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Abstract: The design of a scaffold of bone tissue engineering plays an important role in ensuring cell
viability and cell growth. Therefore, it is a necessity to produce an ideal scaffold by predicting and
simulating the properties of the scaffold. Hence, the computational method should be adopted since
it has a huge potential to be used in the implementation of the scaffold of bone tissue engineering.
To explore the field of computational method in the area of bone tissue engineering, this paper
provides an overview of the usage of a computational method in designing a unit cell of bone tissue
engineering scaffold. In order to design a unit cell of the scaffold, we discussed two categories of unit
cells that can be used to design a feasible scaffold, which are non-parametric and parametric designs.
These designs were later described and being categorised into multiple types according to their
characteristics, such as circular structures and Triply Periodic Minimal Surface (TPMS) structures.
The advantages and disadvantages of these designs were discussed. Moreover, this paper also
represents some software that was used in simulating and designing the bone tissue scaffold. The
challenges and future work recommendations had also been included in this paper.

Keywords: numerical analysis; computational method; tissue engineering scaffold design; mechani-
cal strength; simulation software

1. Introduction

An engineered tissue can be a huge aid in the future, especially in clinical application.
The relationship that brings life sciences and engineering together as an application to be
a great help in understanding the structure and function of a mammalian tissue can be
described as tissue engineering [1]. Not only offering help in understanding the structure
and function of tissue of a human being, but it is also helping the researchers to understand
the necessity of developing an engineered tissue. An engineered tissue can help in restoring,
maintaining, repairing and improving the damaged tissue’s condition, which is caused by
numerous diseases such as disabilities and injuries [2]. Zhang et al. stated in their paper that
the current implementation of tissue engineering had faced many issues, including ethical
and technical issues [3]. Despite many challenges faced in the field of tissue engineering, it
is a fast-paced developing field since it can be a great help in providing treatments that can
generate most of the tissue and organ of the human being [3].

One of the components that is crucially needed to be studied is the scaffold of the
engineered tissue. This is due to the function of the scaffold that provides a suitable
environment and structure in order to enable the cells to attach, proliferate, differentiate
and secrete their own extra-cellular matrix (ECM) [3]. It is important to ensure the scaffold
to have a proper environment and structure so that it promotes a good rate of the formation
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of tissue. In order to produce an appropriate scaffold, it must be ensured to possess a few
characteristics so that it will not be harmful to the body. The characteristics included bio-
compatibility, biodegradable, bioactivity, scaffold architecture and mechanical properties.
Turnbull et al. reported that the manufacturing of a scaffold should be compatible with the
human body so that it will not trigger any immune response while it is implanted in the
body [4]. In order to comply with these conditions, the materials used in manufacturing
the scaffold should non-toxic and easy to eliminate from the body.

Another important feature in manufacturing the scaffold is that the degradation rate
of the scaffold is needed to be properly controlled. This is to ensure that the scaffold
does not suffer mechanical failure. In addition, the scaffold’s structure and architecture
need to be considered when manufacturing a scaffold because it provides viability and
encourages tissue ingrowth. The human body is a very sensitive creation where all the parts
are subjected to a certain value of strength and provide sufficient endurance of pressure.
Therefore, it is crucial that the mechanical properties of the manufactured scaffold achieve
the same or properly adjusted to the original tissue so that it can have no negative effect on
the host tissue [5,6]. All these features will help in promoting tissue growth and avoiding
a negative response of the immune system if the scaffold can be produced in a proper
manner [4].

The ‘trial-and-error’ method has been adopted by most common researchers in en-
hancing the tissue engineering field. The method which involved the modification of the
current or existing design of a scaffold can cause many unwanted factors. This conven-
tional method is very expensive and does not have a precise control due to the repeatable
modification. It is also time-consuming since the production of an improved model of the
scaffold will take too long. Therefore, a computational approach needs to be used.

Besides that, although much research has been done on a scaffold of tissue engineering
computationally, there is still a lack of research that focuses on fluid properties and designs
of the scaffolds. In addition, the designs and fluid properties of a scaffold play a crucial
role in facilitating the growth of the bone tissue.

The porosity and mechanical strength of the scaffold have an inversely proportional
relationship. However, bone scaffold needs to be manufactured porously in order to enable
cell proliferation and transportation of nutrients, oxygen and metabolites in the blood [7–9].
Yet, up to this date, there is very little research done that can computationally produce
a scaffold with good design and possessing excellent mechanical and fluid properties,
simultaneously.

Therefore, various great efforts have been done by many researchers in order to help
in producing a scaffold model that possesses all of the ideal characteristics. One of the ways
to develop a scaffold model that can cater to the needs to encourage a high rate of tissue
formation is by using computational methods, which consist of simulating, modelling and
3D printing techniques. Current research studies show that the computational method
has been a great help in order to expedite the implementation of tissue engineering in the
near future.

1.1. Bone Tissue Engineering

The most major structural and connective tissue of the body is bone tissue [10]. There
are two types of bones that can be identified, which are cortical bones and cancellous
bone. The outer part of the cone that is denser and has low porosity is called cortical bone,
while the inner part and spongy-like material is called cancellous bone. The porosities
of the cancellous bone should be in the range of 50% to 80% [10–13]. The bone is one
of the parts that is having high mechanical strength. A cortical bone possesses a high
modulus of elasticity and compressive strength as compared to the cancellous bones [14].
Although bone has high mechanical strength, bone can be subjected to many traumas
and diseases such as injuries. Therefore, researchers have come to a solution which to
produce regenerative medicine in terms of tissue engineering. Despite many organs that
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can be regenerated by the method of tissue engineering, bone tissue engineering is a widely
studied field.

