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Abstract: The accurate estimation of suspended sediments (SSs) carries significance in determining
the volume of dam storage, river carrying capacity, pollution susceptibility, soil erosion potential,
aquatic ecological impacts, and the design and operation of hydraulic structures. The presented study
proposes a new method for accurately estimating daily SSs using antecedent discharge and sediment
information. The novel method is developed by hybridizing the multivariate adaptive regression
spline (MARS) and the Kmeans clustering algorithm (MARS–KM). The proposed method’s efficacy
is established by comparing its performance with the adaptive neuro-fuzzy system (ANFIS), MARS,
and M5 tree (M5Tree) models in predicting SSs at two stations situated on the Yangtze River of China,
according to the three assessment measurements, RMSE, MAE, and NSE. Two modeling scenarios
are employed; data are divided into 50–50% for model training and testing in the first scenario,
and the training and test data sets are swapped in the second scenario. In Guangyuan Station, the
MARS–KM showed a performance improvement compared to ANFIS, MARS, and M5Tree methods
in term of RMSE by 39%, 30%, and 18% in the first scenario and by 24%, 22%, and 8% in the second
scenario, respectively, while the improvement in RMSE of ANFIS, MARS, and M5Tree was 34%, 26%,
and 27% in the first scenario and 7%, 16%, and 6% in the second scenario, respectively, at Beibei
Station. Additionally, the MARS–KM models provided much more satisfactory estimates using only
discharge values as inputs.

Keywords: estimating discharge–sediment relationship; MARS–Kmeans; MARS; ANFIS; M5 model tree

1. Introduction

The rapidly growing global population has made freshwater resources scarce and
compelled hydrologists to explore methods for better river management and water re-
source conservation [1]. Accurate modeling of suspended sediment load (SSL) plays a
vital role in river restoration, pollution, and soil erosion reduction, thus solving challenges
related to water quality, channel design, and the operation of hydraulic structures [2,3].
However, precise forecasting of SSL is challenging due to the concurrent effects of many
meteorological and hydrological factors on sediment processes, such as wind speed, evapo-
ration, precipitation, river discharge, water temperature, and ice packs. The variations of
these parameters in space and time make the sediment dynamics highly complicated and
nonlinear [4,5]. Many SSL estimation models have been developed in the literature, ranging
from physically based to data-driven models. Physically based models require a large
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volume of different kinds of data and information for reliable estimation of SSL. However,
such a large amount of data is difficult to obtain in data-scarce catchments, especially for
developing countries [6]. For such cases, data-driven models have demonstrated success
in modeling different hydrological phenomena, especially streamflow and sediment load,
by capturing the non-stationarity and nonlinear behavior of SSL with fewer data [3,7,8].
Several data-driven modeling approaches, including artificial neural networks (ANN),
adaptive neuro-fuzzy inference systems (ANFIS), support vector machines (SVM), the M5
model tree (M5Tree), and multivariate adaptive regression splines (MARS), have shown
their efficiency in precise modeling of different hydrological variables [9–12]. Some of those
algorithms, such as ANN, have also demonstrated their success in modeling SSL [13].

Different ANN models have been utilized to estimate SSL during the last two
decades [13–15]. The studies showed some inherent drawbacks of ANN, including limited
regularization and plunging to local minima. The rapid learning and adaptation capacity of
ANFIS has made it capable of overcoming the weaknesses of ANN significantly. Therefore,
it has been widely employed in recent years for SSL prediction [16–29]. Kisi and Yaseen [16]
applied three different ANFIS models, including ANFIS subtractive clustering (ANFIS-SC),
ANFIS grid partition (ANFIS-GP), and ANFIS fuzzy c-means (ANFIS-FCM), to predict the
suspended sediment concentration of Eel River. Results indicated the satisfactory perfor-
mance of ANFIS based models in estimating sediment concentration. Bakhtyar et al. [17]
and Kabiri-Samani et al. [18] evaluated the prediction accuracy of ANFIS compared to
different empirical formulas such as Walton–Bruno (WB), Van Rijn (VR), and CERC in
forecasting longshore sediment transport rate (LSTR). They found less error in estimating
LSTR using ANFIS models than that obtained using empirical formulas. Mianaei and Ke-
shavarzi [19] examined the ANFIS prediction capability in assessing suspended sediment
discharge at the Escanaba River mouth station. They found the ANFIS model’s prediction
very close to observation. For daily streamflow and sediment discharge estimation at
Polavaram and Pathagudem gauging stations of the Godavari catchment, Kumar et al. [20]
applied ANFIS and ANN models. As results, they found that the ANFIS model with
three membership functions provided the best results for daily streamflow and sediment
discharge. Kisi and Kermani [21] utilized the ANFIS-FCM, ANN, and sediment rating
curve methods to determine the daily sediment amount at two hydraulic stations operated
by the United States Geological Survey. They reported the ANFIS model’s capability to
improve prediction accuracy by 10% to 16% compared to the ANN model. Vafakhah [22]
applied the ANFIS model to sediment load prediction of the Kojor forest watershed near
the Caspian Sea using rainfall and streamflow as inputs. He compared the selected method
with cokriging (CK), ordinary kriging (OK), and ANN models and reported a better perfor-
mance of ANFIS compared to CK and OK models. For daily and monthly SSL modeling
of the Little Black River and the Great Menderes basin, Rajaee et al. [23] and Firat and
Gungor [24] compared the performance of the ANFIS model with ANN and multiple
linear regression (MLR). Results demonstrated the dominancy of the ANFIS model over
the ANN and MLR models. In dam operation management, the precise calculation of
the sediment input to the dam reservoir is very critical. Therefore, Samet et al. [25] used
the ANFIS model with ANN and genetic algorithm (GA) models for SSL estimation from
temperature, runoff, and CM (three-section method of sediment sampling) data in the
Maku dam reservoir of Iran as a case study. Results indicated that the ANFIS model has a
“gauss” membership function, which provides more accurate results than the ANN and
GA models, with only a 0.968% percentage error. In addition to success in SSL prediction,
the ANFIS models also performed well in estimating riverbed load. For forecasting the
bed load of three Malaysian rivers (Kurau, Langat, and Muda of Peninsular Malaysia),
Chang et al. [26] utilized the ANFIS model. The literature also showed that coupling the
wavelet technique with the ANFIS model produces more accurate results than standalone
ANFIS models. Mirbagheri et al. [27], Rajaee. [28], and Rajaee et al. [29] applied the ANFIS
hybrid model coupled with the wavelet method. They found that the hybrid ANFIS model
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provided more accurate results than the standalone ANFIS models in estimating SSL at a
USA gauging station.

