ASSEMBLABILITY DESIGN EFFICIENCY (ADE) ANALYSES FOR DESIGN FOR AUTOMATIC ASSEMBLIES

BAIZURA BINTI ZUBIR @ ZUBAIR

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering –Advanced Manufacturing Technology

FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

NOVEMBER 2007

To my beloved husband and daughter, thank you for your patients and loved To my beloved father, thank you being a good father To my mother, I will always miss you

ACKNOWLEDGEMENT

During the process in finishing this dissertation, I had face many problems which sometimes make me want to give up. Thankfully, I have the best and dedicated supervisor, Dr Ariffin haji Abdul Razak. He gave the encouragement,guidance, and critics to help me to finish this dissertation. Without his continued support and interest, this dissertation would not have been the same as presented here.

My sincere appreciation also extends to others who have provided assistance at various occasions. Their views and tips are useful indeed. I am also very grateful to have a supportive and wonderful husband that had been so patient and always be at my back for all the time. Thank you ALL so much.

ABSTRACT

The ability to quickly develop new products, which are of the lowest cost, the highest quality and the fewest environment impact, is a key factor to meet the global market demand. Design for Assembly (DfA) has been most widely applied in industries with most impressive achievements. Since the prevalence of three well known DfA tools – Boothroyd-Dewhurst DfA methodology, Hitachi Assemblability Evaluation Method (AEM) and Lucas-Hull DfA method – in industries, significant developments have been attempted in several directions not only by manual assembly but also by automatic assembly. The purpose of this project is to determine the Assemblability Design Efficiencies (ADE) by implementing the assembly analyses on the selected mechanical product for Design for Automatic Assemblies (DFAA) methodology. The results from the analyses will be used for further design improvements.

ABSTRAK

Keupayaan untuk menghasilkan produk baru yang mempunyai ciri-ciri seperti mempunyai kos yang rendah, tinggi kualiti dan dapat menghasilkan impak yang minimum pada persekitaran merupakan faktor utama di dalam memenuhi pasaran antarabangsa. Pemasangan untuk Reka bentuk (DfA) telah banyak diaplikasikan di dalam industri dan telah menghasilkan pelbagai kejayaan. Sejak kewujudan tiga alat DfA yang ternama – kaedah Boothroyd-Dewhurst DfA, kaedah analisis Hitachi Assemblability (AEM) and kaedah DfA Lucas-Hull– di dalam industri, banyak pembangunan penting telah dijalankan samada secara pemasangan insani ataupun pemasangan automatik. Tujuan projek ini dijalankan ialah untuk menentukan Kecekapan Keupayaan Pemasangan (ADE) dengan mengimplikasikan analisis pemasangan pada produk mekanikal yang terpilih untuk Kaedah Pemasangan Automatik bagi Reka bentuk (DFAA). Keputusan daripada analisis ini akan digunakan untuk penambaikan reka bentuk akan datang.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiv
	LIST OF FIGURES	xvi
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xix
1	INTRODUCTION	1
	1.1 Problem Statement	1
	1.2 Objective of Study	3
	1.3 Scope of Study	4
	1.4 Methodology of Study	4
	1.5 Significance of Findings	7
	1.6 Report Structure	8
	1.7 Summary	9

2	LIT	ERATUI	RE REVIEW ON DESIGN FOR MANUAL	10
	ASS	EMBLY	METHODOLOGY	
	2.1	Introdu	ction	10
	2.2	Design	for "X"	11
	2.3	Approa	ches for Implementing DFA	13
			Hitachi Assemblability Evaluation Method (AEM).	13
		2.3.2	Boothroyd-Dewhurst (B-D) DFA	14
		2.3.3	Lucas DFA	15
	2.4	Assem	plability Measures	17
		2.4.1	Hitachi Assemblability Evaluation Method (AEM)	17
		2.4.2	Boothroyd Dewhurst DfA	18
		2.4.3	Lucas DFA	20
	2.5	Examp	les of DFA Methodologies	22
		2.5.1	Redesign of a simple product using Hitachi	22
			Assemblability Evaluation Method (AEM).	
		2.5.2	Redesign of a simple product using the	25
			Boothroyd-Dewhurst DFA method	
		2.5.3	Redesign of a drain pump assembly using	29
			Lucas DFA	
	2.6	Summ	ary	32
3	DES	IGN FO	R AUTOMATIC ASSEMBLY (DFAA)	33
	ME	FHODO	LOGY	
	3.1	Introdu	ction	33
		3.1.1	Fixed/ Hard automation	34
		3.1.1	Robotic Assembly/ Soft automation	35