A large bone defect is treated with the current conventional method, which is by using
autografting. Autografting technique required the usage of bone from a non-load-bearing
site of the patient to be transplanted into the damaged part [10]. Nowadays, various
researchers have led to the implementation of bone tissue engineering in the future since it
can overcome the problems faced by current clinical treatments [15].

1.2. Scaffold of Bone Tissue Engineering

A biomaterial porous structure that helps in providing support and a suitable extra-
cellular matrix is called a scaffold [16,17]. In designing a scaffold, one must consider
the strength and porosity of the materials so that it will regenerate the properties of the
bone that is comparable to the original bone. Nowadays, there are many applications
of technology to develop a scaffold, such as additive manufacturing, which includes 3D
printing. Additive manufacturing has provided a platform which helps in customizing
and developing a suitable design that can be used in biomedical application.

The scaffolds must be designed and developed based on a few characteristics that will
provide the best condition for the bone to regenerate. The characteristics include biocom-
patibility, bioactivity, biodegradability, mechanical properties and scaffold architecture [18].
Biocompatibility can be defined as non-toxic and non-inflammatory so that it will not bring
harm to the body [5,6,19]. A biodegradable scaffold should be able to eliminate itself from
the body easily once the tissue has fully restored. Adequate mechanical properties should
be possessed by the scaffold so that it will be able to withstand any forces and loads during
the restoration time in the implantation site [19].

Designing a scaffold with a proper architecture is important due to it will affect the
mechanical and biocompatibility properties of the scaffold [20,21]. Scaffold architecture
should be able to provide a large surface area to volume ratio so that cell migration can
occur. The porosity must be sufficient so that it will allow cell and nutrition migration
for the restoration of the tissue. However, it must not compromise with the mechanical
strength of the scaffold [22].

1.3. Significance of Computational Method in Bone Tissue Engineering

The successful production of bone tissue engineering scaffold can help to contribute
to ensuring the tissue formation goes smoothly, especially bone tissue. This is due to the
computational method to help in generating precise properties of the scaffold. Besides
that, the usage of the computational method, which is the simulation aimed to provide
good support in implementing the usage of tissue engineering in the future, especially in
clinical application. This is because the simulation can help in reducing the intervention
of humans in manufacturing the appropriate scaffold model. The risks will be minimized
due to the involvement of automation that will eventually produce fewer damaged organs.

2. Computational Method in Designing a Scaffold

Computational modelling has been the most common approach that had been done
by the researchers. This is due to its ability to simulate the behaviour of the scaffold under
certain loadings. In addition, it is proved to reduce time and experiments since it is not
time-consuming and cheaper [23].

Moreover, the computational modelling technique has been adopted by the researchers
in order to improve the performance of scaffolds while maintaining certain important
parameters [3]. It is also a great predictive tool that can help in predicting the scaffold
properties before manufacturing them. Some uncommon properties, such as stress-strain
distribution, can also be predicted by using the computational method.

According to Bocaccio et al., the computational method has allowed the approximation
of how the mechanical environment is affecting the differentiation of tissue and bone
regeneration [24]. It also helps in understanding the mechanisms that will enhance the
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reliability of the function of scaffolds. Zhang et al. stated that the function of computational
modelling includes designing and simulation that had been a great aid in 3D printing
technique [4].

Recently, the usage of the computational method in assessing the properties of a
scaffold’s structure has been progressively studied. With the aid of computational pro-
grams, such as Finite Elements Analysis (FEA), the properties of the scaffold can be easily
predicted. Thus, it helps in reducing the time and energy to find the most feasible scaffold
by eliminating the modification step of an existing scaffold.

2.1. Unit Cell of a Scaffold Structure

The unit cell is the basic structure of a scaffold. It can be divided into two types of
designs which are non-parametric and parametric. Non-parametric designs consist of
a unit cell which is designed by using structural and geometric shape. Meanwhile, the
parametric designs have to be produced by using specific algorithms. There are many
advantages and disadvantages regarding each design which will be furthered discussed.

2.2. Non-Parametric Design

A non-parametric design is a simple structure that is designed based on geometry.
The most common non-parametric designs are the circular, cubic and honeycomb designs
as such in Table 1. However, there are a lot of other designs, which are produced based
on certain geometries, such as hexagonal and octet. There are many advantages of these
designs as compared to the parametric designs. One of them is that the non-parametric
designs are easy to be produced since it does not engage to any specific algorithms. In
addition, there are many ways that can be used to fabricate the designs. These designs
are mostly being fabricated via subtractive manufacturing such as machining. However,
since most of the researchers are looking forward to utilizing additive manufacturing, the
production of these designs is very much possible to pursue, especially by using Selective
Laser Melting (SLM) additive manufacturing. The characteristics of non-parametric designs
can be described, as in Table 1.

2.2.1. Circular Design

Many studies have been done that adopted circular pore shape as their scaffold model.
This is due to the ability of the circular pore to avoid stress concentration point; therefore,
it relatively would possess a high bearing stress capacity [18]. The study conducted by Sun
et al. showed that the circular shape produced a more uniform axial deformation. Thus, it
gives a smaller strain risk when subjected to a uniform stress concentration [25]. Bocaccio
et al. suggested that the circular design exhibits a greater Young’s Modulus when they are
subjected to a certain amount of pressure [26].