This study selected the MARS model due to its shorter training process and better
ability to model complex nonlinear processes without strong model assumptions than
ANN models [30]. Another selected method was the M5Tree model due to its large data
handling capability and smaller computational cost than the ANN and SVM models [29].
In recent years, MARS and M5Tree have been applied successfully in modeling runoff and
sediment load [31–39]. Malik et al. [37] compared the performance of the MARS model
with the SVM-based model (least square SVM) and two ANN models (radial basis and
self-organizing map neural network) for estimating daily SSL at different gauging stations
in Godavari catchment, India. Results indicated that the radial basis neural network
and MARS models provided more satisfactory results than other data-driven models.
Senthil Kumar et al. [38] evaluated the accuracy of the M5Tree model in predicting SSL
and compared its performance with ANN coupled with backpropagation and Levenberg–
Marquardt algorithms, fuzzy logic, and REPTree models. They obtained the most precise
sediment concentration simulations using M5Tree.

Although the MARS and M5Tree models demonstrated promising results in previous
studies for sediment modeling, both models could not efficiently capture the uncertainties
in sediment time series data due to their complex behavior. The literature found that
hybrid MARS and M5Tree models can provide more precise results than standalone data-
driven models. A hybrid of the wavelet method and the M5Tree model (WM5Tree) was
introduced by Goyal et al. [39] to estimate the sediment yield, and they found that the
wavelet M5Tree provided more accurate results than ANN models. Nourani et al. [35]
endorsed the findings of Goyal et al. [39]. They predicted the daily sediment load of the
Lighvanchai and Upper Rio Grande rivers by comparing the WM5Tree with ANN and
standalone M5Tree models and found that the hybrid M5Tree model outperformed the
other models. Rahgoshay et al. [36] applied M5Tree, MARS, and hybrid of SVM with GA
and particle swarm optimization (PSO) models to predict the sediment load of two earth
dams. They found that SVM hybrid models (SVM with GA and SVM with PSO) provided
more precise results than the MARS and M5Tree models.

The abovementioned literature revealed hybrid models still need improvement for
precise modeling of suspended sediment. In this study, a new model is developed through
hybridization of MARS with the Kmeans method (MARS–KM) to overcome standalone
MARS models’ weakness in precisely capturing uncertainties in sediment dynamics. The
MARS model and many other machine learning models’ main disadvantage is that they
are very time-consuming, especially for large amounts of data with high variance, as in
sediment load. For this purpose, the K means clustering method is utilized in this study.
Therefore, the main contributions of this study are to (1) develop a novel model that
introducing the K-means clustering into the MARS model for more accurate and faster
estimation; (2) compare the prediction accuracy of the proposed MARS–KMeans model
with the commonly used machine learning models, e.g., MARS, M5Tree, and ANFIS in
sediment load estimation; and (3) select methods based on 50–50% data division.

K-means has been successfully used in recent literature to improve machine learning
models’ prediction accuracy due to its robust nature in estimation [40–44]. The application
of hybrid the MARS–KMeans method is rarely found in the literature for prediction [45].
There is no published study in the literature that uses the MARS–KM method for modeling
any variables in hydrology to the best of our knowledge. This gave impetus to this study.

2. Materials and Methods
2.1. Case Study and Data Analysis

The Jialing catchment was chosen in this study as a case study due to its vital role
in the hydropower operation management of the world’s biggest dam, i.e., the Three
Gorges Reservoir. The selected catchment is the second largest tributary of the Yangtze
River with a drainage area of 160,000 km2 and one of the reservoir’s main discharges and
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sediment sources. Thus, a precise estimation of sediment load input from the basin to
the reservoir is very important for efficient reservoir operation. Two key gauging stations
in the Jialing catchment, located at Guangyuan and Beibei, were chosen to predict SSL.
These hydraulic gauging stations’ geographical locations aid in understanding the overall
sediment phenomena and contribution of the catchment to the main Yangtze River. The
selected catchment also has two main tributaries, the Qu River on the main channel’s
left side and the Fu River on the right side (see Figure 1). To estimate the daily sediment
load of both gauging stations, the daily data of runoff and suspended sediment from
1 January 2007, to 31 December 2015, were gathered from the Hydrological Yearbooks of
the People’s Republic of China. The time variation graphs of both stations’ sediment loads
are illustrated in Figure S1 (see Supplementary Materials). The related authorities checked
the reliability and homogeneity of the data before releasing the data. Chinese national
standard criteria were followed in obtaining streamflow and sediment measurements. The
first vertical profiles (usually 10–30 profiles depending on the river width) are determined
for measurement. Then, water depth and velocity of flow (utilizing a velocity meter) at
each profile are measured. Flow velocity is recorded for different depths. Water samples
for sediment concentrations (SCs) are collected from each depth, and these samples are
dried and weighed in the lab. Finally, daily sediment loads are computed by multiplying
the SCs by the streamflow [46,47].

Table S1 reports the brief statistics of the used streamflow (Q) and sediment (S) data.
In both stations, the Q and S have high skewness, indicating that the time series has many
extreme values. An augmented Dickey–Fuller test was applied to the sediment data using
the adftest MATLAB command to see if they are stationary or not. For the Guangyuan
and Beibei stations, the test statistics were −27.53 and −21.67, while the critical value was
−1.94. Test statistics indicate that the sediment data are stationary in both stations.
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2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Time series models are traditionally used to predict future phenomena in different
fields of study. The major drawback of these models is their dependence on the autocorre-
lation factor. Machine learning models have been introduced and applied to overcome this
foremost weakness of time series prediction models. ANFIS is one of the machine learning
models that has been extensively used around the globe. It is a fusion of two different
techniques, namely, artificial neural networks and fuzzy logic. Zadeh [48] developed
fuzzy logic based on semantic uncertainty, which has been extensively used for modeling
different environmental phenomena, including air pollution estimation and water pollu-
tion prediction. This fuzzy inference system (FIS) is pillared on three theories, i.e., the
rule-based system, model’s database, and inference system. The first part determines the
if–then rules, the second part defines the membership function, and the third phase uses
the rules to produce the results. The main problem of FIS is its incapability to optimize
membership function and adjust parameters automatically. To overcome this problem, an
artificial neural network (ANN) is coupled with FIS to develop ANFIS. The ANFIS model
uses the training features of ANN to adjust the membership function of fuzzy logic. It is a
multilayer feed-forward network based on ANN learning capabilities and fuzzy thinking.
ANFIS has many membership functions, such as Gaussian, trapezoidal, sigmoid, generally
bell-shaped, triangular, etc. In real-life problems, the selection of appropriate membership
functions is vital. In the current study, the ANFIS model was developed using different
input combinations and applied to sediment prediction at the study sites, Guangyuan and
Beibei. The basic architecture of ANFIS is given in Figure 2.
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In Figure 2, X1 and X2 are inputs to the system, and f is the output. The rules for the
ANFIS system are described in Equations (1) and (2) below:

Rule 1: IF X1 is P1 and X2 is Q1, then f 1 = s1 X1 + t1 X2 + v1 (1)

Rule 2: IF X1 is P2 and X2 is Q2, then f 2 = s2 X1 + t2 X2 + v2 (2)

where si, ti, and vi are linear output parameters that are required to optimize during model
training. The working of all layers of ANFIS is discussed below [49,50].

Layer 1 (fuzzification layer): here, every node is considered an adaptive node, and
each node passes the external signal to the next layer

O1,i = µPi(X1) f or i = 1, 2, .. (3)

O1,i = µQi−2(X2) f or i = 1, 2, .. (4)

In this step, the Gaussian membership function is used.

µPi(X1, σ, c) = e
−(X1−c)2

2σ2 (5)

in which σ and c are membership function parameters. Therefore, the output of the first
layer is as follows:

O1,i = µPi(X1) = e
−(X1−ci)

2

2σi
2 (6)

Layer 2 (product layer): this layer produces the membership degree of inputs. All
nodes of this layer are fixed nodes and labeled as ∏. The firing strength is calculated in
this layer as

O2,i = µPi(X1)µQi(X2) f or i = 1, 2 . . . (7)

Layer 3 (normalized layer): here, the firing strength ratio at i-th rule to the sum of
firing strengths of all rules is calculated,

O3,i = wi =
wi

w1 + w2
i = 1, 2, . . . (8)



Sustainability 2021, 13, 4648 7 of 21

Layer 4 (defuzzification layer): in this layer, each node is an adjustable node with the
node function given below.

O4,i = wi fi = wi(si X1 + ti X2 + vi) (9)

Here, wi is the output of the normalized firing strength, and {si, ti, vi} are the parameters
set of the node i.

Layer 5 (output layer): the final output of the model is calculated in this layer. It is the
sum of incoming signals, as below.

O5,i = ∑
i

wi fi =
w1 f1 + w2 f2

w1 + w2
(10)

The ANFIS model is highly capable of learning and classifying input–output data.

2.3. M5 Tree Model

The M5 tree model was developed by Quinlan [51] and later rebuilt and enhanced
by Wang and Witten [52]. This model is developed based on a decision tree concept,
which links input and output variables. The model works in two steps. In the first
step, input variables are divided into different groups based on linear regression. This
minimizes the error of approximation between exact and forecast values. The standard
deviation reduction plays an important role in fixing the division rule of the M5 tree model.
Therefore, the decision tree depending upon input information is developed based on
standard deviation reduction in the first step. In the second step, the tree is cropped from
every leaf. Each further attempt involves finer classification levels, as these are further
divided into branch and leaf nodes. The classification and regression tree (CART) algorithm
is the basis of the M5 tree model. This model is trained based on the concept of standard
deviation reduction (SDR), as discussed using the formula given below.

SDR = sd(T)−∑
|Ti|
|T| sd(Ti) (11)

Here, SDR means standard deviation reduction; sd is expressed as a standard deviation;
T represents a set of examples that reach the node; Ti is the ith outcome of the possible set.
The data’s standard deviation (SD) is less than the parent nodes. The M5 tree model is
developed in the current study to forecast SSL for seven different input combinations.

2.4. Multivariate Adaptive Regression Splines (MARS)

MARS, developed by Friedman [53], has undergone many reforms to enhance its
performance. MARS’s significant advantage is that it does not need any particular as-
sumptions for mapping the input–output relationship, which is a major limitation of the
M5 tree model. Therefore, the MARS model covers the limitation of the M5 tree model,
where the endpoints of the segments are treated as nodes. MARS is the non-parametric
regression model and is useful to forecast continuous numeric outcomes. The model’s
beauty is its flexible steps to manage relationships, which are almost additive or contain
relations with other input variables to the model. MARS can explain the complex and
nonlinear association between predictor and response variables. The MARS model can also
work with the use of both the backward and forward stepwise procedure. Andres et al. [54]
explain its use to remove preventable variables to improve the forecasting accuracy and
make this model perform better during the backward stepwise procedure. The stepwise
forward process helps to select the appropriate input variables for the MARS model.



Sustainability 2021, 13, 4648 8 of 21

Two basic functions with a range of inputs define the other variable. The variable Y,
mapped from the variable X with c as the threshold, can be given below.

Y = max(0, X− c) (12)

Y = max(0, c− X) (13)

Here, two neighboring splines are used to have continuity in the basis function at
the knot. The MARS model is widely used in many different fields, as it has properties to
predict future approximation phenomena with good accuracy. In the present research, the
MARS model is developed to forecast the sediment for seven different input combinations.
The working procedure of MARS is shown in Figure 3.

Sustainability 2021, 13, x FOR PEER REVIEW  8  of  22 
 

and make this model perform better during the backward stepwise procedure. The step‐

wise forward process helps to select the appropriate input variables for the MARS model. 

Two basic functions with a range of inputs define the other variable. The variable Y, 

mapped from the variable X with c as the threshold, can be given below. 

𝑌 ൌ 𝑚𝑎𝑥ሺ0,𝑋 െ  𝑐ሻ  (12)

𝑌 ൌ 𝑚𝑎𝑥ሺ0, 𝑐 െ  𝑋ሻ  (13)

Here, two neighboring splines are used to have continuity in the basis function at the 

knot. The MARS model  is widely used  in many different  fields, as  it has properties  to 

predict future approximation phenomena with good accuracy. In the present research, the 

MARS model  is developed  to  forecast  the sediment for seven different  input combina‐

tions. The working procedure of MARS is shown in Figure 3. 

 

Figure 3. The working procedure of MARS. 

