral oil-based plasma-treated and untreated alumina nanofluids.

Figure 5. Average AC breakdown voltages of mineral oil-based with 0.1 wt% of plasma-treated, untreated, and CTAB-treated
alumina nanofluids.

The plasma-treated alumina nanofluid showed 53.30 kV, 58.28 kV, 54.35 kV, and
47.47 kV for 0.3 wt%, 0.1 wt%, 0.05 wt%, and 0.01 wt% samples, respectively. For comparing
purposes, the plasma-treated alumina nanofluid obtained the highest result compared to
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the CTAB-treated and untreated nanofluid samples for 0.1 wt%, as illustrated in Figure 5.
The overall enhancement of the AC breakdown voltage for alumina nanofluids relative to
pure mineral oil can be seen in Table 1. Plasma-treated nanofluids have a higher increased
AC breakdown voltage than pure mineral oil, untreated nanofluids, and CTAB-treated
nanofluids. However, the results have shown that the AC breakdown voltage for all
nanofluids is higher than the pure mineral oil, which is in line with the outcomes obtained
by Yuzhen et al. [27], Zhou et al. [28], and Du et al. [29].

Table 1. Total enhancement of Al2O3 nanofluid samples over pure mineral oil.

Samples Average BDV
(kV) Std. Dev Total

Enhancement (%)

0.01 wt% untreated
nanofluid (UNF) 43.05 3.05 25.876

0.01 wt% plasma-treated
nanofluid (PTNF) 47.47 1.54 32.778

0.05 wt% UNF 46.35 3.17 31.154

0.05 wt% PTNF 54.35 2.42 41.288

0.1 wt%UNF 55.77 1.51 42.783

0.1 wt% PTNF 58.28 0.92 45.247

0.1 wt% cetyl
trimethylammonium
bromide nanofluids

(CTABNF)

55.80 0.99 42.813

0.3 wt% UNF 48.37 2.89 34.029

0.3 wt% PTNF 53.30 1.52 40.131

3.2. Weibull Analysis

Weibull analysis can be used to estimate the breakdown voltage obtained from AC
breakdown data for lower failure probabilities with two-parameter functions [30]. For
example, Figure 6a shows the two-parameter Weibull analysis of the AC breakdown
voltage of pure mineral oil and mineral oil-based untreated alumina nanofluids with 95%
confidence intervals. At the same time, the Weibull analysis method of AC breakdown
voltage for mineral oil-based plasma-treated alumina nanofluids is shown in Figure 6b.

Moreover, alumina nanoparticles could significantly increase the AC breakdown
voltage of the mineral oil. The enhancement of the breakdown voltage at a concentration
of 0.1 wt% nanoparticle is remarkable. The AC breakdown voltage of Al2O3 nanofluids
increases with the increase in particle concentration. Since 0.1 wt% of both untreated
and treated alumina nanofluid samples show the highest breakdown voltage in each
category, one type of 0.1 wt% alumina nanofluid containing the surfactant (CTAB) was
used for comparison purposes. The nanofluid with the addition of surfactant was used in
this experiment to determine if it contributes a great deal to the breakdown voltage. As
illustrated in Figure 6c, it is clear that 0.1 wt% alumina nanofluid with CTAB indicates the
lowest voltage value of 56.33 kV, and the plasma-treated alumina sample has the highest
breakdown voltage value. Therefore, the results obtained from the Weibull analysis had
about the same value as their mean voltage. The summary of scale and shape parameters
of breakdown voltage results for alumina nanofluids from the Weibull probability analysis
are shown in Table 2. Figure 7 shows the comparison between the present experimental
data and the previous findings of the AC breakdown strength.
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Figure 6. Cont.
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Figure 6. Weibull analyses of AC breakdown voltages; (a) MO + Al2O3 untreated nanofluids, (b) MO
+ Al2O3 plasma-treated nanofluids, (c) all samples of 0.1 wt% Al2O3 nanofluids.

Table 2. Shape and scale values of Weibull analysis for alumina nanofluids.