In terms of the porosity of the scaffold, the pore size of the scaffold plays an important
role in determining the mechanical properties of the scaffold. Boccaccio et al. suggested that
the circular pore demonstrated a certain amount of mechanical properties when its porosity
distribution law is varied [27]. A circular pore with a low amount of porosity also helps
in ensuring a high amount of mechanical strength [28]. Although the porosity amount
of a circular-shaped pore is high, its mechanical strength was lower in a study carried
out by Jahir-Hussain et al. [29]. Therefore, the circular-shaped pore needs to possess a
high porosity amount so that it can enhance mechanical and morphological properties [30].
Gomez et al., in their study, described that the circular-shaped scaffold needs to possess a
porosity amount in the range of 70–90% in order to obtain a high mechanical strength [31].
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Table 1. Non-parametric design and its characteristics.

Non-Parametric
Design Description Advantages Disadvantages Ref.

Polymers 2021, 13, x FOR PEER REVIEW 5 of 23 
 

 

Table 1. Non-parametric design and its characteristics. 

Non-Parametric  
Design 

Description Advantages Disadvantages Ref. 

 
Circular [18] 

A scaffold with a cir-
cular-shaped pore is a 
structure, which is 
commonly used in in-
vestigating the behav-
iour of the scaffold in 
terms of mechanical 
and fluidic. 

• Simple design—
easy to be produced 

• Less high-stress 
concentration 
points 

• Exhibits stable re-
sistance for fatigue 
damage 

• Easy to fabricate us-
ing both conven-
tional method and 
additive manufac-
turing 

• May cause underes-
timations of the be-
haviour of the scaf-
fold 

• High tendency to 
cause pore block-
age, which affects 
bone growth by dis-
rupting transporta-
tion of nutrients, 
oxygen and waste 
of the scaffold 

[18,25–33] 

 
Square [18] 

A square-shaped pore 
structure, which is re-
liable in producing 
high mechanical 
strength and adequate 
amount of porosity 
but also high in the 
stress concentration 
area 

• Simple design—
easy to be produced 

• Exhibits high prolif-
eration rate 

• Easy to fabricate us-
ing both conven-
tional method and 
additive manufac-
turing 

• May cause underes-
timations of the be-
haviour of the scaf-
fold 

• Contains a high-
stress concentration 
point 

[19,29,34–
37] 

 
Honeycomb [38] 

A structure that imi-
tates the shape of the 
beeswax that exhibits 
excellent properties in 
terms of lightweight, 
stiffness and porosity 

• Simple design—
easy to be produced 

• Good mechanical 
stability 

• Better at avoiding 
shrinkage of the 
scaffold during cell 
growth 

• Promotes high cell 
proliferation 

• May cause underes-
timations of the be-
haviour of the scaf-
fold 

• Limitation on the 
fabrication based on 
the adjustable pore 
size, spatial ar-
rangement and re-
producible architec-
tures 

[21,39–46] 

2.2.2. Square Design 
Although the square-shaped designs have a high-stress concentration region, they 

are also still relevant to be studied by the researchers since they possess a high mechanical 
strength while maintaining an adequate amount of porosity. In order to avoid this prob-
lem, researchers came out with a solution where they modified the square scaffold by 
adding a few struts. The struts help to improve the stiffness of the porous structure as well 
as reduces the stress concentration at the joints [37]. In a study conducted by Jahir-Hussain 
et al., they varied the pore shape of the scaffold, resulting in high mechanical strength but 
a low amount of porosity [29]. When the porosity of the scaffold is increased to be more 
than 50%, the square-shaped scaffold can exhibit mechanical properties similar to that of 
the host tissue [36]. Habib et al. modified the square-shaped scaffold by increasing the 
porosity but could maintain the mechanical properties of the scaffold [19]. The failure 
mechanism of a square-shaped scaffold is that it failed in the unidirectional failure accord-
ing to the direction of loading subjected to it. 

Circular [18]

A scaffold with a circular-shaped pore is a
structure, which is commonly used in
investigating the behaviour of the scaffold in
terms of mechanical and fluidic.

• Simple design—easy to be produced
• Less high-stress concentration points
• Exhibits stable resistance for fatigue damage
• Easy to fabricate using both conventional

method and additive manufacturing
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in the stress concentration area

• Simple design—easy to be produced
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2.2.2. Square Design

Although the square-shaped designs have a high-stress concentration region, they are
also still relevant to be studied by the researchers since they possess a high mechanical
strength while maintaining an adequate amount of porosity. In order to avoid this problem,
researchers came out with a solution where they modified the square scaffold by adding
a few struts. The struts help to improve the stiffness of the porous structure as well as
reduces the stress concentration at the joints [37]. In a study conducted by Jahir-Hussain
et al., they varied the pore shape of the scaffold, resulting in high mechanical strength but a
low amount of porosity [29]. When the porosity of the scaffold is increased to be more than
50%, the square-shaped scaffold can exhibit mechanical properties similar to that of the
host tissue [36]. Habib et al. modified the square-shaped scaffold by increasing the porosity
but could maintain the mechanical properties of the scaffold [19]. The failure mechanism
of a square-shaped scaffold is that it failed in the unidirectional failure according to the
direction of loading subjected to it.