2.5. K‐Means (KM) Algorithm and MARS Hybrid Model 

Lloyd [55] first introduced the KM technique in 1957 as a standard algorithm. Later, 

MacQueen [56] anticipated the term KM, a clustering technique based on the partition‐

based cluster analysis. This algorithm has been used in many different areas of research. 

The distance matrix used in the KM model is the Euclidean distance [57]. The first phase 

takes K initial seeds of clustering, and then the mean Euclidean distance is compared with 

each initial seed. This helps to assign the closest cluster seed. The process is iterated until 

the error is below the threshold. The choice of initial seed and the numbers of clusters are 

crucial, as they decide the KM method’s accuracy [58]. The KM algorithm classifies the 

objects based upon characteristics into K number of groups. 

If Ji is the Euclidean distance, xk is the data vector, c is the number of clusters, and ci 

is the cluster center, an objective function, J is defined as 

𝐽 ൌ𝐽



ୀଵ

ൌቌ  ‖𝑥  െ  𝑐‖
,௫ೖ∈ீ

ଶ
ቍ



ୀଵ

  (14)

In this study, the MARS model is coupled with the KM algorithm for better predic‐

tion results with the least error. The working procedure of MARS‐ KM is shown in Figure 

4. 

Figure 3. The working procedure of MARS.

2.5. K-Means (KM) Algorithm and MARS Hybrid Model

Lloyd [55] first introduced the KM technique in 1957 as a standard algorithm. Later,
MacQueen [56] anticipated the term KM, a clustering technique based on the partition-
based cluster analysis. This algorithm has been used in many different areas of research.
The distance matrix used in the KM model is the Euclidean distance [57]. The first phase
takes K initial seeds of clustering, and then the mean Euclidean distance is compared with
each initial seed. This helps to assign the closest cluster seed. The process is iterated until
the error is below the threshold. The choice of initial seed and the numbers of clusters are
crucial, as they decide the KM method’s accuracy [58]. The KM algorithm classifies the
objects based upon characteristics into K number of groups.

If Ji is the Euclidean distance, xk is the data vector, c is the number of clusters, and ci is
the cluster center, an objective function, J is defined as

J =
c

∑
i=1

Ji =
c

∑
i=1

(
∑

k,xk∈Gi

‖xk − ci‖2

)
(14)

In this study, the MARS model is coupled with the KM algorithm for better prediction
results with the least error. The working procedure of MARS- KM is shown in Figure 4.
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3. Application and Results
3.1. Modeling Approaches and Accuracy Assessments

Four approaches, adaptive neuro-fuzzy inference system (ANFIS), multivariate adap-
tive regression splines (MARS), M5 model tree (M5Tree), and MARS with k-means cluster-
ing algorithm (MARS–KM), were used for modeling suspended sediment using various
input combinations of sediment load (St: kg/s) and streamflow (Q: m3/s). The proposed
models were developed using MATLAB software and compared using data at two stations,
Guangyuan and Beibei. For each modeling approach, the sediment (kg/s) was modeled
either separately using only the Q (m3/s) measured at previous lags or combined with St
(kg/s) estimated at previous lags. Here, the sediment (St: kg/s) is the response variable.
The explanatory variables considered were varied from one to more inputs, formed by
a combination of several Q and St lag values. In total, seven input combinations were
compared, denoted as combinations (i), (ii) . . . etc. In the first four input combinations,
only streamflow inputs were considered: (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2;
and (iv) Qt, Qt-1, Qt-2, and Qt-3. After selecting the best Q-based input combination, after
the fourth combination, sediment inputs were added to the best Q-based combination. For
example, for the ANFIS method, the input combinations considered are (v) Qt and St-1;
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(vi) Qt, St-1, and St-2, and (vi) Qt, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the
streamflow and sediment load at time t-1 (one previous day in this study). Performance
assessment using different input combinations allows importance evaluation of variables
and determining the lag values as inputs. Additionally, two different training scenarios
were compared: splitting the dataset into two equal subsets having 50% of total data in
each subset and a permutation between the two. Here, the two scenarios are denoted as the
first training-test (scenario 1) and second training-test (scenario 2). In the first scenario, data
from 4 January 2007, to 3 July 2011, were used for models’ training, while the remaining
data from 4 July 2011, to 31 December 2015, were used for model testing at both stations.
In the second scenario, the training and test data sets were swapped (data from 4 July
2011, to 31 December 2015, were used for the models’ training and data from 4 January
2007, to 3 July 2011, were used for the models’ testing). These two scenarios allowed
comparing the overall models’ accuracy for the total range of the dataset. Model accuracy
was computed by comparing the measured and the modeled data at each station separately
using Nash–Sutcliffe efficiency (NSE), root mean squared error (RMSE: kg/s), and mean
absolute error (MAE: kg/s).

3.2. Comparison of Accuracy among Models: Guangyuan Station

Table 1 shows the results obtained using ANFIS models for seven input combinations
and two scenarios. In Table 1, Qt-1 and St-1 indicate the streamflow and sediment load
at time t-1 (one previous day in this study) and vice versa. For only the Q as input, i.e.,
from input combination (i) Qt to input combination (iv) Qt, Qt-1, Qt-2, and Qt-3, the
models showed a moderate to low accuracy, with mean NSE, RMSE, and MAE of 0.514,
1856.25 kg/s, and 346.75 kg/s, respectively.

Table 1. Performance of ANFIS model for different input combinations and training-test scenarios at Guangyuan Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 1649 1658 1725 1834 1470 1503 1608
Second training-test 1677 1929 2003 2374 3162 3484 4496

Mean 1663 1794 1864 2104 2316 2494 3052
MAE First training-test 340 302 338 377 296 296 319

Second training-test 323 350 355 387 608 565 209
Mean 332 326 347 382 452 431 264

NSE First training-test 0.563 0.559 0.522 0.46 0.653 0.637 0.585
Second training-test 0.652 0.543 0.504 0.303 0.68 0.611 0.353

Mean 0.608 0.551 0.513 0.382 0.667 0.624 0.469

In the table, input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt and St-1; (vi) Qt, St-1,
and St-2; and (vi) Qt, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1 (one previous day in
this study). Among the Q inputs, input combination (i) was considered, and therefore, after the fourth combination, sediment inputs were
added to this combination.