Alumina Nanofluid Samples Shape Scale (kV)

0.01 wt% UNF 16.55 44.53
0.01 wt% PTNF 25.81 48.33
0.05 wt% UNF 13.78 48.02
0.05 wt% PTNF 24.73 55.57

0.1 wt%UNF 37.15 56.57
0.1 wt% PTNF 71.10 58.75

0.1 wt% + CTAB NF 60.72 56.33
0.3 wt% UNF 17.39 49.48
0.3 wt% PTNF 32.41 54.13

Table 3 depicts the detail of previous studies according to the type of nanofluid and the
effective loading of nanoparticle in enhancing the AC breakdown strength. It is shown that
the plasma treatment implemented in the present work is the most promising technique
that effectively improves the AC breakdown voltage of the nanofluids incorporated with
0.1 wt% of nano-alumina, followed by the CTAB surfactant technique, which also increased
the AC breakdown voltage by more than 50% of the pure mineral oil. Moreover, the
variation of nanoparticles used with different effective loadings of nanoparticles exhibits
less than a 50% improvement.
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Figure 7. Comparison of the present experimental data of AC breakdown voltage with previous
findings.

Table 3. Comparison of the present experimental data of the types of nanofluids and effective loading
of nanoparticles in enhancing AC breakdown voltage.

Author/Year Nanofluid Effective Loading of
Nanoparticle, (wt%)

Sartoratto et al./2005 [31] Fe2O3/mineral oil 0.016
Du et al./2011 [29] TiO2/mineral oil 0.075
Liu et al./2012 [32] SiO2/mineral oil 0.0074

Hanai et al./2013 [33] ZnO/mineral oil 0.0005
Rafiq et al./2016 [34] Fe3O4/mineral oil 0.04

Baharuddin et al./2019 [35] Al2O3/mineral oil 0.1
Present Data Al2O3/mineral oil 0.1
Present Data Al2O3/mineral oil 0.1

3.3. Partial Discharge Characteristics

Phase-resolved PD patterns of 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.3 wt% of Al2O3
nanofluids were shown in Figures 8–11, respectively. Discharge occurrences in mineral
oil were repeatable in both positive and negative half-cycles. In addition, only one or
two discharge pulses were produced during the power cycle. Furthermore, the polarity
effect can also be shown by the discharge in the mineral oil, which tends to have much
more negative pulses than the positive pulse in the cycle, as also claimed in the previous
research by Makmud et al. [16]. Meanwhile, Figure 12 shows the average PD magnitude
for all alumina nanofluid samples. As illustrated in the figure, pure mineral oil shows the
highest average PD magnitude, at about 676 pC, while the lowest is shown by 0.01 wt%
plasma-treated alumina nanofluid, which is about 106 pC. The other samples obtained
a lower average PD magnitude compared to pure mineral oil, and this trend is in line
with the previous studies by Makmud et al. [16] and Nagendran et al. [36]. Likewise,
plasma-treated nanofluid samples show a lower average PD magnitude compared to the
untreated samples. For 0.01 wt% alumina nanofluids, the plasma-treated sample has a
lower average PD magnitude of about 106 pC than the untreated sample at about 330 pC.
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Furthermore, for 0.05 wt% nanofluids, the average PD magnitude charge values are
about 379 pC and 147 pC, respectively, for untreated and plasma-treated samples. As
usual, a sample with surfactant (CTAB) was used for comparison purpose. The 0.1 wt% has
been determined to be mixed with surfactant owing to the fact that this amount resulted
in a higher AC breakdown strength. With 0.1 wt% alumina and surfactant, the sample
exhibited a higher value of average PD magnitude, at about 170 pC, compared to untreated
and plasma-treated samples at about 166 pC and 151 pC, respectively. Lastly, for 0.3 wt%
samples, the untreated and plasma-treated nanofluids show an average PD magnitude
of about 177 pC and 176 pC, respectively. These results demonstrate that the addition of
alumina nanoparticles into the mineral oil would certainly enhance its PD characteristics,
as also revealed by Muangpratoom et al. [37], Mohamad et al. [38], and Jacob et al. [39].

Figure 8. Phase—resolved PD patterns of (a) 0.01 wt% Al2O3 UNF and (b) 0.01 wt% Al2O3 PTNF.