2.2.3. Honeycomb Design

The honeycomb structure was designed based on the hexagonal prismatic wax cells,
which are built by honey bees. In the engineering field, the honeycomb structure was first
introduced to the aerospace discipline. However, it gets the attention of the other fields’
researchers, including the biomedical field, since it can be found naturally in biomedical
structure. Moreover, it is light-weighted with a high amount of stiffness and porosity.

By using Finite Element Analysis, the mechanical properties of the honeycomb struc-
tures can be simulated. The Young’s Modulus of the honeycomb structure can be controlled
by varying the porosity of the structures. This would cause the honeycomb design to be
able to fit in between cortical and cancellous bone properties [21,45]. However, the honey-
comb tends to fail in multi-directions when it is exposed to certain loadings [44]. There
are a few designs that were generated by modifying the original shape of the honeycomb
structure. The new design of the honeycomb structure has the ability to demonstrate the
mechanical properties of a cancellous bone [46].

In conclusion, we can say that a non-parametric design can still be adopted into
various research works due to its ability to demonstrate the desired properties of a bone
tissue engineering scaffold. However, there is a need to modify the design in order to match
the properties of the host tissues. A circular design exhibits an excellent characteristic in
terms of fewer stress concentration points as compared to other non-parametric designs.
Meanwhile, a square-shaped pore promotes a high rate of cell proliferation due to its ability
to possess a high amount of porosity. The honeycomb structure has the ability to maintain
excellent mechanical stability by reducing the risk of scaffold shrinkage during cell growth.

2.3. Parametric Design

Since tissue engineering is highly related to the usage of additive manufacturing (AM),
the researchers tend to shift from using simple structure to using complex structure since
the AM technology has the ability to produce a complex structure [47]. The simpler shape
is more likely to face some issues such as strut thickness [48], interface mismatch [49] and
surface smoothness [50]. According to Chen et al., there are two main methods that were
used to generate a parametric structure, named Triply Periodic Minimal Surfaces (TPMS)
and Voronoi Tessellation, as shown in Table 2 [8].
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Table 2. Parametric design and its characteristics.

Parametric Design Description Advantages Disadvantages Ref.

Triply Periodic Minimal
Surfaces (TPMS)
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D structure
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categorised as a bending
surface Triply Periodic
Minimal Surfaces (TPMS)
structure that was proposed
by Schwarz in the 1860s. The
Schwarz D shape can be
generated via a mathematical
equation, as shown in Table 3.

• Promotes high cell attachment,
migration and proliferation

• Has the ability to possess the
natural bone’s propertiesHelps in
avoiding stress shielding

• Possess a mechanical strength that
complies to that of cortical bone
when subjected to a low amount
of porosity

• High in specific surface area as
compared to the Schwarz P
structure, thus it promotes high
bone in growth rate
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ultimate pressure
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• Low load-bearing capacity
when subjected to
uniaxial loading

• Can be easily fabricated via
additive manufacturing, but
not by using conventional
method due to the
complex shape
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• Promotes high cell attachment,
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natural bone’s properties
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assessed Triply Periodic
Minimal Surfaces (TPMS)
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mathematical equation that is
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structure can be found in
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• Promotes high cell attachment,
migration and proliferation
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natural bone’s properties

• Helps in avoiding stress shielding
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2.3.1. Triply Periodic Minimal Surfaces (TPMS)

Triply Periodic Minimal Surfaces (TPMS) is a smooth infinite and non-self-intersecting
periodic structure in three principal directions associated with crystallographic space group
symmetry [68,69]. In 1865–1883, Schwarz and Neovius had introduced some TPMS struc-
tures, which are Schwarz P (Primitives), Schwarz D (Diamond), Schwarz H (Hexagonal)
and Neovius. In 1970, Schoen described the most popular TPMS structure, which is the
Gyroid and also a few other TPMS structures [70]. The most common TPMS structures
that were studied by the researchers are Gyroid, Diamond and Primitives [71]. This is
because the structures can be easily found in nature, such as butterfly wing scales and sea
urchins [72]. TPMS structures are likely to be favoured by the researchers since it promotes
higher cell attachment, migration and proliferation as compared to the scaffold with sharp
edges [47,73].

TPMS structure can be classified into two types which are skeletal TPMS and sheet
TPMS. Most of the researchers tend to assess the properties of TPMS via the sheet typed
TPMS. Therefore, there is a lack of research on the skeletal TPMS structure. In research
conducted by Barba et al., they found that the Gyroid skeletal TPMS shows a feasible
design of a scaffold, which is superior in terms of manufacturability, mechanical properties
and bone ingrowth [74]. However, Cai et al. stated that the compressive strength of the
skeletal TPMS is much lower as compared to the sheet TPMS [75].

Table 3. Mathematical Equations of Triply Periodic Minimal Surfaces (TPMS) Structures.

TPMS
Structure Equation Ref.