The strong contribution of Qt is apparent, since there is no improvement in the models’
performance after input combination (i). Instead, the mean NSE value dropped sharply
from 0.608 to 0.382 (37.17%) after including time lags of Q as input in combinations (ii)
to (iv). The mean RMSE also increased from 1663 to 2104 kg/s (20.96%) and the mean
MAE from 326 to 382 kg/s or by 14.65%. This indicates that only Qt should be considered
as a predictor for modeling St. The comparison of model performance for two scenarios,
namely, the first training-test and the second training-test, showed little difference in the
models’ performance. The three statistical indices were relatively close to each other for the
two scenarios. Table 1 shows a strong impact of sediment (St) on the ANFIS model accuracy.
Beyond the input combination (iv), i.e., input combinations (v), (vi), and (vii), the ANFIS
model showed a gradual performance improvement. The (St-1) combined with Qt (input
combination (v)) provided the highest accuracy compared to the ANFIS model with only
Qt as input (input combination (i)). The mean NSE increased by 8.85% for combination (v)
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compared to input combination (i). However, it should be noted that the importance of St
depends greatly on the number of lags included. Including more lags as predictors, i.e., the
inclusion of two lags, St-1 and St-2 (input combination (vi)) or three lags, St-1, St-2, and
St-3 (input combination (vi)), leads to a reduction in mean NSE by 6.44 and 29.68%, and
an increase in mean RMSE by 24.11%, respectively. Overall, the best accuracy using the
ANFIS model was achieved for input combination (v) with a mean NSE of 0.667.

The results obtained using the M5Tree model are reported in Table 2. The improvement
achieved using the M5Tree model compared to the ANFS model was marginal. The M5Tree
with the second input combination (Qt and Qt-1) yielded the best accuracy among the Q
input-based models, with an average NSE value of 0.581. The prediction accuracy for the
second input combination was higher than 1.20%, 11.87%, and 4.17% compared to that
obtained using the input combinations of (i), (iii), and (iv), respectively. The difference in
RMSE between the second and the fourth combination was the largest, an increase from
1716 to 1870 kg/s (8.23%.). To assess the impact of St on the model’s performance, one to
three St lags were combined with Qt and Qt-1 in input combinations (v) to (vii) (Table 2).
The RMSE showed a slight decrease by ~1.87% and ~8.31% for input combination (iv) and
(v) (models without St and with St), respectively.

Table 2. Performance of M5Tree model for different input combinations and training-test scenarios at Guangyuan Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 1756 1731 1963 1953 1622 1428 1428
Second training-test 1700 1701 1702 1786 2047 1651 1651

Mean 1728 1716 1833 1870 1835 1540 1540
MAE First training-test 329 328 380 361 284 249 249

Second training-test 311 310 314 334 304 269 269
Mean 320 319 347 348 294 259 259

NSE First training-test 0.505 0.519 0.381 0.394 0.577 0.672 0.672
Second training-test 0.642 0.642 0.642 0.605 0.482 0.663 0.663

Mean 0.574 0.581 0.512 0.500 0.530 0.668 0.668

In the table, input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt, Qt-1, and St-1;
(vi) Qt, Qt-1, St-1, and St-2; (vi) Qt, Qt-1, St-1, St-2, and St-3 where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1
(one previous day in this study). Among the Q inputs, input combination (ii) was considered, and therefore, after the fourth combination,
sediment inputs were added to this combination.

Nearly the same accuracy was achieved for all models using input combinations (vi)
and (vii). The NSE was markedly higher and ranged from 0.663 to 0.672, with an average
of 0.668 for those two input combinations. The accuracy increased most distinctly, with a
decrease in RMSE and MAE by ~10.25 and ~18.80%, on average, between input combination
(ii) and (vi). However, the inclusion of St-3 did not increase the NSE or decrease the
RMSE and MAE. Consequently, M5Tree using the sixth and seventh combinations can be
considered as the best models.

The statistical performance of the MARS model for both training scenarios is shown
in Table 3. The results showed moderate MARS model accuracy for the first four input
combinations (i, ii, iii, and iv), with a mean NSE value ranging from 0.567 to 0.595. It
indicates a marginal gradual increase, yet more significant than that observed using ANFIS
and M5Tree models. However, the improvement in the models’ accuracy by increasing the
number of inputs from one (Qt) to four (Qt, Qt-1, Qt-2, and Qt-3) was almost marginal,
less than ~4.70% in NSE and ~3.37% and ~8.00%, in RMSE and MAE, respectively. Table 3
shows that the accuracy of the MARS models was higher for the second training-test dataset
than the first training-test dataset for all input combinations. It means no substantial
improvement with the increased number of inputs beyond two. Therefore, the combination
(ii), having only Qt and Qt-1, was deemed for model development. The performances of
MARS models improved significantly after the fourth input combination (Table 3). The
mean NSE increased from 0.595 to 0.759 or by ~21.60%, the mean RMSE decreased from
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1691 to 1312 kg/s or by ~22.41%, and the mean MAE dropped from 350 to 241 kg/s or
by ~31.14%. The MARS model for the input combination (v) showed an overall higher
accuracy than the sixth and seventh input combinations, having a slightly larger NSE
value of 0.759. The MARS models’ performance for the sixth and seventh combination was
similar, with equal mean RMSE and MAE values of 1357 and 256 kg/s and a negligible
mean NSE value of only 0.002. Overall, the MARS model for input combination (v) was
the best model.

Table 3. Performance of MARS model for different input combinations and training-test scenarios at Guangyuan Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 1717 1676 1676 1667 1225 1311 1311
Second training-test 1783 1705 1715 1715 1399 1402 1402

Mean 1750 1691 1696 1691 1312 1357 1357
MAE First training-test 318 327 347 351 265 286 286

Second training-test 325 312 349 349 217 226 226
Mean 322 320 348 350 241 256 256

NSE First training-test 0.526 0.549 0.549 0.554 0.759 0.72 0.724
Second training-test 0.607 0.64 0.636 0.636 0.758 0.757 0.757

Mean 0.567 0.595 0.593 0.595 0.759 0.739 0.741

In the table, for the first training-test data set, the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1,
Qt-2, and Qt-3; (v) Qt, Qt-1, Qt-2, Qt-3, and St-1; (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, and St-2; and (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, St-2, and St-3,
where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1 (one previous day in this study). Among the Q inputs, input
combination (vi) was considered, and therefore, after the fourth combination, sediment inputs were added to this combination. Similarly,
for the second training-test data set, the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3;
(v) Qt, Qt-1, and St-1; (vi) Qt, Qt-1, St-1, and St-2; and (vi) Qt, Qt-1, St-1, St-2, and St-3.

