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ABSTRACT 

 

 

 

 

Swirling fluid motion in enclosed chambers was studied using two methods, 

simulations using Computational Fluid Dynamics, and experimentation using Particle 

Image Velocimetry. Using the tangential inlet configuration as the basic design, several 

different swirl generator models were created using Computer Aided Design software. 

The aim was to see whether a modified design from the original configuration could 

provide a reduction in the backflow effect that is constantly present in swirling flows. 

Simulations show that swirl generator inlets that are angled to 45 degrees from the 

original tangential position results in the backflow being slightly reduced. However, 

simulations in which the inlet angle was further increased yield inconclusive results. 

Later in the study, a model prototype of the 45 degrees inlet configuration was created for 

the purpose of PIV experimentation. From the experiments run, it was found that the 

results were comparable to that of the simulations. 



 

 

ABSTRAK 

 

 

 

 

Pergerakan bendalir secara berpusar dalam ruang tertutup telah dikaji 

menggunakan dua kaedah, iaitu secara Dinamik Bendalir Berkomputer (CFD) dan 

Penghalajuan Imej Partikel (PIV). Dengan menggunakan turus masuk secara tangen 

sebagai asas rekaan, beberapa model ‘penghasil pusaran’ telah dijanakan menggunakan 

perisian rekaan berkomputer (CAD). Tujuan penghasilan model-model ini adalah untuk 

menilai sama ada penngubahsuaian daripada konfigurasi asal dapat dimanfaatkan untuk 

mengurangkan kesan aliran bertentangan yang sering wujud dalam aliran berpusar. Hasil 

simulasi menunjukkan bahawa ‘penghasil pusaran’ yang mempunyai turus masuk pada 

45 darjah daripada kedudukan tangen dapat mengurangkan sedikit kesan aliran 

bertentangan. Walau bagaimanapun, simulasi untuk konfigurasi yang mana sudut turus 

masuk telah ditambah tidak menunjukkan hasil yang konklusif. Kemudian, prototaip 

model untuk turus masuk 45 darjah telah dibina bagi tujuan menjalankan eksperimen. 

Daripada eksperimen yang dilakukan, telah didapati bahawa hasilnya menyerupai hasil 

simulasi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

This chapter provides an initial look to the study, outlining its objectives, listing its 

scopes and providing an historical background as reference and motivation. 

 

1.1 Background 

Swirl is a three-dimensional phenomenon in fluids flowing in a vessel with a 

circular cross-section at speed, where some of the particles follow a spiraling trajectory 

around the longitudinal axis of the vessel as they move along in the flow. Combustion 

systems that operate based on the principles of swirling fluid motion to facilitate the 

combustion process have increasingly been in extensive use. Swirl flows are now utilized 

in modern combustion machinery such as refinery or power station burners, gas turbine 

combustors, and internal combustion engines [1]. 

Swirling fluid motion has been introduced in the combustion engine of modern 

cars as part of an effort to reduce the emission of harmful gases, specifically Nitrogen 

Oxide (NOx). Through the implementation of newly developed technologies in areas such 

as catalytic converters, fuel injection systems, and electronic engine management, the 

combustion process in these engines have become increasingly efficient. As a result, the 
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emission of carbon monoxides, unburned hydrocarbons and other products of combustion 

in automotive vehicles have been greatly reduced. However, efficient combustion usually 

involves high combustion temperatures brought about by near stoichiometric fuel-air 

ratios in the chamber; such conditions have the negative impact of causing high thermal 

NOx emissions [2]. This problem would need to be mitigated primarily through 

improvements in combustor design [3]. 

Thus, combustion systems that used alternating cycles of lean and rich burning 

mixtures were introduced. To achieve exact ratios of fuel-air mixture, these components 

of combustion would need to blend thoroughly before being ignited in the combustion 

chamber; hence the use of swirl generators. There have been many different ways to 

generate swirling flows being proposed according to their specific applications, for 

example using guide vanes, or rotating blades at the flow inlet. Regardless of the methods 

used, the generation of swirl flows enables the creation of a lean premixed reaction zone 

in the combustion chamber, which is required for lean mixture combustion. Furthermore, 

swirling flow helps in flame stabilization by creating flow reversal through vortex 

breakdown. 

An interesting phenomenon of swirling flows in enclosed boundaries is the 

existence of a precessing vortex core along the longitudinal axis of the flow. The core of 

the swirl flow is visually distinct from the rest of the fluid movement, and can be 

described as having the shape of a continuous corkscrew spinning in the opposite 

direction of the general flow, as shown in Figure 1.1. 
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Figure 1.1 Precessing Vortex Core (PVC) [1] 

 

The behavior of this vortex core is a significant occurrence in high velocity flows, 

as it affects the aerodynamic and thermal performance of the downstream turbine. In the 

combustion process, the existence of the vortex core in the combustion mixture flow will 

cause the flame itself to have the form of a vortex, as shown in Figure 1.2. 

