STUDY OF DYNAMIC BEHAVIOUR OF TRUCK CHASSIS

IZZUDDIN BIN ZAMAN @ BUJANG

A dissertation submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Mechanical-Pure)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2005

Specially

To my beloved family members and girlfriend for motivation To Prof. Dr. Roslan Abdul Rahman for the guidance To my housemate for their support To whoever provided help and contributions

ACKNOWLEDGEMENT

Alhamdulillah, all praise and thanks goes to Allah S.W.T who was gave the strength and blessings for me to make it possible to complete the thesis title **Study of Dynamic Behaviour of Truck Chassis.**

Special thanks to my supervisor, Prof. Dr. Roslan for the fullest support, advices, guidance in making this project successful and not to forget to the research officer, En. Romaizi and technician, En. Affendi for guiding in the experimental conduct.

And also I would like to extend my appreciation to my family, my girlfriend; Nurulyun Shafie, housemates and friends for their endless support whenever I face problems. Without the mentioned parties, it is impossible for me to complete this thesis successfully.

THANK YOU

ABSTRACT

Truck chassis is a major component in a vehicle system. It integrates the main component systems such as the suspension, engine, cab and trailer. Thus it often identified for refinement in order to develop vehicles with reduced cost and weight. Nowadays with the capabilities of advanced computer aided design and engineering tools, the process of chassis design in the automotive industry has been significantly refined. The application of FEA such as structural modification and optimization is used to reduce component complexity, weight and subsequently cost. Because the level of model complexity can be high, the opportunity for error can also be high. For this reason, some form of model verification is needed before design decisions made in the FEA environment can be implemented in production with high confidence. This thesis project describes the application of dynamic correlation techniques for verification of the FEA models of truck chassis. The dynamic characteristic of truck chassis such as the natural frequency and mode shape will be determined using finite element method. Experimental measurement has been carried out to validate the analytically derived dynamic models. Modal testing is one of the methods that apply the experimental technique in determining the modes of vibration. Initial results from both analysis show that the truck chassis experienced 1st torsion mode for 1st natural frequency, 1st bending mode for 2nd natural frequency, 2nd torsion mode for 3rd natural frequency and 2nd bending mode for 4th natural frequency. However there is a small discrepancy in terms of frequency. Thus, the model updating of truck chassis model has been carried by adjusting the selective properties such as Modulus Young and Poisson ratio in order to get better agreement in the natural frequency between both analysis. Finally, the modifications of the updated FE truck chassis model has been suggested such as by consider adding the stiffener. The purpose is to reduce the vibration as well as to improve the strength of the truck chassis.

ABSTRAK

Casis trak adalah komponen penting dalam sesebuah sistem kenderaan. Ia digunakan untuk menyokong komponen utama sistem trak seperti suspensi, enjin dan treler. Oleh itu pembaikian sering dilakukan ke atasnya untuk mendapatkan sebuah kenderaan yang lebih murah dan ringan. Dengan kecanggihan rekabentuk berbantu komputer yang ada ketika ini, proses rekabentuk casis trak dalam industri automotif dapat dipertingkatkan. Analisis unsur terhingga seperti modifikasi struktur dapat diaplikasikan untuk mengurangkan bentuk komponen yang kompleks dan seterusnya mengurangkan kos. Oleh kerana tahap kompleks model yang tinggi, maka peluang untuk berlakunya ralat juga adalah tinggi. Oleh sebab itu, suatu bentuk pengesahan model diperlukan sebelum sebarang keputusan rekabentuk dibuat dalam analisis unsur terhingga dilaksanakan dalam proses pembuatan. Projek tesis ini menerangkan mengenai applikasi teknik korelasi dinamik dalam mengesahkan model unsure terhingga bagi casis trak. Ciri-ciri getaran casis trak seperti frekuensi tabii dan bentuk ragam akan diperolehi dan ditentukan menggunakan kaedah unsur terhingga. Eksperimen ujikaji modal telah dijalankan untuk mengesahkan keputusan yang diperolehi model analisis unsur terhingga. Bentuk ragam bagi casis trak juga dapat ditentukan melalui ujikaji modal. Hasil keputusan awal daripada eksperimen dan simulasi komputer menunjukkan casis trak mengalami bentuk ragam yang sama. Walaubagaimanapun terdapat sedikit perbezaan nilai frekuensi tabii bagi kedua-dua analisis. Maka, kemaskini model unsur terhingga telah dijalankan dengan menukar cirri sifat bahan seperti Modulus Young dan nisbah Poisson bagi mendapatkan keputusan frekuensi tabii yang lebih jitu di antara model unsur terhingga dan model eksperimen. Seterusnya, beberapa ubahsuaian seperti menambah penguat terhadap casis trak telah dilakukan untuk mengurangkan kesan getaran disamping menguatkan lagi kekuatan casis.