The statistical performance of the MARS–KM model for different input combinations
and training scenarios is given in Table 4. Good accuracy using MARS–KM was observed
for all the input combinations in terms of all three statistical metrics. The performance
was higher compared to the ANFIS, M5Tree, and MARS models. The mean RMSE was
higher (1342 kg/s) for the first four input combinations ((i) to (iv)) than for the last four
input combinations ((v) to (vii)) (1158 kg/s). The differences observed for the four first
input combinations were as follows: (1) good prediction accuracy using the MARS–KM
model for the fourth input combination (Qt, Qt-1, Qt-2, and Qt-3) with a mean NSE value
of 0.813, a mean RMSE value of 1158 kg/s, and a mean MAE value of 210 kg/s; (2) a slight
to significant difference of mean RMSE, equal to 3.105% and 13.711% between the fourth
and first combinations, and second and third combinations, respectively; and (3) the MAE
of MARS–KM models’ accuracy dropped significantly for the fourth input combination.
The inclusion of different lags of St as input showed a marked improvement in the models’
accuracy. For the three last input combinations (v, vi, and vii), the mean RMSE and
MAE values rapidly decreased (dropped from 1158 to 1144 kg/s), while the NSE slightly
increased from 0.813 to 0.818. Overall, MARS–KM also showed better performance for the
fifth input combination.

The comparison of four machine learning methods with the corresponding best input
combination is shown in Table S2. The four models exhibited different accuracy varying
with mean NSE ranging from 0.608 to 0.818, mean RMSE between 1143 and 1663 kg/s,
and mean MAE between 177 and 332 kg/s. The MARS–KM enhanced the St prediction
significantly, while the ANFIS showed the least accuracy compared to the other models.
The results highlight that, although the models were developed using the same input
variables, their capabilities in capturing the major variability and uncertainty in the dataset
were variable. The most apparent difference between the models was between MARS–KM
and the ANFIS. The MARS–KM improved accuracy compared to ANRIS by 21%, 31.27%,
and 44.53% in terms of NSE, RMSE, and MAE, respectively. The M5Tree and MARS
models lie between the two extremes. The differences between the two showed that the
MARS algorithm generally enhanced the M5Tree accuracy by an average of 14.80% and
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6.95% reduction of RMSE and MAE, respectively. Table S2 indicates that, on average, the
results obtained using different models differ significantly in terms of different metrics.
For example, the variation of RMSE was lower than 12% between MARS and MARS–KM
and 31% between ANFIS and MARS–KM. Overall, the models can be ranked in decreasing
performance order as MARS–KM, MARS, M5Tree, and ANFIS.

Table 4. Performance of MARS–KM model for different input combinations and training-test scenarios at Guangyuan Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 1103 1400 1108 1029 1003 1003 1002
Second training-test 1285 1284 1284 1286 1282 1284 1285

Mean 1194 1342 1196 1158 1143 1144 1144
MAE First training-test 216 280 223 232 187 187 185

Second training-test 188 185 185 187 167 168 170
Mean 202 233 204 210 177 178 178

NSE First training-test 0.805 0.685 0.803 0.83 0.838 0.838 0.839
Second training-test 0.796 0.796 0.796 0.795 0.797 0.796 0.796

Mean 0.801 0.741 0.800 0.813 0.818 0.817 0.818

In the table, for the first training-test data set, the input combinations are: (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1,
Qt-2, and Qt-3; (v) Qt, Qt-1, Qt-2, Qt-3, and St-1; (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, and St-2; and (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, St-2, and St-3,
where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1 (one previous day in this study). Among the Q inputs, input
combination (vi) was considered, and therefore, after the fourth combination, sediment inputs were added to this combination. Similarly,
for the second training-test data set, the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3;
(v) Qt and St-1; (vi) Qt, St-1, and St-2; and (vi) Qt, St-1, St-2, and St-3.

3.3. Comparison of Accuracy among Models: Beibei Station

The results obtained using the ANFIS model for all input combinations and training
scenarios at the Beibei Station are presented in Table 5. The results showed ANFIS models
for the first four input combinations, (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; and (iv)
Qt, Qt-1, Qt-2, and Qt-3, yielded relatively similar mean RMSE and MAE, ranging from
3553 to 3628 kg/s and 610 to 710 kg/s, respectively, whereas the fourth input combination
showed the highest mean RMSE and lowest NSE.

Table 5. Performance of ANFIS model for different input combinations and training-test scenarios at Beibei Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 4003 3982 4064 4087 3591 3441 3909
Second training-test 3163 3123 3159 3168 2668 3295 3254

Mean 3583 3553 3612 3628 3130 3368 3582
MAE First training-test 743 644 663 673 715 746 796

Second training-test 677 576 643 632 474 511 529
Mean 710 610 653 653 595 629 663

NSE First training-test 0.52 0.525 0.505 0.499 0.614 0.645 0.546
Second training-test 0.68 0.688 0.681 0.679 0.772 0.653 0.661

Mean 0.600 0.607 0.593 0.589 0.693 0.649 0.602

In the table, input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt and St-1; (vi) Qt, St-1,
and St-2; and (vi) Qt, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1 (one previous day in
this study). Among the Q inputs, input combination (i) was considered, and therefore, after the fourth combination, sediment inputs were
added to this combination. Similarly, for the second training-test data set, the input combinations are (i) Qt, (ii) Qt and Qt-1; (iii) Qt, Qt-1,
and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt, Qt-1, and St-1; (vi) Qt, Qt-1, St-1, and St-2; and (vi) Qt, Qt-1, St-1, St-2, and St-3.

Therefore, only Qt was combined with different lags of S to form the input combi-
nations of (v), (vi), and (vii). The results showed a strong to moderate improvement in
accuracy, with mean NSE value ranging from 0.602 to 0.693, mean RMSE ranging from 3130
to 3582 kg/s, and a mean MAE between 595 and 663 kg/s. The highest mean NSE value
of 0.693 was found for the input combination (v). Relatively low mean NSE of 0.602 and
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large mean RMSE and MAE were found for the input combination (vii), highlighting the
negligible contribution of St-2 and St-3 (Table 5). The increasing number of input variables
showed a minimal contribution to ANFIS model performance improvement at this station.

Results obtained for the M5Tree model are reported in Table 6. Suspended sediment
simulated from the first four input combinations showed a weak and insignificant differ-
ence between the models, with a slight superiority of the first input combination (only the
Qt). Table 6 shows the variation of the RMSE, MAE, and NSE values averaged for different
input combinations.