Structure of DFAA			38
3.2.1	Product I	Level	38
	3.2.1.1	Reduce Number of Parts	39
	3.2.1.2	Unique Parts	40
	3.2.1.3	Base object	41
	3.2.1.4	Design base object	41
	3.2.1.5	Assembly directions	42
	3.2.1.6	Parallel operations	43
	3.2.1.7	Chain of tolerances	44
	3.2.1.8	Disassembly	44
	3.2.1.9	Packaging	45
3.2.2	Part Lev	el	45
	3.2.2.1	Need to Assemble Part?	47
	3.2.2.2	Level of Defects	48
	3.2.2.3	Orientation	48
	3.2.2.4	Non-Fragile parts	49
	3.2.2.5	Hooking	50
	3.2.2.6	Centre of Gravity	50
	3.2.2.7	Shape	51
	3.2.2.8	Weight	52
	3.2.2.9	Length	52
	3.2.2.10	Gripping	54
	3.2.2.11	Assembly Motion	54
	3.2.2.12	Reachability	55
	3.2.2.13	Insertion	56
	3.2.2.14	Tolerances	56
	3.2.2.15	Holding Assembled Parts	57
	3.2.2.16	Fastening Method	58
	3.2.2.17	Joining	58
	3.2.2.18	Check/Adjust	59

3.2

3.3	Applicat	tions of DFAA	59
	3.3.1	Design and Evaluation During Early	59
		Product Development	
	3.3.2	Redesign and Evaluation of an Existing	60
		Product	
3.4	Evaluati	ion Philosophy and Criterions of DFAA	61
3.5	Summar	ry	62
PRO	DUCT D	DETAIL FOR OLD DESIGN	63
4.1	Introduc	etion	63
4.2	Product	Specification	64
4.3	Product	Structure	66
4.3	Product	Assembly Operation Sequences	67
	4.3.1	Base Part	67
	4.3.2	Cover Part	69
4.4	Summar	ry	72
EVA	LUATIC	ON OF THE ORIGINAL DESIGN	73
5.1	Introduc	ction	73
5.2	Product	Level Evaluation of The Old Design	74
	5.2.1	Reduce Number of Parts	74
	5.2.2	Unique Parts	75
	5.2.3	Base Object	75
	5.2.4	Design Base Objects	75
	5.2.5	Assembly Directions	76
	5.2.6	Parallel Operations	76
	5.2.7	Chain of Tolerances	78
5.3	Part Lev	vel Evaluation of The Old Design	78
	8.2.1	Base Socket	79

	8.2.2	Switch On/Off	80
	8.2.3	Spring	80
	8.2.4	Panel 3 Pin	80
	8.2.5	Cover Socket	80
	8.2.6	Life Plate	81
	8.2.7	Life Clamp	81
	8.2.8	Life Screw $\phi 6 \ge 11$	81
	8.2.9	Life U Plate	81
	8.2.10	Connector Panel 3 Pin	82
	8.2.11	Plate Switch On/Off	82
	8.2.12	Earth U Plate	82
	8.2.13	Earth Plate	82
	8.2.14	Earth Clamp	83
	8.2.15	Earth Screw \operatorname{6} X 11	83
	8.2.16	Neutral U Plate	83
	8.2.17	Neutral Clamp	83
	8.2.18	Neutral Screw $\phi 6 \ge 11$	84
	8.2.19	Screw $\phi 5 \ge 12$	84
	8.2.20	Screw 66.5 X 23	84
5.2	Summa	ry	84
PRO	POSED I	MPROVEMENTS ON THE ORIGINAL	86
DES	IGN		
6.1	Introduc	tion	86
6.2	Improve	ment of The Original Design	86
	6.2.1	Eliminating Screws \$\$5 X 12 and Changing	87
		to Snap Fits	
	6.2.2	Joining Life Plate, Life U Plate, Panel 3 Pin	88
		and Connector 3 Pin	
	6.2.3	Joining Earth Plate, and U Plate	89