Figure 9. Phase—resolved PD patterns of (a) 0.05 wt% Al2O3 UNF and (b) 0.05 wt% Al2O3 PTNF.
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Figure 10. Phase—resolved PD patterns of (a) 0.1 wt% Al2O3 UNF, (b) 0.1 wt% Al2O3 + CTAB NF, and (c) 0.1 wt% Al2O3

PTNF.

Figure 11. Phase—resolved PD patterns of (a) 0.3 wt% Al2O3 UNF and (b) 0.3 wt% Al2O3 PTNF.
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Figure 12. Average PD magnitude (pC) of all alumina nanofluid samples.

The total number of partial discharges (PDs) of all alumina nanofluid samples is
illustrated in Figure 13. The highest PDs number is shown by pure mineral oil, which is
about 4506, while the lowest value is shown by 0.01 wt% plasma-treated alumina nanofluid,
which is about 112. The lower the number of PDs, the better the sample, but the average of
the PD magnitude must be emphasized. Figure 14 shows the comparison between present
experimental data and previous findings of the average PD magnitude.

Figure 13. The number of PDs of all alumina nanofluid samples.
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Figure 14. Comparison of the present experimental data of average PD magnitude with previous findings.

Table 4 represents the detail of previous findings regarding the type of nanofluids and
effective loading of nanoparticles to minimize the PD magnitude. Significantly, the plasma
treatment on the surface of nanoparticles effectively improves the PD endurance, which
proved that incorporating 0.01 wt% of plasma-treated alumina into mineral oil reduced
the average PD magnitude of pure mineral oil by 84.32%. However, compared to other
results obtained in previous findings, all the configurations of untreated and surfactant
nanoparticles only showed less than a 34.69% reduction of the PD magnitude.

Table 4. Comparison of the present experimental data of type nanofluids and effective loading of
nanoparticles in respect to PD magnitude.

Author/Year Nanofluid Effective Loading of
Nanoparticle, (wt%)

Muangpratoom et al./2018 [37] BaTiO3/mineral oil 0.03
Makmud et al./2019 [16] Fe3O4/ester oil 0.01

Atiya et al./2020 [40] Al2O3/mineral oil 0.01
Jacob et al./2019 [39] Al2O3/mineral oil 0.03

Present Data Al2O3/mineral oil 0.01

3.4. Viscosity

Viscosity is one of the most critical parameters studied since it can influence both the
nanofluids’ heat transfer and electrical properties [24]. Viscosity testing was performed
on the oil samples using the Brookfield DV-II + Pro Automated viscometer, manufactured
by Brookfield Engineering Laboratories (Middleboro, MA, USA) as shown in Figure 15,
using the CP-42 spindle based on the ISO 3104 standard [41]. In this paper, the rheometer
measured the viscosity at temperatures of 40 ◦C and 60 ◦C.
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Figure 15. Brookfield DV-II + Pro Automated viscometer with CP-41 spindle.

Figure 16a shows the average viscosity of Al2O3 nanofluid samples at 40 ◦C. The alumina
nanofluids showed that the higher the concentration of nanoparticles, the higher the viscosity
of the sample. This was also collectively revealed by Yu et al. [42] and Wong et al. [43]. It was
clearly shown that the sample with the highest percentage of nanoparticles, which was 0.3
wt%, resulted in the highest viscosity readings for both untreated and plasma-treated samples
with values of about 13.76 mPas and 12.71 mPas, respectively.

The alumina nanofluid with CTAB was used for comparison purposes. With the
value of 10.53 mPas, the sample with CTAB did not aid much in reducing the viscosity of
nanofluids. The value showed a significant change compared to 0.1 wt% alumina UNF
with a value of about 9.85 mPas, while the 0.1 wt% alumina PTNF showed a value of
9.80 mPas. Between these three 0.1 wt% samples, the plasma-treated sample was still the
best, with a value of 9.80 mPas; 0.01 wt% alumina UNF and 0.01 wt% alumina PTNF are
9.49 mPas and 9.46 mPas, respectively. In contrast, 0.05 wt% alumina UNF and 0.05 wt%
alumina PTNF values are 9.53 mPas and 9.50 mPas, respectively.

