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ABSTRACT 

 

 

 

 Coefficient of thermal expansion (CTE) mismatch between the different 

material layers in the substrate leads to residual warpage and stresses. Such 

deformation adds additional mechanical constraints to solder joint attached on the 

surface of substrate and subsequently leads to solder joint reliability issue of the 

electronic package. Thus, a new composite material was evaluated with the aim to 

reduce both in-plane and out-of-plane CTE of the core substrate. In this study, 

equivalent thermo-mechanical and viscoelastic properties of silica-filled epoxy were 

predicted with finite element method. The silica-filled epoxy was served as the 

matrix of the core substrate and woven glass were embedded as few layers in the 

matrix phase. Viscoelastic response of the matrix phase and resulting orthotropic of 

the multilayered substrate were modeled. Substrate warps in concave shape after 

subjected to curing temperature due to CTE mismatch and asymmetry of geometry. 

For surface mount assembly, accumulated inelastic strain in the critical solder joint 

with low CTE composite substrate is lower than that of with conventional FR-4 

substrate during the solder reflow and temperature cycles. In addition, the predicted 

life cycle of the low CTE composite assembly is 36.9 % longer compared to 

assembly with FR-4 substrate.  
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ABSTRAK 

 

 

 

Ketidakseimbangan Pekali Pengembangan Haba (CTE) antara pelbagai jenis 

lapisan bahan telah menyebabkan pembentukan lenturan dan tegasan baki. 

Perubahan bentuk ini telah menambahkan lagi sekatan mekanikal yang berlebihan 

kepada sambungan pateri yang terikat pada permukaan substrat selanjutnya 

membawa masalah keboleharapan sambungan pateri kepada pakej elektronik. Oleh 

sebab itu, bahan komposit yang baru telah dikaji dengan tujuan mengurangkan CTE 

bahan sama ada dalam satah melintang atau satah mendatar. Dalam kajian ini, sifat 

kesamaan terma-mekanikal dan viskoelastik bagi epoksi yang dicampur dengan 

silika telah dijangka dengan menggunakan kaedah unsur terhingga. Epoksi yang 

dicapur dengan silika merupakan matrik bagi teras substrat dan beberapa lapisan 

tenunan kaca telah dipacakkan ke dalam silika-epoksi. Matrik yang bersifat 

viskoelastik dan substrat pelbagai lapisan yang bersifat ortotropik telah dihasilkan. 

Substrat melentur dengan bentuk cekung selepas melalui suhu pengerasan 

disebabkan ketidakseimbangan CTE dan geometri yang tidak simetri. Bagi 

penyambungan pajangan permukaan, nilai terikan tidak elastik yang berkumpul di 

sambungan pateri kritikal dalam komposit substrat yang CTE rendah  adalah lebih 

rendah jika dibandingkan dengan  substrat FR-4 semasa reflow pateri dan kitaran 

haba. Tambahan pula, jangkaan hayat kitaran bagi penyambungan yang mempunyai 

komposit yang CTEnya rendah adalah 36.9% lebih panjang berbanding dengan 

penyambungan dengan substrat FR-4. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

  

 

 

This study evaluates a candidate polymer matrix composite as a potential 

material for use as substrate in an electronic package. Emphasis is placed on the 

potentially low coefficient of thermal expansion (CTE) of the composite. Usage of such 

low CTE material could considerably reduce substrate warpage, thus contribute to 

improved reliability of the package. This chapter presents the background, objectives, 

scope and significance of the research. Layout of the thesis is also included in this 

chapter. 

 

 

 

1.1 Background 

 

Packaging technology is one of the fast growing areas in industries where its 

development is accelerating towards smaller, lighter, faster and low cost products. This 

advancement gives a big challenge to electronic packaging industry because rapid 

development of the silicon chip requires a comparable but smaller package so as to meet 

the demand for multi-functional, as well as small and lighter electronic products. This 

high-density component experiences temperature excursions during fabrication and 

operation of the package. Hence, the concern of thermal mismatch becomes more 



 2 

stringent. Different CTE values not only lead to warpage and residual stress in the 

package but also contribute to package cracking and delamination problems.  

 

Typical packaging hierarchy (Figure 1.1) illustrates the different levels of 

packaging. The zero level packaging includes integrated circuit (IC) chip fabrication. An 

IC chip is a collection of components connected to form a complete electronic circuit 

that is manufactured on a single piece of semiconductor material. The first level 

packaging is the assembly of chip and substrate to form a single or a multiple chip 

module. The second level packaging is the assembly of chip module and other 

component on PCBs. The third level packaging involves several PCBs plugged into a 

motherboard.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic draw of a typical packaging hierarchy. (Datta, 2005) 
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The main function of an IC package is to be the electrical connections between 

the IC chip and board. It gives the mechanical support and protection from the 

environmental and chemical agents. Besides, it is also designed to allow heat transfer 

from the chip. 

 

The chip level-interconnection technologies currently used in the semiconductor 

industry include wire bonding and flip chip solder connection. Wire bonded electrical 

connections are created at assembly stage by attaching a fine wire around the perimeter 

of the chip. Meanwhile, flip chip interconnection is an area array configuration in which 

the entire surface of the chip can be covered with solder bumps for the highest possible 

input/output (I/O) counts. 