		6.2.4	Joining Clamp and Screw 66 X 11	90
	6.3	Summa	ry	91
7	PRO	DUCT E	DETAIL FOR PROPOSED DESIGN	92
	7.1	Introdu		92
	7.2		Specification	92
	7.3	Product	Structure	94
	7.4	Product	Assembly Operation Sequences	94
		7.4.1	Base Part	95
		7.4.2	Cover Part	95
		7.4.3	All Parts	96
	7.5	Summa	ry	97
8	EVA	LUATIO	ON OF THE NEW DESIGN	98
	8.1	Introdu	ction	98
	8.2	Product	Level Evaluation of The New Design	98
		8.2.1	Reduce Number of Parts	99
		8.2.2	Unique Parts	99
		8.2.3	Base Object	100
		8.2.4	Design Base Objects	100
		8.2.5	Assembly Directions	100
		8.2.6	Parallel Operations	100
		8.2.7	Chain of Tolerances	101
	8.3	Product	Level Evaluation of The New Design	102
		8.3.1	Base Socket	103
		8.3.2	Switch on/off	103
		8.3.3	Spring	103
		8.3.4	Panel 3 Pin	103
		8.3.5	Cover Socket 3 Pin	104

	8.3.6 Life Plate	104
	8.3.7 Life Clip	104
	8.3.8 Earth Plate	104
	8.3.9 Earth Clip	105
	8.3.10 Neutral Plate	105
	8.3.11 Neutral Clip	105
	8.3.12 Screw φ6.5 X 23	105
	8.4 Summary	106
9	DISCUSSION	107
	9.1 Introduction	107
	9.2 Comparison Between The Original Design and	108
	Proposed Design	
	9.2.1 Number of Components	110
	9.2.2 Number of Unique Components	111
	9.2.3 Assembly Index for Product Level	112
	9.2.4 Assembly Index for Part Level	112
10	CONCLUSIONS AND FUTURE	113
	RECOMMENDATIONS	
	10.1 Introduction	113
	10.2 Conclusions	113
	10.3 Future Recommendations	115
	REFERENCES	116
	APPENDICES	118

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Gantt chart for Master Project I	5
1.2	Gantt chart for Master Project II	7
2.1	DFX as lifecycle oriented or ability oriented (WDK, 1993)	12
2.2	DFA worksheet analysis	18
2.3	Evaluation score and the cost ratio of the original design	23
2.4	Evaluation score and the cost ratio of redesign 1	24
2.5	Evaluation score and the cost ratio of redesign 2	25
2.6	Manual assembly worksheet for the original design	26
2.7	Manual assembly worksheet for Redesign 1	27
2.8	Manual Assembly Worksheet for Redesign 2	28
3.1	The evaluation of the part reduced in the product	40
3.2	The evaluation of the unique parts in the product	40
3.3	The evaluation of the base object of the product	41
3.4	The evaluation of the design base object of the product	42
3.5	The evaluation of the assembly directions of the product	42
3.6	The evaluation of the parallel operations of the product	43
3.7	The evaluation of the chain of tolerances of the product	44
3.8	The evaluation need to assemble part of each part	45
3.9	The evaluation level of defects of each part	47
3.10	The evaluation for orientation of each part	48
3.11	The evaluation for non-fragile parts	48
3.12	The evaluation for hooking of each part	49
3.13	The evaluation for centre of gravity of each part	49
3.14	The evaluation for shape of each part	50
3.15	The evaluation for weight of each part	51