The viscosity results of alumina nanofluids at 60 ◦C, as shown in Figure 16b, show
that the higher the concentration of nanoparticles, the higher the sample’s viscosity. The
0.3 wt% is the highest percentage of nanoparticles used, showing the highest viscosity
readings for both untreated and plasma-treated samples with the values of 8.54 mPas and
8.26 mPas, respectively. The same as at 40 ◦C, the sample with surfactant (CTAB) was used
for comparing 0.1% nanoparticles with untreated and plasma-treated samples. With a value
of 5.69 mPas, the sample with surfactant did not help much in reducing the viscosity of
nanofluids. The value indicates no substantial difference relative to the untreated 0.1 wt%
with a value of 5.66 mPas, while the plasma-treated 0.1 wt% indicates a value of 5.61 mPas.

The 0.01 wt% alumina UNF and 0.01 wt% alumina PTNF samples, respectively, gave
the values of 5.33 mPas and 5.26 mPas. Meanwhile, 0.05 wt% alumina UNF and 0.05 wt%
alumina PTNF samples obtained values of 5.47 mPas and 5.47 mPas, respectively. As
mentioned before, lower-concentration nanoparticles have a negligible impact on the
viscosity of mineral oil. As illustrated in Figure 16, both untreated and plasma-treated
alumina nanofluids at 0.01 wt% and 0.05 wt% did not show any significant changes due
to a smaller concentration of nanoparticles having a negligible effect on the viscosity of
mineral oil [4].
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Figure 16. Average viscosity of pure MO and Al2O3 nanofluid samples at (a) 40 ◦C and (b) 60 ◦C.

3.5. Thermal Conductivity

Dispersing nanoparticles in fluids is an efficient way to improve the thermal con-
ductivity of nanofluids. In this paper, the relationship between thermal conductivity and
viscosity of mineral oil-based alumina nanofluids in a temperature range from 40 ◦C to
80 ◦C under different nanoparticles weight fractions of 0.01 wt%, 0.05 wt%, 0.1 wt%, and
0.3 wt% were addressed.

Thermal conductivity and viscosity are the essential thermophysical properties of any
nanofluids affecting their heat transfer performance. Temperature and volume fractions
significantly affect the thermal conductivity and viscosity characteristics of mineral oil-
based alumina nanofluids. In this paper, the researchers used a KD2-Pro thermal property
analyzer with a heating element and thermistor on the KS-1 sensor needle for thermal
conductivity measurements, as shown in Figure 17a. Hence, to keep the temperature
within the range, a water bath, as shown in Figure 17b, helped to heat and maintain
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the temperature value required for the thermal purpose. Figure 18a–d shows that the
thermal conductivity of alumina nanofluids increased with an increase in nanoparticle
concentrations at elevated temperatures compared to pure mineral oil, and these results
agreed with the conclusion made by Xiang et al. [44]. The 0.1 wt% alumina with CTAB
nanofluid has higher thermal conductivity than pure mineral oil and untreated nanofluids
but shows lower thermal conductivity than the plasma-treated nanofluid.

Figure 17. Thermal conductivity instruments: (a) Thermal Properties Analyzer, Decagon KD2-Pro Conductivity meter with
KS-1 sensor, (b) Wise water bath used to conduct thermal conductivity test.

Figure 18. Thermal conductivity results: (a) 0.01 wt% Al2O3 nanofluids, (b) 0.05 wt% Al2O3 nanofluids, (c) 0.1 wt% Al2O3

nanofluids, and (d) 0.3 wt% Al2O3 nanofluids.
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3.6. TEM Analysis

The structure of the sample and dispersion of the nanofillers within the sample can
be observed and further studied using JEOL JEM-2100F transmission electron microscope
(TEM), manufactured by JEOL Ltd. (Akishima, Tokyo, Japan) as such in Figure 19. Further-
more, the sample preparation of nanofluids for TEM analysis is easy and not complicated as
only a small drop of nanofluids was placed onto a TEM grid and was allowed to dehydrate
at room temperature. For sample preparation for the transmission electron microscope,
nanofluid samples are first mixed with distilled water, with a ratio of 1:10 in volume [45].

Figure 19. JEOL JEM-2100F field emission electron microscope.

