STRUCTURAL DESIGN AND ANALYSIS OF A MICROTURBINE COMPRESSOR

INDRA WENING MAHARSI

A Project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Mechanical Engineering

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

DECEMBER 2006

Especially dedicated to:

my parents, Sugiharti and Bambang Soegeng;
my sister, Linda Cita Mahars;i
my little niece, Nafesa Shafira Azzahranisa;
my brother in law, Bambang Soedjajono; and my love Ratih Dewi Ayu Ningrum.

ACKNOWLEDGEMENT

First and foremost, I thank Almighty God for giving me an opportunity to complete this thesis. I would like to express my sincere appreciation to my supervisor Ainullotfi Abdul Latif, for the guidance, assistance, criticism, and suggestions he provided for this research.

I would also like to thank to my colleague Nandakumar for all the discussion, help and provides of necessary information to the research I conducted here.

Deepest thanks to my family; my parents, my sister and my little niece, my brother in law, and my love one; for their support and prayers throughout the process of producing this project report and the whole years of my study.

ABSTRACT

A structural design was conducted on a compressor for a microturbine generating 100 kW output power. The scope concerned the conceptual design of gas turbine system, the sizing of the compressor, the computation of loads acting on compressor and the stress analysis for its structural integrity. The dimensions and the physical properties of the compressor impeller were calculated based on the given microturbine output power, using thermodynamic equations on turbomachinery aspects. Thereafter a simplified one-tenth model of the ten-bladed impeller was created in Fluent, a Computational Fluid Dynamic (CFD) program, taking into consideration the axisymmetric boundary conditions. The analysis was run at the standard sea level atmospheric conditions (ISA) to obtain the fluid forces acting on the blade surfaces. These forces, together with the rotational inertial loads, were then used as the loading input parameters for the structural integrity analysis done using the Finite Element program MSC.Nastran. The resulting stresses and deformations were obtained and contours plotted. Comparisons were done between the curved blade and the straight blade designs. The results showed that the curved blade gave better stress distribution, thus this shape was then tested for various rotational speeds. Analyses were also conducted on different materials for the compressor impeller structure, and steel was subsequently demonstrated to be the one which was to be suitable and safe.

ABSTRAK

Suatu rekabentuk struktur dijalankan ke atas pemampat bagi sebuah mikroturbin yang menghasilkan kuasa keluaran sebesar 100 kW. Skop kerja merangkumi rekabentuk konsep bagi sistem turbin gas, pensaizan pemampat, pengiraan beban yang bertindak ke atas pemempat, dan analisis tegasan bagi memastikan integriti struktur. Dimensi dan ciri fizikal pendesak pemampat dikira berdasarkan kuasa keluaran yang diberikan oleh mikroturbin, menggunakan persamaan-persamaan termodinamik untuk turbomesin. Seterusnya suatu model sepersepuluh yang dipermudahkan dibina dalam perisian dinamik bendalir komputasi (CFD) *Fluent*, mengambil kira keadaan sempadan simetri sepaksi. Analisis dilaksanakan pada keadaan atmosfera aras laut piawai untuk mendapatkan beban-beban bendalir yang bertindak ke atas permukaan bilah. Beban-beban ini, bersama dengan beban inersia putaran, seterusnya digunakan sebagai parameter pembebanan masukan bagi analisis integriti struktur menggunakan perisian unsur terhingga MSC.Nastran. Tegasan-tegasan dan perubahan bentuk yang terhasil diperolehi dan konturnya diplotkan. Perbandingan dijalankan ke atas rekabentuk bilah melengkung dan bilah lurus. Keputusan menunjukkan bilah melengkung mempunyai taburan tegasan yang lebih baik, lalu rekabentuk ini diuji pada beberapa kelajuan putaran. Analisis juga dilakukan ke atas bahan struktur pemampat pendesak yang berbeza, dan keluli menunjukkan bahan yang paling sesuai dan selamat.