TABLE OF CONTENTS

TITLE

CHAPTER

	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii
	LIST OF APPENDIXES	xiv
CHAPTER 1	INTRODUCTION	1
	1.1 Objectives	3
	1.2 Scopes of Project	3
	1.3 Outline	4
CHAPTER 2	LITERATURE REVIEWS	5
CHAPTER 3	BACKGROUND THEORY	10
	3.1 Truck Chassis	10

PAGE

	3.1.1	Ladder Frame Chassis	11
	3.1.2	Structure of Ladder Frame Chassis	13
	3.1.3	Mode of Ladder Frame Deflection	14
	3.1.4	Strengthening of the Ladder Frame Chassis	14
3.2	Theory	y of Structural Vibration	16
	3.2.1	Causes of Vibration	16
	3.2.2	Reduction of Vibration	17
	3.2.3	Analysis of Structural Vibration	18
	3.2.4	Natural Frequency	18
	3.2.5	Mode Shape	19
	3.2.6	Resonance	19
3.3	Finite	Element Method	20
	3.3.1	Conceptual in Finite Element Analysis	21
	3.3.2	Normal Mode Analysis	23
3.4	Modal	Analysis	25
	3.4.1	Fundamentals of Modal Analysis	26
	3.4.2	Theoretical of Modal Analysis	26
	3.4.3	Experimental Modal Analysis 28	
	3.4.4	Basic Measurement System	29
3.5	Pre-Te	est Analysis	32
3.6	Valida	tion, Correlation and Model Updating	32
	3.6.1	Comparison of Modal Properties	33
	3.6.2	The Modal Assurance Criterion	34

CHAPTER 4	MET	THODO	LOGY		35
	4.1	Finite	Element Analysis		38
	4.2	Pre-T	est Analysis		41
	4.3	Exper	imental Modal Analysis	42	
		4.3.1	List of Instrumentation		43
		4.3.2	Preparation of Specimen		48
		4.3.3	Experiment Setup		49
		4.3.4	Experiment Procedure	51	

	4.3.5 Analysis of Testing Data	52
4.4	Correlation	53
4.5	Model Updating	54
4.6	Structural Modification	55

CHAPTER 5	RESU	LT AND DISCU	SSION	57
	5.1	Finite Element A	nalysis Results	58
		5.1.1 Natural Fi	requencies	58
		5.1.2 Mode Sha	ipe	59
	5.2	Experimental Mo	dal Analysis Results	62
		5.2.1 Impact Ha	ammer Testing Result	62
		5.2.2 Shaker Te	esting Result	65
	5.3	Correlation Resul	lts	67
		5.3.1 Natural Fi	requencies Comparison	68
		5.3.2 Mode Sha	apes Comparison	69
	5.4	Model Updating	Results	73
	5.5	Structural Modifi	cation Results	76

CHAPTER 6	CONCLUSION AND RECOMMENDATION		
	6.1	Summary	78
	6.2	Conclusion	79
	6.2	Recommendation for Future Research	80