3.16	The evaluation for length of each part	52
3.17	The evaluation for gripping of each part	52
3.18	The evaluation for assembly motion of each part	53
3.19	The evaluation for reachability of each part	54
3.20	The evaluation for insertion of each part	55
3.21	The evaluation for tolerances of each part	55
3.22	The evaluation for holding assembled parts	56
3.23	The evaluation for fastening method of each part	57
3.24	The evaluation for joining of each part	58
3.25	The evaluation for check/ adjusts of each part	59
3.26	Evaluation sheet for Product Level	61
3.27	Evaluation sheet for Part Level	62
4.1	Three (3) Pin Wall Socket Specification	64
5.1	Evaluation sheet of product level for the old design of 3 pin	74
	wall socket	
5.2	Evaluation sheet of part level for the old design of 3 pin wall	79
	socket	
7.1	Specification of Three (3) Pin Wall Socket New Design	92
8.1	Evaluation sheet of product level for the old design of 3 pin	99
	wall socket	
8.2	Evaluation sheet of part level for the new design of 3 pin	102
	wall socket	
9.1	Comparison in Percentage between the Original Design and	108
	Proposed Design	
9.2	Comparison between the Number of Components in Original	111
	Design and New Design	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Types of DFA	2
1.2	Flow Chart Master Project I	5
1.3	Flow Chart Master Project II	6
2.1	Assembly sequence flow chart	21
2.2	Original design	22
2.3	Redesign 1	23
2.4	Redesign 2	24
2.5	Original design	25
2.6	Redesign 1	27
2.7	Redesign 2	28
2.8	Original drain pump assembly design	30
2.9	Redesign using the Lucas DFA method	31
3.1	Classification of Automatic Assembly	33
3.2	DFAA Method	38
3.3	Suggested structure for Product level in the DFAA method	39
	(Stephan Eskilander, 2001)	
3.4	Suggested structure for Part level in the DFAA method	46
	(Stephan Eskilander, 2001)	
4.1	(a) Front view (b) Back view of 3 pin wall socket	63
4.2	Three (3) Pin Wall Socket Structure of the Old Design	66
4.3	Summary of the Assembly Process for Base Part	67
4.4	(a) Before assembled (b) After assembled for base part	68
4.5	Assembly Sequences for Cover Part	70
4.6	(a) Before assembled (b) After assembled for cover part	71
5.1	Parallel Operations	77

6.1	The location of screw $\phi 5 \times 12$ on the 3 pin wall socket	86
6.2	The Proposed Design from Screws $\phi 5 \ge 12$ to Snap Fits	87
6.3	The Proposed Design from Separate Life Plates to a Life	88
	Plate	
6.4	The Proposed Design from Separate Earth Plates to an Earth	89
	Plate	
6.5	The Proposed Design from Separate Clamp and Screw	89
	φ6 X 11 to a Clip	
7.1	Three (3) Pin Wall Socket Structure of the New Design	93
7.2	Summary of the Assembly Process for Base Part	94
7.3	Assembly Sequences for Cover Part	95
7.4	Assembly Sequences for 3 Pin Wall Socket of the New	96
	Design	
8.1	Parallel Operations	101
9.1	Comparison Number of Components in Old and New	109
	Designs	
9.2	Comparison Number of Unique Components in Old and	109
	New Designs	
9.3	Comparison between Assembly Index in Old and New	110
	Designs	

LIST OF SYMBOLS

- AEM Assemblability Evaluation Method
- E Assemblability Evaluation Score
- DFA Design for Assembly
- DFAA Design for Automatic Assembly
- DFM Design for Manufacture
- DFE Design for environment
- DFC Design for cost
- DFT Design for test
- DFMA Design for Manufacture and Assembly
- DFX Design for "X"
- TM Assembly time
- CM Assembly cost
- NM Theoretical minimum number of parts
- ADE Assembly Design Efficiency
- K Estimated Assembly Cost Ratio

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Manual Handling Time (seconds)	118
A2	Manual Insertion and Fastening Time (seconds)	119
B1	Design Samples of 3 Pin Wall Socket (Overall)	120

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Design for assembly (DFA) is a way to improve assembly ease and reduce assembly time. It will also reduce product costs by reducing the number of parts, optimizing manufacturing processes, simplifying parts handling and improving product assembly. Furthermore, the implementation of DFA will encourage the design of products to be produced at minimum cost with maximum quality and reliability. Many leading companies such as Ford, Kodak, General Motors, IBM, NCR, Xerox and more have save millions of money when using DFA analysis in their designs.

DFA indicates the important in analyzing both the part design and the whole product for any assembly problems early in the design process. Furthermore, it can also be defined as "*a process for improving product design for easy and low-cost assembly, focusing on functionality and on assemblability concurrently.*"

DFA is classified into two major groups: manual and automatic assembly as shown in **Figure 1.1**.