Schwarz P (Primitives) cos(x) + cos(y) + cos(z) = t [70,77]

Schwarz D (Diamond) sin(x) sin(y)sin(z) + sin(x)cos(y)cos(z) + cos(x)sin(y)cos(z) + cos(x)cos(y)sin(z) = t [77,78]

Neovius 3[cos(x) + cos(y) + cos(z)] + 4[cos(x)cos(y)cos(z)] = t [70,77]

Gyroid cos(x)sin(y) + cos(y)sin(z) + cos(z)sin(x) = t [70,77,78]

I-WP 2[cos(x)cos(y) + cos(y)cos(z) + cos(z)cos(x)] − [cos(2x) + cos(2y) + cos(2z)] = t [70,78]

Fisher-Koch S cos(2x)sin(y)cos(z) + cos(x)cos(2y)sin(z) + sin(x)cos(y)cos(2z) = t [76,78,79]

Fisher-Koch Y cos(x)cos(y)cos(z) + sin(x)sin(y)sin(z) + sin(2x)sin(y) + sin(2y)sin(z) + sin(x)sin(2z) +
sin(2x)cos(z) + cos(x)sin(2y) + cos(y)sin(2z) = t [76,78]

Meanwhile, the sheet TPMS structure is widely assessed in the literature as it shows
a superior design as compared to the skeletal TPMS. There are many types of TPMS
structures that can be generated through a mathematical equation that controls the TPMS
structure. By using a few software such as Minisurf, the TPMS structure can easily be
generated [76]. The built-in equations can be tabulated in Table 3.

However, the most assessed sheet-TPMS structure in the previous studies are Schwarz
P (Primitives), I-WP, Schwarz D (Diamond) and Gyroid. This is due to their ability to match
the properties of the host tissue of cancellous and cortical bone. According to Bobbert
et al., these structures are able to avoid stress shielding by possessing high yield stress and
low Young’s Modulus [50]. These TPMS can be categorized into two main categories that
are based on their deformation mechanisms, which are stretching surface and bending
surface [68]. Schwarz P (Primitives) and I-WP belong to the stretching surface, while
Schwarz D (Diamond) and Gyroid are the bending surface TPMS.

By using the computational method, which is adopting the Finite Element Analysis
(FEA) to assess the properties of the TPMS scaffold, Shi et al. found out that the TPMS
scaffold possessed excellent scaffold properties that are matched with the bone tissue
properties [80]. In terms of porosity, Castro et al. had reported that the gyroid TPMS
can be used in clinical practices in the bone tissue engineering field. They had carried
out both numerical and experimental methods to assess the mechanical properties of
two gyroids with 50% and 70% porosity, respectively [81]. In a research carried out by
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Yang et al., they found out that the Young’s Modulus of Schwarz P, Schwarz D, I-WP and
Gyroid were matched to the Young’s Modulus of the cancellous bone. However, this only
happened when they were subjected to a high amount of porosity [82]. In addition, the
compressive properties of Schwarz P and I-WP was higher than the cancellous bone [54].
This fact is supported by Montezarian et al., when they also reported that the compressive
strength was higher in the Schwarz P and I-WP structures than the cancellous bone [48,61].
Meanwhile, at a low amount of porosity in the range of 5–10%, the Schwarz P and Schwarz
D scaffolds possessed Young’s Modulus properties similar to that of the cortical bone [83].

Most of the researchers tend to compare the mechanical properties of these TPMS
structures in order to determine the suitable application of the structure in clinical practice
in the future. For example, Afshar et al. reported that the Schwarz P structure showed
better mechanical properties as compared to the Schwarz D structure [84]. In addition,
Maskery et al. also had stated the same conclusion since they found that the stretching
surface TPMS has twice the Young’s modulus of bending surface TPMS by using Finite
Element Analysis [85]. In order to find the mechanical properties, Finite Element Analysis
showed the failure mechanism while simulating the behaviour of the structure. In their
research, Maskery et al. had suggested that the stretching surface TPMS failed because the
stress concentration region was located at the Schwarz P neck, which is situated at the top
surface of the whole structure [85]. This has shown that the structure would start to fail
layer by layer when it is subjected to loadings [86,87]. However, the bending surface TPMS
would start to fail once the scaffold is subjected to ultimate pressure due to the uniform
stress distribution in bending surface TPMS by showing a shear band [48,54,84,88,89].
From these studies, we can see that the stretching structure would fail due to the axial
deformation while the bending structure would fail once the shearing linkages appear on
the structure. Thus, the stretching structures possess a high capacity of load-bearing as
compared to the bending structures when a uniaxial loading is subjected to them [68].

Although the porosity of the TPMS structure can be predetermined by varying certain
parameters in the mathematical equation, the actual porosity amount of the structure was
consistent with the TPMS design. This is due to some studies showed that the solid structure
such as cube has lower mechanical properties as compared to the TPMS structure. In a
study conducted by Zaharin et al., they discovered that the gyroid structure is mechanically
better than the cubic structure [58]. The strut-based structure is also happened to possess
lower mechanical properties as compared to the TPMS structure. This fact is supported by
Al-Ketan et al. in their study since they stated that the TPMS structure exhibits excellent
mechanical properties [72]. Nonetheless, Du Plessis et al. realized that there is not much
significant difference when comparing the mechanical properties of TPMS structures and
strut-based structures [90]. According to Guo et al., although there is not much difference
in the mechanical properties of the TPMS and strut-based structures, the TPMS structure
showed a more uniform and smooth transition of stress distribution [56]. From these
studies, we can see that the TPMS structure kind of possess the same mechanical properties
as the strut-based structures.