Using the CTAB as a surfactant, the alumina nanofluids with surfactant were ob-
served to have a high level of agglomeration, as shown in Figure 20a. Meanwhile, in
Figure 20b, without any chemical treatment in an untreated nanofluid, the size of ag-
glomerated particles and the number of primary particles in a nanoparticle cluster was
significantly decreased. However, the stirrer and sonication do not seem to be an effec-
tive method to break down the size of the alumina nanoparticle clusters. As shown in
Figure 20c, the plasma treatment was the most effective method to deagglomerate the
alumina nanoparticle dispersions in mineral oil.
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Figure 20. TEM images: (a) 0.1 wt% Al2O3 with CTAB nanofluids, (b) 0.1 wt% untreated Al2O3 nanofluids, and (c) 0.1 wt%
plasma-treated Al2O3 nanofluids. The inserted scale bar is 100 nm.

4. Discussion

In this work, there are two types of mineral oil-based nanofluids prepared, namely
plasma-treated mineral oil-based nanofluids and untreated mineral oil-based nanofluids.
However, a CTAB-treated nanofluid was also prepared with 0.1 wt% nanoparticles for
comparison purposes. These four types, including pure mineral oil, were compared to
their performances for AC breakdown voltage, partial discharge, viscosity, and thermal
conductivity characteristics. The weight percentage of alumina added into the mineral oil
were 0.01, 0.05, 0.1, and 0.3 wt% only. Meanwhile, the weight percentage of CTAB added
was 0.075 wt% of the alumina nanofluids [35].

For AC breakdown tests, both 0.1 wt% plasma-treated alumina nanofluids indicate
the highest breakdown voltage than other samples. The Weibull analyses also show the
same trend as AC breakdown voltage results. Ionization in cold atmospheric pressure
plasmas is not very high but nevertheless very effective in generating high concentrations
of reactive radicals, as many researchers have chosen this approach to modify the surfaces
of nanoparticles. Consequently, the plasma surface modification treatment of alumina
nanoparticles has led to higher AC breakdown voltage. The 0.1 wt% plasma-treated
nanofluids have the highest enhancement in about 45.25% compared to pure mineral
oil. Such apparent breakdown voltage enhancement based on the addition of plasma-
treated nanoparticles has suggested a significant solution to improve the breakdown
voltage of the mineral oil, which has been reported to decrease after specific years of
service [46]. It is noteworthy that the results obtained indicate that this simple plasma
treatment method can enhance the interfacial interaction, thus increasing the breakdown
voltage of the nanofluids. The enhancement behavior of AC breakdown voltage with
increased nanoparticles concentration can be explained due to the relaxation time constant
and polarization of nanoparticles in the nanofluids. This was also explained by Wang et al.
in reference [47]. In addition, the polarization produces charges that can change the
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potential distribution around the nanoparticles in the nanofluids. After that, dielectric
nanoparticles’ polarization changes them into potential wells necessary to capture free
electrons [48]. The breakdown strength of transformer nanofluids is often correlated with
additional traps from the dispersed nanoparticles, which work to capture electrons and
reduce the energy of electrons travelling through the transformer oil. This mechanism was
believed and claimed by several researchers [47,48]. The effect from that is the possibility
that other electron production could be reduced, and thus the distortion of the electric
field in transformer oil by electronic charge could also be reduced, thus increasing the
breakdown voltage [29].

The plasma-treated samples show enhanced PD characteristics through the PD tests
compared to pure mineral oil, untreated nanofluids, and CTAB-treated nanofluids. The
presence of alumina nanoparticles in mineral oil resulted in higher viscosity than pure min-
eral oil. This indication was also pointed out by Jin et al. [11]. The number of PDs increases
with an increasing weight percentage of alumina nanoparticles, as Makmud et al. [16]
claimed. According to Jin et al.’s [14] findings, nanoparticles in mineral oil can absorb
those additives such as moisture, acidity, and impurities due to oxidation on their surfaces.
Consequently, the PD magnitude and PD’s number of the nanofluids were smaller than
pure mineral oil, as also concluded by Jin et al. [14] and Kurimsky et al. [49]. A higher
weight concentration of alumina nanoparticles can be considered worse for transformer
applications based on partial discharge characteristics. A concentration above 0.1 wt%
significantly influences PD magnitude and the number of PDs of the nanofluids. Agglom-
erated nanoparticles can explain this behavior above a certain weight concentration in
mineral oil [15].