TABLE OF CONTENTS

CHAPTER	CON	NTENTS	PAGE
	TITI	LE	i
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Γ OF FIGURES	xi
	LIST	Γ OF TABLES	xiv
	LIST	T OF SYMBOLS	xv
CHAPTER 1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Objective of Study	2
	1.3	Scope of Study	2
	1.4	Outline of Projects	3
CHAPTER 2	LITI	ERATURE REVIEW	5
	2.1	Introduction	5

			viii
		2.1.1 Gas Turbine Cycles	6
	2.2	Microturbine	7
		2.2.1 Single-Shaft Microturbine	9
		2.2.2 Twin-Shaft Microturbine	11
	2.3	Microturbine Applications	13
	2.4	Turbomachinery Performance	14
		2.4.1 Compressor	15
		2.4.1.1 Curved Blades	16
		2.4.2 Turbine	17
		2.4.3 Heat Recovery	18
	2.5	The Microturbine Constraints	19
		2.5.1 The Compressor Constraints	20
	2.6	Finite Element Historical Background	22
CHAPTER 3	PRO	DJECT METHODOLOGY	23
	3.1	Engineering Design	23
	3.2	Major Design Consideration	24
	3.3	Shaft Material Design Consideration	26
	3.4	Impeller Material Design Consideration	27
	3.5	Compressor Properties	28
	3.6	Compressor Blade Design Properties	29
CHAPTER 4	CON	MPRESSOR DIMENSIONING	28
	4.1	Shaft Consideration	30
		4.1.1 Shaft Power	30
		4.1.2 Shaft Designation	31
		4.1.3 Safety Check for Shaft Torsion	32
	4.2	Impeller consideration	33
		4.2.1 Impeller Condition	34
	4.3	Atmospheric Condition	35
	4.4	Compressor Properties	36
		4.4.1 Compressor Blade	38

CHAPTER 5	CON	MPUTATIONAL FLUID DYNAMIC (CFD)	40
	5.1	Introduction	40
	5.2	Steps in CFD Analysis	41
	5.3	Fluid Flow in CFD Program	41
		5.3.1 Introduction	41
		5.3.2 Continuity and Momentum Equation	42
		5.3.3 Flows in Rotating Reference Frame	43
		5.3.4 Turbulence Modelling in Swirling Flows	44
	5.4	Forces in the Body	46
	5.5	Program	48
		5.2.1 Model	48
		5.2.2 CFD Pre-Solver Program (Gambit)	50
	5.6	Properties	52
	5.7	CFD Program (Fluent)	53
		5.7.1 Total Pressure Contour	54
CHAPTER 6	FINI	TE ELEMENT METHOD (FEM)	58
	6.1	Introduction	58
	6.2	Fundamental Concepts	59
		6.2.1 Stress Definition	59
		6.2.2 The Stress Tensor (Stress Matrix)	60
		6.2.3 Equations of Equilibrium	61
		6.2.4 Failure Criteria	61
		6.2.5 Saint Venant's Principle	62
	6.3	Three Dimensional Problems	63
		6.3.1 Model	63
	6.4	Finite Element Generation	64
	6.5	Treatment of Boundary Condition	65
		6.5.1 Loads (Forces) and Constraints	65
	6.6	Compressor Material	67
	6.7	Bending Stress in Finite Element Program	68

		6.7.1	Bending Stress Due to Centrifugal Forces	69
		6.7.2	Bending Stress Due to Differential Growth	70
CHAPTER 7	RESULT ANALYSIS			72
	7.1	Result	Steps	72
	7.2	Compr	essor Shape Comparison Analysis	73
		7.2.1	Straight Blade	73
		7.2.2	Curved Blade	75
		7.2.3	Comparison Result	77
	7.3	Analys	sis under Various Rotational Speed	78
		7.3.1	Rotational Speed of 60000 rpm	78
		7.3.2	Rotational Speed of 50000 rpm	80
		7.3.3	Rotational Speed of 40000 rpm	83
		7.3.4	Rotational Speed of 30000 rpm	86
		7.3.5	Various Rotational Speed Results	89
		7.3.6	Compressor Parametric Characteristic	90
	7.4	Materi	al Selection	93
		7.4.1	Alternative Material	93
CHAPTER 8	CON	CLUSIO	ONS AND RECOMMENDATIONS	94
	8.1	Conclu	asions	95
	8.2	Recom	mendations for Future Development	96
REFERENCES				98
APPENDICES				102