In the matter of bone ingrowth, the researchers would take permeability and specific
surface area as a prediction tool [68]. The specific surface area helps in predicting the
cell absorption area, while permeability indicated the ability of the scaffold to facilitate
the transportation of oxygen, nutrients and waste. Schwarz D had the highest specific
surface area, while Gyroid had the highest permeability [11,48,56,91]. Therefore, we
can say that the Schwarz D and Gyroid might be the suitable TPMS for bone ingrowth.
However, it needs to be furthered verified by biological experiments. Schwarz P has a high
manufacturing accuracy as compared to other TPMS since it has the simplest geometry
rather than the other.

In conclusion, we can say that the TPMS structure can be a suitable design for bone
tissue scaffold. The stretching structure and bending structure both have different advan-
tages. Stretching TPMS has excellent properties while the bending structure possesses high
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permeability properties. In general, these TPMS showed properties that are similar to that
of the natural bone.

2.3.2. Voronoi Tessellation

The Voronoi structure is said to be similar to the host tissue in terms of morphology.
This is a need in bone tissue engineering since it should be able to copy the natural
bone properties [92,93]. The Voronoi structure can be produced when a mesh structure
is generated based on random discrete points, which are then connected and performed
a network structure [94]. In 2010, Kou and Tan had introduced the Voronoi method by
creating irregular and random scaffolds, which were merged with Voronoi cells [95]. They
used B-spline curves in order to indicate the irregularly shaped pores’ boundaries. When
this method was adopted, it can be seen that the shape of the scaffold was kind of similar
to that of the shape of the bone structure [96]. After the Voronoi method has been proposed
by Kou and Tan, researches related to the usage of the Voronoi method has been widened
progressively, which includes the reverse engineering method that adopted computed
tomography (CT) scan method to extract its data. Yang and Zhao stated that the Voronoi
method could be used to recreate a bone-like-shaped scaffold by utilizing the data obtained
from a computed tomography (CT) scan [67]. Although the Voronoi structure can be
generated via the tessellation method, which employs some indices such as trabecular
thickness and bone volume to total volume ratio, it is still time-consuming, long-cycle and
mostly unrepeatable experiments [31,97,98].

In the computational method, the Finite Element Analysis was used to indicate the
stress of the Voronoi structure. The study carried out by Wei et al. showed that the
stress gradient of the Voronoi structure increase when the amount of porosity is low and
vice versa [99]. In terms of fluid properties, Gomez et al. suggested that the Voronoi
structure is depending on the amount of porosity and the bone surface area, which is very
much favourable [31]. Therefore, it helps in bone ingrowth. Although the structure is
having a good resemblance with the properties of the cancellous bone, Maliaris and Sarafis
discovered that the intersection of struts was exposed to a stress change [100].

2.3.3. Other Parametric Design

Besides the most common two designs of a parametric scaffold, there are also other
parametric designs, which help in finding the suitable scaffold shape. This is due to the
demand of the bone tissue engineering scaffold, which needs them to be able to possess
excellent mechanical and fluidic properties in terms of permeability. Naturally, many
structures in our environment possess high compressive strength. For example, Achrai
and Wagner discovered that the turtle shell structure might help in producing a feasible
scaffold design [101].

2.3.4. Method of Anatomical Features (MAF)

In addition, the B-spline curve method had also been adopted by Vitkovic et al. when
they produced a scaffold via reverse engineering method for mandible tissue scaffold. In
their study, they identified the mathematical equation that is governing each point in the
shape of the damaged bone. By doing this, the shape of the scaffold that resembled the
damaged bone shape can easily be reproduced. They also found that at a certain amount
of porosity, the mechanical properties of the scaffold can match with its host tissue [102].

Besides that, there is also a parametric method that can be defined as the new approach
to describe the geometry of human bones, which is based on anatomical landmarks. Since
the researchers found difficulties in tailoring the bone substitute with the geometry of host
tissue for a specific patient, the Method of Anatomical Features (MAF) was introduced by
Vidosav et al. in their paper [103,104]. For example, the anatomical landmarks for femur
bone are the Centre of Femoral Head. MAF has been a huge aid in determining the 3D
model of the bone by using reverse engineering. In addition, it is also reliable in producing
the predictive model of the bone or simply known as a parametric model of the bone [105].
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The Method of Anatomical Features (MAF) consists of a few steps that are necessary to
obtain the parametric model, and the most important step is to define the Referential
Geometrical Entities (RGEs). Referential Geometrical Entities (RGEs) can be defined as the
basic prerequisite in order to develop a successful reverse engineering modelling of the
human bone as well as the predictive model of the human bone [106]. Planes, axes, curves,
surfaces and points are examples of RGEs. All of the elements of the human bone must be
referred to as the defined RGEs. In a study conducted by Stojkovic et al., they carried out
MAF on the femur bone of a human, and they defined some of the RGEs of the femur bone
of a human [107]. Anterior–Posterior (A–P) plane and Lateral–Medial (L–M) plane are the
crucial views that needed to be defined precisely in order to develop the reversed model of
the human femur bone successfully.

In order to understand the procedure of generating a mathematical equation by
using the Method of Anatomical Features (MAF), the following flowchart in Figure 1 can
be referred.
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Step 1: CT Scanning

In a real-world application, the CT scanning technique is used to identify any abnor-
malities of an organ. This method is carried out by scanning the organ so that the defective
part of the organ can be detected.