REFERENCES	81

APPENDIX

ix

84

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Results of the modal testing and finite element analysis	7
5.1	Natural frequency result for finite element analysis	58
5.2	Comparison of modal parameter by using different mod	al 64
	testing methods	
5.3	Mode pairs with frequency difference	68
5.4	MAC-matrix value of truck chassis before model updati	ng 70
5.5	Comparison between natural frequencies before and	73
	after updating the FE model	
5.6	MAC diagonal values before and after model updating	74
	FE model	
5.7	Natural frequencies values before and after modification	n 76
5.8	Maximum displacement of truck chassis in the first mod	le 77
	shape	

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	Experimental modal analysis setup for truck chassis	6
2.2	Test setup: I vertical excitation and II horizontal excitation	7
2.3	Result of pretest analysis for center member bar	9
3.1	Chassis frames for commercial vehicles	12
3.2	The main structures of ladder-type chassis	13
3.3	Mode of chassis frame deflection	14
3.4	Frame flitch	15
3.5	K-member to stiffen the chassis frame	15
3.6	The Tacoma Bridge swayed violently caused by wind	17
3.7	Finite element simulation using MSC.visual Nastran	20
3.8	Types of element	21
3.9	Meshing procedure with hexahedral element	22
3.10	Finite element analysis procedure	23
3.11	Schematic representation basic hardware for modal testing	29
3.12	Impact hammer details	30
3.13	Piezoelectric accelerometer	31
4.1	Research Methodology flow-chart	36
4.2	Parallel ladder type frame with box section	37
4.3	Isometric view of the truck chassis	39
4.4	Truck chassis model meshed with the tetrahedral-10	40
	elements	
4.5	Optimal exciter location for Y-direction	42
4.6	PAK Data analyzer	45
4.7	Laptop	45
4.8	Accelerometer with the cable	46
4.9	Equipment used in impact hammer testing	46

PAGE

4.10	Charge amplifier	47
4.11	Equipment used in shaker testing	47
4.12	Excitation points	48
4.13	A typical experimental set-up for impact hammer test	49
4.14	A typical experimental set-up for shaker test	50
4.15	Modification on truck chassis by adding stiffener	55
5.1	FEA first mode shape @ 43.74 Hz	60
5.2	FEA second mode shape @ 64.81 Hz	60
5.3	FEA third mode shape @ 99.09 Hz	61
5.4	FEA fourth mode shape @ 162.34 Hz	61
5.5	Superimposed FRF for truck chassis in log Y scale by	63
	impact hammer	
5.6	Curve fitting of the superimposed FRF for truck chassis	63
	by impact hammer	
5.7	Experimental mode shape of truck chassis by impact	64
	hammer	
5.8	Superimposed FRF for truck chassis in log Y scale by	65
	shaker	
5.9	Superimposed FRF after exponential windowing process	66
5.10	Experimental mode shape of truck chassis by shaker66	
5.11	Superimposed view of FE model and Experimental model	67
5.12	Graph comparison of natural frequency between FE and	68
	EMA	
5.13	MAC-matrix before updating	69
5.14	Superimposed view of the first paired mode shape	70
5.15	Superimposed view of the second paired mode shape	71
5.16	Superimposed view of the third paired mode shape	71
5.17	Superimposed view of the fourth paired mode shape	72
5.18	Chassis E changes as a result of updating	75
5.19	Chassis ρ changes as a result of updating	75
5.20	FE results after modification of truck chassis 77	

LIST OF SYMBOLS

f	-	Natural frequency
Т	-	Period of harmonic motion
F	-	Force
k	-	Spring stiffness
X	-	Displacement
m	-	Mass
ÿ	-	Acceleration
c	-	Damping coefficient
ż	-	Velocity
ω	-	Natural frequency
t	-	Time
[K]	-	Stiffness matrix to represent elastic properties of a model
[M]	-	Mass matrix to represent inertial properties of a model
{ <i>ü</i> }	-	Acceleration matrix
$\{u\}$	-	Displacement matrix
$\{\phi\}$	-	Eigenvector or mode shape
$\lambda_{_i}$	-	Eigenvalues (the natural or characteristic frequency)
$\{f\}$	-	Vector of applied forces
Е	-	Young's Modulus
ρ	-	Mass density
υ	-	Poisson ratio