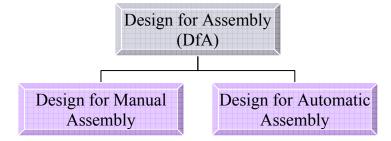


Figure 1.1: Types of DFA

Design for manual assembly involves benches or simple conveyors and the assembly station has bins with un-oriented parts. Besides that, it also has simple jigs and fixtures with manual clamping and simple, light tools with an inexpensive setup costs.

On the other hand, design for automatic assembly (DFAA), involves any mechanical assembly process which perform assembly operations without human interaction. DFAA is divided into two: high speed (special purpose) transfer assembly and robotic assembly. High speed transfer assembly involved machines that are built to produce specific product. The components are part feeders, single purpose workheads and transfer devices. Meanwhile, the robotic assembly is similar to non-synchronous special purpose assembly stations, except the robots replace the single-purpose workheads.

Between these two types of DFA, the most common practice is manual assembly due to its versatility, flexibility, economical and sensing capabilities of human assembly workers. Meanwhile, for automatic assemblies the characteristics above are difficult to get economically but the advantage is mechanical assembly equipments have the capability to work many hours compare to human assembly workers.

However, when we apply automatic assembly on the product it can also be implemented on manual assembly. Mazka (1985) stated that "*Any product designed for automated assembly will be easier to assemble manually*". It means that, if a product can be prepared for automatic assembly, it will also be much easier for a human to assemble. According to Herbertsson (1999) in 1960s, when products began to be redesigned for automatic assembly, it was often discovered that the redesigned product was so easy to assemble manually that automatic assembly was no longer economically feasible.

Due to potential benefits that DFAA have compare to DFA for manual assembly so for this project, we will focus on DFAA to improve the product design of a mechanical product. At the same time, we also have to consider some operations that may be have to be carried out manually, which it is necessary to include also the analysis for manual assembly.

Besides that, in DFA analysis we can compare the assembly efficiency for both DFA for manual assembly and DFAA for automatic assembly. From there, we can make improvements on the product itself that will suit automatic assembly process that in return will give benefits to us.

The product case study of a 3 pin wall socket will clarify the application of DFAA analysis, show the utility of the product structure of DFAA method, and allow the exploration between product evolution of the original design and proposed design for further improvements.

1.2 Objective of Study

The objective of the study is to improve the product design by determining the Assemblability Design Efficiencies (ADE) using Design for Automatic Assemblies (DFAA) methodology for mechanical product.

1.3 Scope of Study

The scope of this study is to use Design for Automatic Assembly (DFAA) methodology in assembly analyses. A case study of a mechanical product will clarify the application of the method with the analyses and percentage of ADE.

1.4 Methodology of Study

The methodology of the study for Master Project I and II were included in session 2006/2007 semester II and session 2007/2008 semester I. The details of this methodology are shown in forms of flow diagrams (**Figure 1.1** and **1.2**) and Gantt charts (**Table 1.1** and **1.2**) which are located by semesters.

For Master Project I, the project was done in semester 2006/2007 (II). The flows of works are shown in **Figure 1.2** and **Table 1.1**.

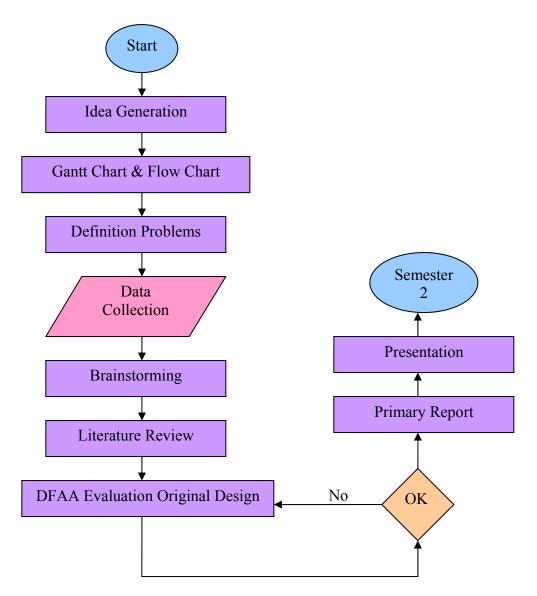


Figure 1.2: Flow Chart Master Project I

	Task Descriptions		2006/2007 (II)														
No.		Dec	January						Feb	uary			April				
		26	1	8	15	22	29	5	12	19	26	5	12	19	26	2	
1	Problem Definition																
2	Data Collection																
3	Literature Review																
4	Product Description																
5	DFAA Evaluation of the Original Design																
6	Propose Design Improvement																
7	Primary Report																
8	Presentation																