Step 2: Volumetric Modelling

The volumetric model of the bone will be created in order to identify the initial
geometry of the bone, which is required in order to locate the missing part of the bone.
This model is created morphologically and anatomically in order to define the descriptive
model of human bone. The model will then be saved in the STL file. The STL file will be
exported into CAD software.

Step 3: Tessellation Process

This process is crucial in order to determine the polygonal model of the scanned
bone. The tessellated model helps in identifying and filling any gaps that are found in the
scanned bone during the STL mesh obtained.

Step 4: Referential Geometrical Entities (RGE) Definition

Referential Geometrical Entities or RGE includes the characteristics, points, planes,
directions and views of the bone. These entities are defined in order to create a successful
reverse engineering model of the bone.

Step 5: Creation of B-Spline Curves

These curves are created by using the referential geometrical entities (RGE) created
earlier. However, a few additional curves might be needed in order to create curves that
can fit the shape of anatomical features precisely.

Step 6: Creation of Anatomical Points

The anatomical points can be generated on the curves created in the previous step
or can be created on anatomical landmarks. By creating the points on spline curves, they
will be distributed evenly on the curves. Meanwhile, the points that are created on the
anatomical landmarks will be positioned in correspondence to the landmarks such as the
distal part of the femur. These points defined the boundary of the anatomical regions
on the polygonal model. The process of defining RGE and the creation of B-spline and
anatomical points are repeated for each part of the damaged bone.

Step 7: Measuring of Coordinate Values and Morphometric Parameters

Values of coordinates are measured on each part of the bone model in 3D. The mor-
phometric parameters are also measured in the same 3D model.

Step 8: Creation of Parametric Function (Linear Regression)

The parametric functions can be generated by defining the relationship between
morphometric parameters and coordinate values. The parametric model of the bone will
be created, which consists of multiple parametric function. This model is used as the
predictive model for the bone.

Generally, a parametric design is very much reliable in providing a feasible tissue
engineering scaffold. Since a parametric design consists of a complex shape, it is very much
compatible with the additive manufacturing sector. However, it is governed by a specific
algorithm, therefore making it is difficult to be produced. Triply Periodic Minimal Surfaces
(TPMS) is an excellent structure that provides the scaffold with an adequate amount of
mechanical properties along while possessing a good amount of porosity. Meanwhile, a
Voronoi structure is a top-notch structure that possesses excellent scaffold properties since
it matches the properties of the host tissue and is able to imitate the actual structure of the
host tissue.



Polymers 2021, 13, 1584 14 of 24

2.4. Summary of Scaffold Design

Based on the previous discussion, there are a lot of unit cell scaffold designs that have
been studied by the researchers. The designs can be categorized under various categories,
which eventually bring many different benefits to each other. Table 4 summarizes the
designs that have been adopted by the researchers in their studies.

Based on Table 4, the varieties of designs produced by the researchers has showed
that the study that is involving the design of scaffold has been rapidly increasing especially
with the aid of the emerging technologies. Non-parametric designs were chosen by the
researchers previously due to their simpler design process as compared to the parametric
designs. However, scaffold which possess a high amount of porosity will facilitate the
tissue growth process, and it can be seen that the non-parametric designs can possess
60–80% porosity and exhibits lower elastic modulus values. Meanwhile, the parametric
designs can increase their elastic modulus varies from 0.8 GPa up until 3.92 GPa with an
adequate amount of porosity. This shows that the parametric designs can easily imitate
the properties of the host tissue [108]. In addition, the usage of additive manufacturing
and also 3D scanner has shown a great impact in contributing to the complex designs of
scaffold structure. Therefore, there is a need to produce a design that is not just limited to
imitating the bone structure, but also utilizing the designs that are available naturally.

3. Computational Software Used in Simulation of Tissue Engineering Scaffold

There is a lot of software that can be used to design and simulate the behaviour of
the tissue engineering scaffold. The software can be utilized based on the function that is
embedded in the software. Table 5 describes the characteristics of the software.
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Table 4. Scaffold design and its properties.

Type of Design Material Porosity (%)

Mechanical Properties

Software Ref.Elastic
Modulus

(GPa)

Young’s
Modulus

(MPa)

Compressive
Strength

(MPa)

Non-Parametric Design

Circular

Poly(L-lactic-co-glycolic acid)
(PLGA), type I collagen, and
nano-hydroxyapatite (nHA)

54.3–65.2 4.03–5.67 - - COMSOL
Multiphysics [109]

Polylactic Acid (PLA) 80 - - 0.163 Creo Simulate [19]
Poly-L-Lactic Acid (PLLA) 70–97 - - 0.2–0.35 - [110]

Square

User-defined 64.8 - 0.5–1.0 Abaqus [111]
User-defined 60 0.16 - Ansys Fluent [36]

Polylactic Acid (PLA) 80 - - 0.186 Creo Simulate [19]
Polyamide (PA) Graded 0.74–0.89 0.01 - - Abaqus [54]

Hexagonal
Poly-D-L-Lactic Acid (PDLLA) 55–70 - 274–1514 - Ansys Fluent [112]

Glass Ceramic 60
2.4 - - -

[22]- - 139 -

Octet User-defined 60 6 - - Ansys [36]

Parametric
Design

Triply Periodic
Minimal Surfaces

(TPMS)

Schwarz P
(Primitives)

Photopolymer Resin 30 - 150 - Abaqus [84,87]
Photopolymer Resin 60 - 490 - Abaqus [84,87]
Photopolymer Resin Graded 30–60 - 350 - Abaqus [84,87]