 

Flip chip technology was first introduced by IBM in 1960s and the joining 

process was named controlled collapse chip connection (C4) technology (Totta, 1969). 

A typical flip chip consists of silicon chip, solder joint, underfill and substrate as shown 

in figure 1.2. The chip is attached on the substrate with solder interconnections. 

Underfill is applied to minimize the thermal mismatch deformation in the solder joints.  

 

  

 

 

 

Figure 1.2 A schematic draw of a flip chip package. 

 

A typical flip chip package consists of a stack of materials with vastly different 

CTEs. Heat is generated during operation of the package. The large difference in CTE 

values between silicon die (2 ppm/°C) and organic substrate (16 ppm/°C) causes the 

package to warp. High temperature gradient and CTE mismatch also induces thermal 

strain and stress in solder joints.  

 

Silicon chip 
Solder joint Underfill 

Substrate 
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Multilayered substrate in the flip chip package is made of different types of 

material layers such as solder resists, dielectrics, core substrate, copper traces and plated 

through holes. When these layers are bonded together during fabrication through 

pressure and heating process, different expansion rates among these layers result in the 

residual warpage to form either a concave or a convex shape. Such deformation adds 

additional mechanical constraints to solder joint attached on the surfaces.  

 

Since warpage is primarily governed by stiffness of the core substrate, potential 

low CTE composite core is proposed. In this study, a new composite material is 

evaluated to be employed as a core of the layered substrate. The epoxy matrix was 

mixed with silica filler to reduce the out-of plane thermal expansion while the in-plane 

expansion is primarily governed by woven glass. The silica-filled epoxy reinforced with 

woven glass composite is expected to lower the CTE in both in-plane and out-of plane 

directions. The performance of the new substrate with composite core is examined in 

comparison to the traditional FR-4 substrate plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

1.2  Objectives 

 

The objectives of the study are: 

1. To develop and to evaluate a low CTE (and high modulus) composites with 

epoxy matrix and silica powder and woven glass fibers. 

2. To establish the equivalent viscoelastic and thermo-mechanical properties of 

the silica-filled epoxy composite. 

3. To simulate deformation response of a multilayer substrate with a low CTE 

composite core during the curing process. 

4. To study the solder joint reliability of the surface mount assembly using the 

newly developed low CTE composite.  

 

 

 

 

1.3  Scopes of Study 

 

The scope of this study covers the following: 

1. Examination of composite core: 

� To establish the material properties and viscoelastic behaviour of silica-

filled epoxy composite using the properties of constituents.  

� To establish the properties of glass-fibre reinforced silica-filled epoxy 

composite. 

2. Finite element modeling of multilayered substrate with composite core 

during typical curing temperature cycle. 

3. Finite element modeling of surface mount assembly with different substrate 

materials: 

� To evaluate the current FR-4 substrate (reference case) 

� To evaluate substrate with low CTE composite core 
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The parameters for viscoelastic constitutive model of the epoxy are extracted 

from results of experimental test published in literature. Although glass transition 

temperature -Tg is relatively low for current application in an electronic package, the 

procedure illustrated in this study is identical if other polymer is considered, provided 

with sufficient data is available. 

 

 

 

1.4 Significance of Study 

 

The viscoelastic (time-dependent) response of the substrate is established in this 

study. This viscoelastic material model contributes to greater accuracy when employed 

in finite element modeling of electronic packages for reliability prediction. In addition, 

the methodology can be adopted for other core material of substrate with available 

experimental data. 

 

Different percentage of silica filler and woven glass reinforcement produce 

composite with various CTE and elastic modulus properties. Parametric study can be 

performed to optimise warpage of substrate, thus improve reliability of solder joints in 

the surface mount assembly and subsequently affect the thermal fatigue life of the test 

assembly.  

 

.  
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1.5 Thesis Layout 

 

There are seven chapters in the thesis. Chapter one introduces the background of 

the research and adequately describes the problem arise. The scopes, objectives and 

significance of study are also included in this chapter.  

 

Chapter two reviews the literature studies on the related topics. It includes an 

overview of electronic packaging, substrate material and its fabrication process. Besides, 

works related to the low CTE base material and warpage constitutive model are critically 

reviewed. The behaviour of viscoelastic and unified inelastic are presented.  

 

Chapter three explains about the modeling approach and assumptions. The 

details of the geometry, material properties, boundary conditions and temperature 

loading of each model are presented. At the last section, example of viscoelastic 

constitutive model is provided.  

 

Chapter four gives the results of composite model in term of elastic modulus and 

coefficient of thermal expansion. Different percentages of silica and woven glass were 

added in the epoxy matrix. The equivalent properties of silica-filled epoxy are illustrated 

in graphs. 

 

Chapter five discusses about the warpage condition and evolution of von Mises 

stress of the substrate. Shear stress distribution of core substrate is also included. 

 

Chapter six presents the warpage condition of the test assembly package. The 

evolution of von Mises stress and inelastic strain in critical solder joint with the used of 

low CTE composite substrate during reflow and thermal cycle are compared with that of 

the FR-4 substrate.  

 

Finally, the conclusions of this work are given in Chapter 7 along with the 

recommendations for the future works.  