The phenomenon leading to a breakdown of liquid insulation is called a streamer,
which normally consists of a positive and negative streamer. In transformer oil, the
initiation of the streamer usually occurs when electrons generated by field emission at the
needle tip are induced. Then, local expansion is created and forms a low-density form. As
a result, electrons can speed up, and the ionization process appears to be multiplied by the
charge and helps the discharge channel expand. It is noteworthy that the development of a
low-density zone is indeterminate and causes different propagation traces. According to
space charge theory, a positive space charge zone is generated and developed because of
the enormous difference in the mobility of ions and electrons. These positive space charges
distort the previous electric field distribution in the oil that the electric field at the needle
tip is diminished. While the electric field at the head of the ionized zone is enhanced, this
causes the ionization to occur further, and the streamer channel under positive excitation is
more likely to elongate towards the ground than the negative cycles [50].

Meanwhile, the PD pattern in oil found that the negative-polarity PDs occur much
more than that positive-polarity PDs. As Liu et al. [32] explained, PD with negative polarity
always appears near the needle electrode with a corona-type structure. In addition, the
positive ions and free electrons have been generated due to the ionization near the tip of
the needle as per the space charge theory. The positive ion is moved relatively slowly in the
oil, which gathered near the tip, greatly heightened, and forced the electric field between
the negative tip and positive ions, causing the PD to occur much more frequently. The
free electron is caused by ionization growth and is more likely to expand along the electric
field line, and consequently forms a negative charge layer with penetrated distribution [51].
After all the explanations above, it can be said that the space charge effect is mainly caused
by significant differences in mobility between electrons and ions [50].

A study by Yuzhen et al. [52] proved that the moisture content, acidity, and impurities
due to oxidation could encourage a negative effect on the dielectric strength of mineral oil.
In contrast with the PD magnitude, the pulse repetition rate is more sensitive to those addi-
tives. The additional nanoparticles added into the mineral oil can absorb those additives to
their surface, henceforth contributing to the smaller number of PDs in alumina nanofluids
than in the mineral oil. Based on the overall results, the plasma-treated nanoparticles in
the nanofluids could have greater characterization in adsorbing those additives than the
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untreated samples, thus improving the PD characteristics by reducing the total discharge
magnitude compared to the pure mineral oil.

The viscosities of alumina nanofluids show a similar trend at temperatures of both
40 ◦C and 60 ◦C. Adding nanoparticles into the mineral oil has created an extraordinary
impact on the thermal performance of the mineral oil [53–55]. The highest nanoparti-
cle concentration was 0.3wt% in alumina nanofluids, with the highest viscosity values.
This behavior can be interpreted by the increased nanofluids concentration, which directly
influences internal viscous shear stresses [56]. However, the increasing nanoparticle concen-
tration could affect the viscosity and deteriorate the nanofluids’ heat transfer system [57]. A
higher concentration can also contribute to the higher agglomerated cluster of nanoparticles
in nanofluids, which can be considered one reason for higher viscosity [58].

Comprehensive studies in using surfactant as a stabilizer at high temperatures are
still lacking. The studies of surfactants used at high temperatures are extremely important,
affecting the physical properties of the surfactants and the nanoparticles [59]. Meanwhile,
the excessive surfactant used in nanofluids could change the nanofluid characteristics,
such as viscosity and thermal conductivity, and will be an apprehensive issue in nanofluid
applications [60]. As mentioned above, this strongly supports the idea that the surfactant
should be eliminated in nanofluids. Since the nanoparticle’s sizes are very small, the
attractive forces between the particles can cause them to agglomerate. Furthermore, the
plasma-treated nanofluids show lower viscosity values since the plasma treatment offers
increased surface energy of the treated nanoparticles in mineral oil, thereby resulting in a
good result with good suspension stability and lower viscosity.

Moreover, dispersing plasma-treated nano-alumina into the mineral oil has reduced
the viscosity of the nanofluids compared to the untreated nanoparticles. Incorporating
untreated nanoparticles with mineral oil tends to form an agglomerated dispersion of
nanoparticles, which typically affects the viscosity of the nanofluids. This issue can be
solved by treating the surface of nanoparticles using plasma discharge. The interfacial
region formed through the plasma functionalization technique would improve the compat-
ibility between nanoparticles and mineral oil molecules [20]. The enhancement of surface
compatibility may result in enhancing the distribution of nanoparticles into mineral oil
uniformly. The uniform dispersion of nanoparticles into the mineral oil would cause the
viscosity of the nanofluids to reduce. In addition, the viscosity of nanofluids is also affected
by the number of well-dispersed nanoparticles.