Visijet M3 Crystal 70 - 103.54 - Abaqus [113]

Schwarz
D(Diamond)

Photopolymer Resin 30 - 336 - Abaqus [84,87]
Photopolymer Resin 60 - 79.5 - Abaqus [84,87]

Visijet M3 Crystal 70 - 171.37 - Abaqus [113]

Gyroid Poly-D-L-Lactic Acid (PDLLA) 55–70 - 181–1011 - Ansys Fluent [112]
Visijet M3 Crystal 70 - 145.05 - Abaqus [113]

I-WP Photopolymer Resin Graded 40–60 - 170 - Abaqus [84,87]

Voronoi
Poly-D-Lactic Acid (PDLA) 75–85 0.3–0.5 - - - [31]

Titanium Alloy 70 - 3920 - Grasshopper [114]

Other
Titanium Alloy 60–90 - - 11.4 MPa - [115]
Titanium Alloy 30–70 2.3–8.6 - - - [116]
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Table 5. Commonly Used Software for Tissue Engineering Scaffold Simulation.

Software Description Advantages Disadvantages Ref.
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From Table 5, there are four common software programs that have been utilized by the
researchers in order to determine the properties of the scaffold of bone tissue engineering.
From the description, we can see that Solidworks and Catia belong to the modelling and
designing part of the simulation process. The software programs are reliable in producing
an accurate design of the scaffold, which then will be used in the properties’ simulation.
Besides that, the Finite Element Analysis (FEA) is carried out mostly by using Abaqus
software which is capable of visualizing the behaviour and failure mechanism of the
scaffold model. Meanwhile, Ansys Fluent is used to simulate the Computational Fluid
Dynamics (CFD) Analysis of the scaffold behaviour. It is able to simulate and visualize the
scaffold behaviour under various conditions, especially in fluid flow analysis.

Other Software

There is also other software that was used in simulating the behaviour of the scaffold
mechanically and fluidic. For example, COMSOL Multiphysics was used by Uth et al. in
their study in order to validate and optimize the design parameters of a scaffold [109].
Sahin et al. had also used COMSOL Multiphysics to carry out Finite Element Analysis
(FEA) simulation [131]. Apart from that, Creo Simulate was also adopted by researchers
since it is capable of designing a scaffold model [19,132]. It is also reliable performing a
numerical analysis of an anatomical model [133].

From these trends, we can see that there is a variety of software that can be used to
simulate the behaviour of the scaffold. However, the software chosen to be adopted in the
study should match the objectives and able to carry out the desired simulation.

4. Challenges and Future Work Recommendation

With the 3D printing technology nowadays, it seems like computational methods
have been attracting many researchers’ attention in producing many studies that can fully
unleash the potential of computational modelling in the future. However, as we know,
there are no technologies that are perfectly developed. In computational modelling, there
are still challenges that needed to be solved by the researchers. The limitation of the usage
of computational modelling in designing a feasible scaffold of tissue engineering includes.

• The accuracy of the simulation technique. A model that is designed through computa-
tional method tends to be simplified in the computer-aided design (CAD) software.
The structure of the scaffolds might be not fully accurate when it comes to comparing
the simulated model and fabricated parts.

• The simulation of the scaffold’s behaviour can only be done by simulating uniax-
ial loadings in most studies. However, in real-life conditions, the scaffolds can be
subjected to many loadings that are much more complicated as compared to uniax-
ial loadings.

• The simulation can only focus on small-scale models [3]. This is due to the con-
straints that are involving the technologies, such as computer power and application
simulating time.

• In the future, it is advisable if the research can contribute to:
• Increase the accuracy of the simulation when it comes to the fabrication process. This

process can be achieved by adopting image-based modelling such as images from a
3D scanner.

• The need to simulate the scaffolds models under various types of loading is crucial
since many loads can be exerted on it, physically.

• To expand the study on using simulation method that can reduce the effect of size of
the small-scale scaffold model on the large-scale scaffold model.

• Improvise the 3D printing technique is crucial since it can affect the surface of
the scaffold.

• The studies can integrate artificial intelligence in the computational method.
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5. Conclusions

This paper has reviewed the studies that comprise the application of the computational
method in the area of bone tissue engineering. The computational method can be used to
simulate the properties of the scaffold of bone tissue engineering. Moreover, the simulation
technique can also be used to predict the design of the scaffold model. In order to produce
a scaffold with good mechanical properties, many studies have been carried out to simulate
the mechanical properties of the scaffold. It is desired that the scaffold possesses high
compressive strength so that it can withstand the load exerted on it when it is planted
into the body of a human or an animal. Since the porosity and mechanical strength have
an inversely proportional relationship, most researchers came out with integrating the
optimization process and simulation process, which produced the optimal scaffold model
with good mechanical and fluid properties. Furthermore, the design of the scaffold was
also simulated by using computational software. The types of designs that can be generated
by using the computational method have varied. From the discussion, we can see that the
parametric designs have attracted researchers’ attention since it exhibits a good balance
between mechanical and fluid properties of the scaffold. Moreover, the parametric designs
had also shown huge potential in terms of imitating the properties of the host tissue. With
this review, it can be concluded that the computational method has great potential to
be adopted in future studies due to its ability to predict the properties of the scaffolds.
Moreover, the computational method is less time-consuming and very much reliable than
the conventional method.
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