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
2.1	Simple gas turbine diagram	5
2.2	Brayton Cycle, P-V Diagram	6
2.3	Microturbine	7
2.4	Single Shaft Microturbine	10
2.5	Twin Shaft Microturbine	11
2.6	Various Application for Microturbine	14
2.7	Compressor Efficiency Improvement	15
2.8	Radial-curved Blades	16
2.9	Forward-curved Blades	16
2.10	Backward-curved Blades	17
2.11	Pressure Ratio and TIT Effect for Nonrecuperated	17
2.12	Recuperator Performance Improvement	19
2.13	Achievable stage pressure ratio and required blade speed	21
3.1	Machine Design Flow	24
3.2	Major Flow Design	25
3.3	Shaft Material Design Flow	26
3.4	Impeller Material Design Flow	27
3.5	Compressor Design Properties Flow	28
3.6	Compressor Blade Design Flow	29
4.1	Shaft Rough Design	32
4.2	Compressor-Shaft Assembly Rough Design	37
4.3	Compressor Vane Angle	38
5.1	Application that can be modelled in a rotating reference frame	43
5.2	Control volume for steady flow with control surface cutting	

	velocities angle	47
5.3	Particular forces acting on the control volume (surface)	47
5.4	Fully Compressor Design and Partial Design Focused	48
5.5	Compressor Boundary Analysis	49
5.6	Face Boundary Building	50
5.7	Face Meshed	51
5.8	Volume Meshed	51
5.9	Contours on Inner Blade Surfaces	54
5.10	Contours on Splitter Surface	55
5.11	Contours on Hub Surface	56
5.12	Contours on All Analyzed Surfaces	57
6.1	Free Body Diagram	59
6.2	Equilibrium of Elemental Volume	60
6.3	Three dimensional model of compressor blades	63
6.4	Simplification of the model	64
6.5	Tetrahedral Element	64
6.6	Loads from Fluids Pressure for Blade and Splitter	66
6.7	Inertial Load Constraints	66
6.8	Axisymmetric Constraints	67
6.9	Fixed Constraints	67
6.10	Rotating Blade Element	69
6.11	Blade Element in Bending	70
7.1	Straight Blade Geometry	73
7.2	Straight Blade Fluid Loads Contour	73
7.3	Straight Blade Stress Tensor, Von Mises	74
7.4	Straight Blade Deformation Magnitude	74
7.5	Curved Blade Geometry	75
7.6	Curved Blade Fluid Loads Contour	75
7.7	Curved Blade Von Mises Stress	76
7.8	Curved Blade Deformation Magnitude	76
7.9	60000 rpm Fluent Contour	78
7.10	60000 rpm Stress Tensor Contour	79
7.11	60000 rpm Deformation Contour	79
7.12	50000 rpm Fluent Contour	80

		xiii
7.13	50000 rpm Stress Tensor Analysis	81
7.14	50000 rpm Deformation Analysis	82
7.15	40000 rpm Fluent Contour	83
7.16	40000 rpm Stress Tensor Analysis	84
7.17	40000 rpm Deformation Analysis	85
7.18	30000 rpm Fluent Contour	86
7.19	30000 rpm Stress Tensor Analysis	87
7.20	30000 rpm Deformation Analysis	88
7.21	Compressor Characteristic on Titanium Alloy	90
7.22	Compressor Characteristic on Aluminium Alloy	91
7.23	Compressor Characteristic Regression on Titanium Alloy	91
7.24	Compressor Characteristic Regression on Aluminium Alloy	92
7.25	Thickening on Blade Root Attachment	92
7.26	60000 rpm Stress Tensor Contour on Stainless Steel	94
7.27	60000 rpm Deformation Contour on Stainless Steel	94