Table 6. Performance of M5Tree model for different input combinations and training-test scenarios at Beibei Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 4567 4771 4596 4728 4426 3221 3221
Second training-test 3217 3218 3951 3890 3301 3019 2953

Mean 3892 3995 4274 4309 3864 3120 3087
MAE First training-test 733 782 726 794 680 495 495

Second training-test 566 569 638 612 494 464 451
Mean 650 676 682 703 587 480 473

NSE First training-test 0.375 0.318 0.367 0.33 0.413 0.689 0.689
Second training-test 0.669 0.668 0.5 0.516 0.651 0.708 0.721

Mean 0.522 0.493 0.434 0.423 0.532 0.699 0.705

In the table, input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt and St-1; (vi) Qt, St-1,
and St-2; and (vi) Qt, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the streamflow and sediment load at time t-1 (one previous day in
this study). Among the Q inputs, input combination (i) was considered, and therefore, after the fourth combination, sediment inputs were
added to this combination.

The results showed an apparent decrease in the model’s performances from the input
combination (i) to the input combination (iv). The mean RMSE and MAE values increased
from 3892 to 4309 kg/s (9.67%) and from 566 to 612 kg/s (7.51%), respectively, and the
mean NSE value gradually declined to its lowest value of 0.423. This negligible difference
in the models’ accuracy might be due to the marginal effect of the higher lag streamflow
data, which have already been highlighted in the previous discussion. Therefore, the
inclusion of only Qt was sufficient for predicting suspended sediment. The effect of an
increasing number of input variables on M5Tree performances can also be observed in
Table 6. There was a positive effect of St on model accuracy. Interestingly, the suspended
sediment was more sensitive to its antecedent values than the Q. The lowest RMSE and
MAE values of 3087 and 473 kg/s, respectively, and the mean NSE of 0.705 were obtained
using the input combination (vii) (Qt, St-1, St-2, and St-3). The significant increase in the
NSE value from 0.522 to 0.705 (18.3%) indicates that the inclusion of St-1, St-2, and St-3
has significantly contributed to M5Tree performances. Nevertheless, the sensitivity of the
M5Tree model to the inclusion of the St was not the same for both training-test scenarios.
The improvement was more significant for the second training-test data set.

The performances of the MARS model for different input combinations are shown in
Table 7. An overall maximum mean NSE value of 0.545 was obtained using only the Qt as
the input (input combination (i)), suggesting a weak level of agreement between measured
and predicted suspended sediment. Mean RMSE and MAE values of 3822 and 631 kg/s
were achieved using only the Qt, and the level of accuracy remained very low regardless of
the number of Q lags included from one to four. Table 7 revealed Qt as the most dominant
input variable. Therefore, only the first combination was coupled with different lag values
of sediment. The St simulations for the input combinations (v), (vi), and (vii) showed better
performance (Table 7). The NSE ranged from 0.706 to 0.728, with a mean of 0.720. The
performances of the input combination (vi) (Qt, St-1, and St-2) and input combination (vii)
(Qt, St-1, St-2, and St-3) were quite similar, where the input combination (v) performed less
well with a lower mean NSE (0.706) and higher RMSE (3070 kg/s) and MAE (534 kg/s)
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values. The above results indicate that the input combination (vii) should be used to obtain
the best accuracy.

Table 7. Performance of MARS model for different input combinations and training-test scenarios at Beibei Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 4250 4451 4431 4355 3453 3321 3265
Second training-test 3394 3344 3375 3296 2686 2616 2650

Mean 3822 3898 3903 3826 3070 2969 2958
MAE First training-test 702 763 766 826 561 581 575

Second training-test 560 602 589 643 507 483 462
Mean 631 683 678 735 534 532 519

NSE First training-test 0.459 0.406 0.412 0.432 0.643 0.67 0.681
Second training-test 0.631 0.642 0.635 0.652 0.769 0.781 0.775

Mean 0.545 0.524 0.524 0.542 0.706 0.726 0.728

In the table, for the first training-test data set, the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2,
and Qt-3; (v) Qt and St-1; (vi) Qt, St-1, and St-2; and (vi) Qt, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the streamflow and sediment
load at time t-1 (one previous day in this study). Among the Q inputs, input combination (i) was considered, and therefore, after the fourth
combination, sediment inputs were added to this combination. Similarly, for the second training-test data set, the input combinations are (i)
Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt, Qt-1, Qt-2, Qt-3, and St-1; (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, and
St-2; and (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, St-2, and St-3.

Table 8 summarizes the statistics of MARS–KM models. MARS–KM at Beibei Station
showed exceptional performance compared to other models. The results indicated the
model’s higher ability to predict the suspended sediment independently and successfully,
even without the inclusion of St lags as input. The NSE values for the seven input combi-
nations were in the range of 0.810 to 8.17 with a mean of ~0.754. The best accuracy was
achieved using only the Qt and Qt-1 as inputs (input combination (ii)), with a mean NSE of
0.817. The RMSE and MAE for the best model (input combination (ii)) were much smaller,
~2428 and ~2428 kg/s, respectively. The results described above indicate the MARS–KM
model’s effectiveness in predicting suspended sediment.

Table 8. Performance of MARS–KM model for different input combinations and training-test scenarios at Beibei Station.

Statistics Data Set
Input Combination

(i) (ii) (iii) (iv) (v) (vi) (vii)

RMSE First training-test 2664 2377 2664 2664 2258 2419 2403
Second training-test 2950 2478 2914 2918 2921 2534 2525

Mean 2807 2428 2789 2791 2590 2477 2464
MAE First training-test 508 434 518 524 382 337 334

Second training-test 429 367 421 417 485 458 471
Mean 469 401 470 471 434 398 403

NSE First training-test 0.787 0.831 0.787 0.787 0.847 0.825 0.827
Second training-test 0.721 0.803 0.728 0.728 0.727 0.794 0.796

Mean 0.754 0.817 0.758 0.758 0.787 0.810 0.812

In the table, for the first training-test data set, the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1,
Qt-2, and Qt-3; (v) Qt, Qt-1, and St-1; (vi) Qt, Qt-1, St-1, and St-2; and (vi) Qt, Qt-1, St-1, St-2, and St-3, where Qt-1 and St-1 indicate the
streamflow and sediment load at time t-1 (one previous day in this study). Among the Q inputs, input combination (vi) was considered,
and therefore, after the fourth combination, sediment inputs were added to this combination. Similarly, for the second training-test data set,
the input combinations are (i) Qt; (ii) Qt and Qt-1; (iii) Qt, Qt-1, and Qt-2; (iv) Qt, Qt-1, Qt-2, and Qt-3; (v) Qt, Qt-1, Qt-2, Qt-3, and St-1; (vi)
Qt, Qt-1, Qt-2, Qt-3, St-1, and St-2; and (vi) Qt, Qt-1, Qt-2, Qt-3, St-1, St-2, and St-3.