Meanwhile, the contents of additive materials such as nanoparticles have also influ-
enced the viscosity of the nanofluids. However, plasma treatment is an alternative method
proven in this study to reduce the viscosity of the nanofluids incorporated with a particular
quantity of nanoparticles. The results also showed that the behavior of nanofluids below
0.3 wt% represents Newtonian fluids. In contrast, the viscosity behavior of nanofluids
with 0.3 wt% nanoparticles caused them to start to become non-Newtonian fluids. Plasma-
treated alumina has an effective ability in improving the viscosity of nanofluids compared
to other nanoparticles because it has a very weak shear rate dependence of their viscosity.
Besides, alumina is more preferable as nanoparticles due to its mass-to-volume ratio, which
is among the lowest compared to other nanoparticles such as silica and titania. Thus, the
plasma-treated and untreated alumina are preferred to be dispersed into the based fluids.

Based on the viscosity tests, the viscosities of both untreated and plasma-treated
nanofluids have also decreased at an elevated temperature, similar to pure mineral oil. As
mentioned by Jiang et al. [61], it can be elucidated that the higher the temperature, the
lower the viscosity due to the increase in thermal conductivity. The downward trend in
viscosity when the temperature increases can be explained by a weakening intermolecular
attraction between the mineral oil and the nanoparticles [57]. Additionally, higher tem-
perature also influenced the Brownian motion of nanoparticles and decreased nanofluid
viscosity [58]. Thus, it has been found that viscosity depends strongly on both temperature
and concentration. Furthermore, a previous research work stated that the formation of
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nanofluids has no significant effect upon the viscous resistance, but viscosity might have
affected the development of streamers in that insulating liquid [62].

Furthermore, the thermal conductivity of mineral oil was enhanced with the addition
of plasma-treated nanoparticles. The thermal conductivity of alumina nanofluids increased
with the increase in nanoparticle concentrations and temperatures. In line with the results
obtained by Bao et al. [63], higher nanoparticle surfaces, nanoparticle interaction, nanopar-
ticle cluster, and Brownian motion of nanoparticles are among the significant factors that
contributed to the thermal conductivity enhancement in alumina nanofluids when the
nanoparticle concentrations were increased accordingly. In addition, the thermal conduc-
tivity of alumina nanofluids also increased with temperature, and this justification agreed
with the results reported by Shah et al. [64]. This condition could be explained by the fact
that the increased temperature results in decreased viscosity, contributing to the Brownian
motion to escalate and thus affect the convection process in nanofluids [58]. The 0.1 wt%
alumina with a CTAB nanofluid has higher thermal conductivity than pure mineral oil
and untreated nanofluids but shows lower thermal conductivity than the plasma-treated
nanofluid. Applying surfactant in nanofluids can cause the surface of the nanoparticles
to be coated. It is noteworthy that the amount of surfactant in nanofluid is not limited
by thermal conductivity, but the surfactant may cause physical or chemical instability
problems [65].

Meanwhile, plasma-treated alumina nanofluids considerably enhance the thermal
conductivity compared to other samples, including pure mineral oil, since the plasma
treatment can convert the alumina nanoparticles to disperse much easier in the base
oil [66]. Hence, plasma-treated alumina nanofluids exhibited better thermal properties
than untreated alumina nanofluids and pure mineral oil. Plasma discharge occurred due to
the ionization of the discharge gas, producing reactive species such as photons and electron
clouds. The reactive species collide with the air molecules contained in the treatment
chamber to form radical species, typically hydroxyl and oxygen-containing functional
groups. The functionalized reactive species on the surface of nanoparticles could then react
with the aluminum atoms, which produce a new and strong covalent on the interfacial
region when the nanoparticles dispersed into the based fluids. This would create a new
relaxation process that might reduce the transportation charge due to the formation of the
interfacial region [67]. This interfacial region is key in improving insulation properties due
to its role in trapping the charges distributed in the nanofluids. The mechanism of trapping
the charges would reduce the accumulated space charge and eventually minimize the
distortion of the local electric field [68]. This brings positive implications to the insulation
properties, such as improving the breakdown strength and the partial discharge resistance
of the nanofluids.