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
5.1	Compressor Geometry Parameter	49
5.2	CFD Parameter Analysis (Pre-solver)	52
5.3	CFD Parameter Analysis (Fluent)	53
6.1	Materials for compressor	68
7.1	Compressor Shape Result Comparison	77
7.2	60000 rpm Analysis	80
7.3	50000 rpm Analysis	83
7.4	40000 rpm Analysis	86
7.5	30000 rpm Analysis	89
7.6	Titanium Alloy Material Analysis	89
7.7	Aluminium Alloy 7075 Material Analysis	90

LIST OF SYMBOLS

SYMBOL SUBJECT

2D Two Dimensional3D Three DimensionalAl 7075 Aluminium Alloy

b Impeller Outlet Depth

C₁ Compressor Inlet Sound Velocity

C₂ Compressor Outlet Sound Velocity

CFD Computational Fluid Dynamic

Cp Gas Constant Pressure

d Shaft Diameter d.shaft Shaft Diameter

d₁ Compressor Inducer Inner Diameter

d₂ Compressor Outer Diameter

DOF Degree of Freedom dP/P Change in Pressure Elastic Modulus

EGT Exhaust Gas Temperature

ETATH Gas Turbine System Efficiency

F, G, H Flux Vector

FEA Finite Element Analysis
FEM Finite Element Method

g Gravitational Acceleration

h Impeller-to-shaft Attachment Depth

H Air Enthalpy

Hp Polytrophic Head

I Invariant of Stress Tensor

J Inertial Moment

Kt/Kb Shock and Fatigue Factor Applied to Torsional Bending Moment

LHV Lower Heat Value

M_b Bending Moment due to Centrifugal ForceM_{D.G} Bending Moment due to Differential Growth

MIT Massachusetts Institute of Technology

Mrot Impellers Tip Mach number

Mt Shaft Torsional Moment

MTU Maschinen Triebwerken Unsere (German Aero Engine Company)

N Shaft Rotational Speed

n Polytrophic Constant

p₁ Compressor Inlet Pressure

p₂ Compressor Outlet Pressure

Q Heat

r Radial CoordinateR Hydraulic Radius

RNG Renormalization Group
ROM Reduced Ordered Model

rp Gas Constant

S GasConstant Pressure

S.F. Safety Factor

S_b Bending Stress

S_{D,G} Bending Test due to Differential Growth

 S_m Mass Added to The Continuous Phase

t Impeller Hub Depth

T Traction

 T_1 Compressor Inlet Temperature T_2 Compressor Outlet Temperature T_C Thermal Expansion Coefficient

Tet Tetrahedral Topology

Ti-6Al-4V Titanium Alloy

TIT Turbine Inlet Temperature

t Shaft Torsional Stress

U Internal Energy

U.T.S Ultimate Tensile Strength

u₁ Compressor Inner Diameter Speed

u₂ Compressor Outer Diameter Speed

V Volume

v Specific Volume of Air

vr₁ Inlet Tangential Air Velocity

vr₂ Outlet Tangential Air Velocity

wp Polytrophic Shaft Power

x Axial Coordinate

z Compressibility Factor

 $\beta = \alpha$ Degree of Curvature

η_p Compressor Polytrophic Efficiency

 π Phi

σ Stress Tensor

 $\sigma_{\scriptscriptstyle VM}$ Von Mises Stress

Ψ Characteristic of Pressure Number

m Mass Flow

τ Impeller-to-shaft Applied Torsional Stress

γ Air Constant

 ρ Specific Mass

 $\rho \vec{g}$ Gravitational Body Force

 \vec{F} External Body Force

 μ Air Molecular Viscosity

 \vec{v} Absolute Velocity

 $\vec{\Omega}$ Angular Velocity Vector

 $k - \varepsilon$ Turbulence Transport Model

 δ Deflection to Differential Growth

LIST OF APPENDICES

APPENDIX	DESCRIPTION	PAGE
A	Computer Fluid Dynamic Input File Fluent 6.2	102
В	Finite Element Analysis input File	117

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the need of energy production to be used for either industrial or several transportations is in great demand. The type of power generation has become the major concern because of its widespread need. For the concern of recent time needs, the suitable power generation type is one which achieves a relatively better efficiency, low in cost, and satisfied the demanding criteria.