Table 1.1: Gantt chart for Master Project I

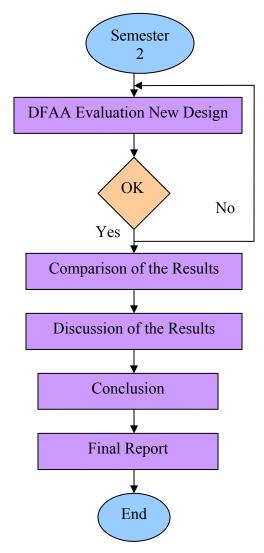


Figure 1.3: Flow Chart Master Project II

No	Task Descriptions		2007/2008 (I)																		
		July			August				September				October					November			
		9	16	23	30	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19
1	Continue Proposing Design Improvements																				
2	DFAA Evaluation of the New Design																				
3	Comparison of the results																				
4	Discussion of Results																				
5	Conclusion																				
6	Final Report																				
7	Presentation																				

Table 1.2: Gantt chart for Master Project II

1.5 Significance of Findings

DFAA is a way to reduce the part count in a design. The way it is done is by using a good design practice rules and guidelines on how the product can be assembled in most efficiently and economically ways. As a result from the approach, it will reduced the product cost, time-to-market and improve product quality.

The analysis of DFAA methodology in this project using ADE on the original and proposed design will improve the product design of this case study. This analysis is evaluative methods that rate or score the assemblability of designs at an early stage in the design process. They use their own synthetic data to provide guidelines and metrics to improve the design in its ability to be assembled. From the result, it can improve the product design for further improvement in future.

1.6 Report Structure

The report of this project is divided into ten (10) chapters which comprises the ADE analyses for DFAA. Consequently, towards developing a better understanding, all the contents were developed in order to meet the knowledge and application of DFAA.

Chapter 1 explores the introduction to the problem which consists the reality of the usage and benefits of DFAA in today's industries. Then, the objective of the project is highlighted together with the scope of the project. Later, the project methodology is shown in Gantt chart and flow chart. Afterwards, the significance of the findings was discussed to give a better view on the impact of the project. Lastly, the report structure is to summarize the contents of the project.

Chapter 2 is on the literature review on design for manual assembly methodology. In this chapter, design for "X" is included to brief the function of "X" as a specific property or a lifecycle phase of the product. Then, the tools use in implementing DFA is then discussed along with the assemblability measures. The tools discussed here were Boothroyd Dewhusrt method, Hitachi Assemblability Evaluation method and Lucas DFA evaluation method. Later, the examples of DFA methodologies were given to provide better understanding on DFA.

Chapter 3 explains on Design for Automatic Assembly (DFAA). It shows the structure and applications of DFAA in industries. Besides that, it also explains on evaluation philosophy along with the design rules and evaluation criterions.

Chapter 4 discusses on the old design of the product where it explained the product specification, material and structure. Then, it describes the function of each component and continued with the product assembly operation sequences. Then, the

weakness of the original design is discussed to make better improvements on the proposed design

Chapter 5 is regarding the evaluation of the original design which is done at product level and part level evaluation.

Chapter 6 illustrates the ideas and sketches of the proposed design. It also includes the minor and major improvements on the original design.

Chapter 7 discusses on the proposed design of the product where it explaines the product specification, material and structure. Then, it describes the function of each component and continues with the product assembly operation sequences.

Chapter 8 is regarding the evaluation of the proposed design which is done at product level and part level evaluation.

Chapter 9 consists of the discussion of the whole project regarding the comparison between the old design and proposed design of the wall socket.

Chapter 10 is the final chapter which is the conclusion of the project and the suggestions for future recommendation of the project.

1.7 Summary

This project concentrated on the improvement of the product design by using Design for Automatic Assemblies (DFAA) methodology. It is done by determining the Assemblability Design Efficiencies (ADE) for a mechanical product.