5. Conclusions

The electrical properties, dispersion stability, and thermal properties of mineral oil-
based alumina nanofluids have been improved using cold atmospheric pressure plasma
treatment. The easily operated atmospheric pressure plasma method has been success-
fully implemented to modify the surface of alumina nanoparticles. Their morphological
analysis showed an improvement in the structure of the nanoparticle, according to the
TEM analysis. In addition, the effect of ion and electron bombardment onto the surface
of the nanoparticles can be regarded as changes in morphology. Therefore, the plasma
treatment of the nanoparticles has resulted in a homogeneous dispersion and stability in
nanofluids as this treatment provided stronger interactions between the mineral oil and
the nanoparticles.

The electrical performances of mineral oil-based nanofluids with alumina nanoparti-
cles have been successfully investigated and analyzed. The addition of alumina could help
in improving the electrical properties of conventional mineral oil. The CTAB was chosen as
a surfactant used for comparison purpose with the untreated and plasma-treated nanoflu-
ids. On top of that, the surfactant is one of the traditional methods to modify nanoparticles’
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surface in order to reduce the agglomerated clusters in nanofluids. However, it has been
found that it has retained many drawbacks. The 0.1 wt% alumina nanofluids recorded
the highest breakdown strength as compared to 0 wt%, 0.01 wt%, 0.05 wt%, and 0.3 wt%
nanofluids, respectively. It can be concluded that the increase in the weight percentage of
nanoparticles up to about 0.1 wt% could increase the breakdown voltage of the nanofluids,
but samples show the reduced breakdown strength at a higher weight percentage (0.3 wt%)
due to the agglomerated nanoparticles. The plasma-treated samples of alumina nanofluids
have been proved to have better breakdown strength than pure mineral oil, untreated
samples, and CTAB-treated nanofluids. The results were also supported by the Weibull
analysis, with the same trend of improvement.

Meanwhile, partial discharge characteristics of alumina-based nanofluids were per-
formed at the applied voltage of 20 kVrms. PD magnitude and the number of PDs were
depicted, and the results showed that the plasma-treated samples had lower PD magnitude
and a lesser total number of PDs compared to the untreated and CTAB-treated nanofluids.
Hence, plasma-treated nanofluids are believed to have excellent potential to be used as
power transformer oil in practice. In short, electrical tests showed an improved break-
down strength and PD characteristics of the plasma-treated alumina-based nanofluids.
The mineral oil-based nanofluids with 0.1 wt% of plasma-treated alumina showed great
improvements in electrical performances. A higher concentration of more than 0.1 wt%
has resulted in deteriorated breakdown strength and PD resistance characteristics.

A higher percentage of nanoparticles used in a sample has resulted in a higher viscosity
as well. However, the plasma-treated samples showed lower viscosity than untreated
nanofluids and CTAB-treated nanofluids with an increase in temperature, thus showing
that the plasma-treated nanofluids also had excellent heat transfer properties. Additionally,
the higher the alumina nanoparticles added to the base fluid, the higher the thermal
conductivity of the nanofluids. Based on the results obtained, the thermal conductivity was
enhanced with the increase in temperature. This behavior can be explained by the Brownian
motion of the nanoparticles in the nanofluids. Besides, 0.1 wt% of plasma-treated alumina
nanofluids have also shown better improvements in thermal and dispersion stability.
Furthermore, CTAB as a surfactant did not help much in solving the agglomeration issue.
Therefore, with the elimination of the surfactant, plasma treatment can be an alternative
and environmentally friendly method to modify the surface of the nanoparticles without
using any chemical solutions.

Furthermore, the important conclusion for future research is to identify the effects of
plasma treatment on the zeta potential and the stability of the nanoparticles dispersed in the
base fluids. In addition, the effect of plasma treatment on the pH value of nanofluids could
not be neglected. Therefore, it ought to be covered in future works in order to characterize
the significance of plasma treatment in enhancing the insulation and thermophysical
properties of plasma treatment nanofluids.
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