For those needs the gas turbine system is the answer. Gas turbines are internal combustion engines that they use a rotating shaft or rotor instead of "reciprocating" in cylinders. It has the advantages of small dimensions, light weight, easy to be serviced (resulting to low maintenance cost), and most of all it can produce more power (relative to the power produced-to-weight ratio) and faster speed spin. They became practical sixty years ago; today gas turbines are one of the keystone technologies of the civilization [1].

Because of its critical role, it is understandable that innovation to a step further is needed. In a field where the major role needed and development costs both are the major concerns, it was thought to build the smallest possible gas turbine, and to explore whether the device could be made into smaller size. The microturbine is actually the scale-down of the large ordinary gas turbine system.

This is what gave birth to this project – since the advantages of gas turbines are already known compare to the others, this project deal with designing of microturbine compressor and the corresponding overall integrity analysis of the designated compressor.

1.2 Objective of Study

The objective of this study is to design a compressor shape for 100 kW microturbine output, and conduct stress analysis based on static loading condition to ascertain its structural integrity of shape under the loads experienced in its normal operation.

1.3 Scope of Study

The project also includes the dimensional design of the compressor (impeller and its shaft). The design, then, investigated by obtaining the load under various operation conditions, and then the analysis of the structure's integrity using finite element method is conducted. It is expected that the project will provide the recommendation that can help to improve the performance of compressor design base on the previous analysis.

The scope of study consists of two major parts. The first is to design the dimension of the compressor based on the given output power. The design is expected to be the most optimal dimension to that proposed output.

The second part is the analysis of the designated dimension of the compressor. This part is investigating the load acting on the compressor using computational fluid dynamic program and conducting analysis of the structural integrity using the finite element analysis program.

1.4 Outline of Report

This project is divided into six chapters. Chapter 1 presents the background of the study, which gave birth to this project. It also covers the objective of study, the scope of study and this project's outline.

Chapter 2 describes the literature review of the project. It explains the general review of the gas turbine concept. Several reference and cites' are quotes in this chapter to be the base knowledge of the design. The specific microturbine part review is described to support the specific need of the assumptions on the project.

Chapter 3 describes the step methodology to determine the properties of the design compressor to be used to the analysis. Here the flow diagrams are provided into every part design such as the shaft material design, impeller material design, compressor properties and compressor blade design, all to describe the step to obtain the data needed.

Chapter 4 discussed the dimensioning of the compressor that can be optimally suited to the designated output power. The calculations are conducted in this chapter. Assumptions on various conditions are given here together with the important base reference quotes. Then both of them will be calculated with the

appropriate equations to obtain the compressor dimension and initial data's needed for further analysis.

Chapter 5 examines the data provided by previous chapter to be used on the Computational Fluid Dynamic (CFD) program, which is here will be the *Fluent* program chosen. The result data will be regarded as the loads of certain operational condition acting on the designated compressor dimension.

On chapter 6 will be introduced the using of Finite Element Analysis (FEA) program, continue by modeled design approaches provided to be examined. The data produced by the CFD program then applied to the structure analysis by using the FEA program, which uses the *Nastran* program.

On chapter 7 will asses the analysis results both by fluid dynamic aspect and finite element aspect. The safety criteria will also be provided in concern of safety for the material used. Comparison result may also be provided in order to get the optimum result of analysis. At the end the determination of material used is expected to be established.

At the end of the project, which is will be on chapter 8, will provide the highlighted conclusions and expected to have recommendation, could be provided to help to improve the performance of compressor design base on the previous analysis. This is by combining analysis from the initial design, loads acting on compressor until the structure integrity. So by this way, it is expected to have a sufficient conclusion on overall performance of the design that could be realized by making the microturbine compressor into real.