The relative performance of the four models with the best input combinations is
presented in Table S3. The results demonstrated that the performances of the models
were relatively far from excellent. None of the models, i.e., ANFIS, M5Tree, MARS, and
MARS–KM, achieved an NSE higher than 0.90. Overall, the performances of MARS–KM
were remarkably superior. The MARS–KM improved the mean NSE of ANFIS, M5Tree,
and MARS by 12.4%, 11.2%, and 8.9%, respectively. Additionally, it reduced the RMSE of
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ANFIS, M5Tree, and MARS by 22.42%, 21.34%, and 19.91%, respectively, and the MAE by
32.60%, 15.22%, and 22.73%, respectively.

The suspended sediment estimation ability of machine learning models was further
assessed through visual comparison with the in-situ data (Figure 5a–d). MARS–KM
and MARS reproduced suspended sediment variation much better and thus enhanced
M5Tree and ANFIS models’ prediction accuracy. The scatterplots (Figures S2–S5, see
Supplementary Materials) revealed that (i) the underestimated data points were much
higher than the overestimated data points, and (ii) all the models failed to simulate large
suspended sediment values. It is apparent from Figure 6 that the MARS–KM shows
superiority in simulating cumulative sediment amounts compared to other alternatives.

In a recently published paper, Juez et al. [59] studied the sediment hysteresis, a
direct link among sediment size, distal sediment supply, and proximal sediment data
obtained through a laboratory experiment. The authors demonstrated that sediment in the
channel downstream depends mainly on the time-varying sediment load with different
hysteresis types. The study also highlighted that sediment availability is governed by
the evolution of two important morphological parts of the riverbed, degradation and
aggradation. The shapes of hysteresis loops have often been intrinsically correlated to
these two morphological processes. Finally, one of the important findings of the above-
reported investigation is that the sediment concentration–discharge hysterical behavior
is increasingly likely to amount between the distal sediment supply and the proximal
sediment availability.
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Suspended sediment concentration (SSC) and discharge (Q) are two variables with
a temporal shift; consequently, it is important to focus on these approaches’ weaknesses
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and limitations in modeling these kinds of variables. Based on the direct linking of SSC
to Q, the empirical models can estimate SSC reasonably. However, data-driven models
resulted in slightly better performances in predicting the amount of SSC. Interpretation of
the empirical models is more straightforward, as physical, morphological, and hydrological
processes are explicitly expressed with simplified equations. However, it is appropriate for
data-driven black-box models to examine whether it is possible to simulate SSC with input
values outside the data range used during their calibration. Indeed, both the empirical
and data-driven models showed encouraging results in terms of model accuracy; physical
interpretation of the data-driven models is a challenge, thus requiring further analysis in
quantifying the correlation between the input and output variables in a more meaningful
way. When extending the models to another watershed, the empirical models may be
more practical because of local calibration. Additionally, most input variables (i.e., the Q)
undergo a rapid momentary fluctuation, which is very hard to capture with data-driven
models. This deficiency makes the data-driven models unable to generate a durable and
continuous response. Clearly, although the advantages exist, the limitations are always
existing, which should be addressed in future studies.
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Figure 6. Cumulative sediment amounts produced by the ANFIS, M5Tree, MARS, and MARS–KM models in the test period:
(a) Guangyuan Station for the first training-test scenario, (b) Guangyuan Station for the second training-test scenario,
(c) Beibei Station for the first training-test scenario, and (d) Beibei Station for the first training-test scenario.

4. Conclusions

In this investigation, a new method was developed by hybridizing MARS and the K-
means clustering algorithm to improve the accuracy of suspended sediment prediction. The
models were developed using daily discharge and sediment data at two stations in China.
The MARS–KM models’ performance was compared with ANFIS, MARS, and M5Tree
models using three statistical metrics, RMSE, MAE, and NSE, and graphical comparison.
The following conclusions were reached from the outcomes of the presented work:

The proposed MARS–KM considerably improved the accuracy of the ANFIS, MARS,
and M5Tree methods. The increments in the RMSE of the three mentioned methods were
by 39%, 30%, and 18%, and 24%, 22%, and 8% for the first and second scenarios at the
Guangyuan Station, and by 34%, 26%, and 27%, and 7%, 16%, and 6% for the first and
second scenarios at the Beibei Station, respectively.
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• The suspended sediment in the studied region is generally sensitive to its lagged
values rather than the lag discharge values. However, the MARS–KM models could
estimate suspended sediment satisfactory using only discharge (Q) as inputs. It is very
important in practical applications, because the measurement of suspended sediment
is often very difficult.

• Comparison of models’ ability in simulating cumulative suspended sediment loads also
showed the superiority of MARS–KM compared to ANFIS, MARS, and M5Tree methods.

In this study, seasonality in the sediment load and discharge time series was not
considered. It can be addressed in future studies. The methods may produce better
estimates when season information is included in the models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su13094648/s1, Figure S1: Time variation graph of sediment load for (a) Guangyuan and
(b) Beibei Station, Figure S2: Time variation graphs of the observed and estimated sediments by
ANFIS, M5Tree, MARS and MARS-KM models in the test period at Guangyuan Station for the 1st
training-test scenario, Figure S3: Time variation graphs of the observed and estimated sediments by
ANFIS, M5Tree, MARS and MARS-KM models in the test period at Guangyuan Station for the 2nd
training-test scenario, Figure S4: Time variation graphs of the observed and estimated sediments by
ANFIS, M5Tree, MARS and MARS-KM models in the test period of Beibei Station—1st training-test
scenario, Figure S5: Time variation graphs of the observed and estimated sediments by ANFIS,
M5Tree, MARS and MARS-KM models in the test period at Beibei Station for the 2nd training-test
scenario; Table S1: The statistical parameters of the data used in the study, Table S2: Performance
of the best ANFIS, M5Tree, MARS and MARS-KM models in sediment prediction at Guangyuan
Station, Table S3: Performance of the best ANFIS, M5Tree, MARS and MARS-KM models in sediment
prediction at Beibei Station.
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