LIST OF APPENDIXES

APPENDIX	TITLE	PAGE
A	Experiment set-up	85
В	Engineering drawing	87
С	Result of Experimental Modal Analysis	94
D	Result of Normal Modes	97
E	Ghant Chart	102
F	Truck catalogue	104

CHAPTER 1

INTRODUCTION

Chassis used in off-road vehicles have almost the same appearance since the models developed in 20 or 30 years ago. This indicates that the evolution of these structures is still slow and stable along the years [1]. Therefore many researchers in automotive industry have taken this opportunity to be involved in the chassis manufacturing technology and development. Malaysia had invested large amount of money in automotive industry. However, the automotive industry in Malaysia especially in truck manufacturing is still in the development phase and much relying on foreign technology.

Nowadays, the current trend in truck design involves the reduction of costs and increase in transportation efficiency. The pursuit of both these objectives results in lighter truck, which uses less material and carries less dead weight. At the same time, the comfort of the driver cannot be neglected as the driver has to operate safely and comfortably for many hours. Chassis is one of the parts in the truck that is strongly influenced by these guidelines of weight and cost reduction [2]. The consequence of a lighter chassis is a vehicle that has structural resonance within the range of typical rigid body vibrations of the truck subsystems. On the other hand, the vibration also can be formed due to dynamic forces induced by the road irregularities, engine, transmission and more. Thus under these various dynamic excitation, the chassis will tend to vibrate and can lead to ride discomfort, ride safety problems, road holding problems and also to cargo damage or destruction [3]. However, it is worried most if one of the excitation forces coincides with the natural frequencies of truck chassis. It can cause resonance to occur where the chassis will undergo dangerously large oscillation. This can result in excessive deflection and failure.

To solve this problem, the study of dynamic characteristics of truck chassis is essential by determining the natural frequency and mode shape of the system. The truck chassis can be avoided from vibrating at dangerous level by making sure that the excitation forces frequency does not coincide with the natural frequency of truck chassis. Besides that by understanding the dynamic characteristics; mode shape of truck chassis, the suitable mounting location of the components such as engine, suspension, cab and transmission can be determined. Modification of chassis structure has also become one of the important stages in a truck chassis development. This can be done by modifying the dynamic behavior of the chassis which result in enhancing the structure fatigue characteristic, reduce the vibration effect and improve the strength of truck chassis. Adding stiffener is the most common method used in structural modification [4].

1.1 **Objective**

The objectives of this project are:

- i. To determine the natural frequency and mode shape of the truck chassis by using finite element method and modal analysis.
- ii. To improve the dynamic behavior of the truck chassis.

1.2 Scope of Project

The scopes of this project are:

- i. Literature review and critical analysis of dynamic characteristic of truck chassis.
- ii. Analysis of 1 tonne loading truck chassis
- iii. Simulation work by using finite element method.
- iv. Experimental work by modal analysis.
- v. Correlation of finite element analysis and modal analysis.
- vi. Modal updating analysis on FE model by adjusts the selective properties.
- vii. Proper modification and improvement of truck chassis to suit desired requirement.

1.3 Outline

Chapter 2 discusses on the literature study of truck chassis based on recent papers and journals that have been carried out lately. The entire literature searches are basically related to the recent structural dynamic analysis, modal analysis testing, finite element analysis and model updating on the truck chassis.

The theory and mechanics of vibration as they are used in this study are explained in Chapter 3. An explanation of truck chassis such as the ladder frame chassis, fundamentals of finite element methods and modal analysis testing are also discussed.

Chapter 4 provides an outline of the truck chassis setup at the Structural Dynamic Laboratory for vibration testing. It includes the chassis installation for freefree vibration test and the data acquisition system for modal testing. Meanwhile the steps and work procedure for finite element analysis are also been clarified in Chapter 4. The correlation and updating process are also defined in this chapter.

Chapter 5 discusses on the experimental results and the analytical predictions by finite element analysis of the truck chassis vibration. All the discussion related to this study such as the correlation analysis, model updating and the structural modification of truck chassis are also discussed in this part.

Finally, Chapter 6 summarizes and concludes the results of the study and provides recommendations for future research.