 

 

 

Figure 1.2 Precessing Vortex Core Flame [1] 

 

 

Precession
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1.2 Previous Study 

The current study is principally based on a conference paper entitled 

‘Computational Analysis of Turbulent Swirling Flows for Gas Turbine Combustor 

Applications’ by Benim et al. (2007) [4]. Consistent with the title of their presentation, the 

authors’ work centers on investigating the existence of highly rotating vortex core in the 

flow within the combustion chamber of a modern gas turbine combustor and the impact 

of this phenomenon on the nozzle guide vanes at the combustor/turbine interface. They 

firstly sought out to validate the predictive capability of current modeling procedures for 

turbulent swirling flows, especially near the sub/supercritical vortex core transition. They 

then analyzed the effectiveness of these predictions as compared to experimental results 

done on two different laboratory test rigs with appropriately arranged parameters. All of 

the turbulent models used in the study were picked based on their capability of resolving 

three-dimensional transient motion of coherent flow structures without assuming a scalar 

turbulent viscosity at all scales; they are the URANS-RSM, LES and DES modeling 

approaches. 

The result of the simulations is as shown in Figure 1.3. The figure is a 

temperature contour in a longitudinal plane of a combustion chamber; the core of the 

vortex is the hottest part of the flow. The vortex core extends from the inlet to the outlet 

of the chamber, interacting intensively with the nozzle guide vanes as a result. This 

interaction not only transfer massive amounts of heat to the guide vanes, but also disturbs 

the cooling aerodynamics of these vanes, causing them to overheat. 
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Figure 1.3 Result of CFD simulation on swirl flow in combustion chamber [4] 

 

1.3 Problem Statement 

As exhibited from the previous study, the formation of secondary flows that 

moves in the reverse direction from the primary swirling flow brings a negative effect to 

components in the combustion chamber. Therefore, this phenomenon, also known as 

backflow, needs to be eliminated, or at least reduced. 

 

1.4 Objective 

The objective of this study is to reduce the backflow that occurs in swirling flows, 

specifically swirls that are produced by tangential inlets that are commonly found in 

thermo fluid equipments such as combustion chambers, plenum chambers, and fluidized 

beds. As an attempt to improve on the current design, the inlets will be tilted from the 

tangent position up to certain angles, the result of which will be studied through 

simulations and experiments. To determine whether the backflow has reduced or 

increased, the velocity profile at several points in the flow region will be produced. 
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1.5 Scope 

The scope of the study includes: 

• Development of swirl generator model 

• Determination of the swirl flow pattern using both Computational Fluid 

Dynamics (CFD) and Particle Image Velocimetry (PIV) 

• Simulation and experimentation using air as the working fluid at 

atmospheric temperature (cold flow), thus without involving heat transfer 

• Comparison of results between CFD and PIV 

 

1.6 Past Researches on Swirl Flow 

Some of the most important research papers concerning this topic are listed in 

Table 1.1. These researches are focused on the flow behavior in the chamber and not the 

actual combustion process. 

Table 1.1 Past researches on swirl flow 

Date Occurrence 

1983 Escudier and Keller propose the idea that a vortex breakdown along the swirl 

axis can be thought of as an abrupt transition between an upstream supercritical 

flow and a downstream subcritical flow. A supercritical condition occurs if the 

axial flow velocity exceeds the relative phase velocity of upstream-directed 

inertia waves, while a subcritical condition is the opposite. 

1986 Weber et al. produces computation results of near-field aerodynamics of swirling 

expanding flows. 

1988 Hogg et al. provide computation results of highly swirling confined flows with 

using the Reynolds Stress Turbulence Model. 
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1990 Benim publishes a finite element analysis of confined swirling flows 

1997 Xia et al. publish a study on the effects of three-dimensionality on swirling flows 

with or without combustion. 

2004 Turell et al. CFD simulation of the flow within and downstream of a high-swirl 

lean premixed gas turbine combustor. 

 

1.7 History of Numerical Modeling in Turbulent Flow 

The complexity of fluid flow in general makes it almost impossible to obtain 

complete analytical solutions for most real-world applications of fluid dynamics. 

However, without the ability to explain and predict the flow of fluids in the form of 

mathematical expressions, one cannot conceivably design any machine or apparatus that 

deals with fluids to work effectively under wide ranging circumstances of fluid 

movement. Therefore, scientist and researchers have long been involved in creating 

models that approximate the actual behavior of fluid flow to varying degrees of accuracy 

depending on the situation. In order to understand the correct method of simulating fluid 

flow structures, sufficient knowledge of fluid dynamics, computational methods, and 

numerical modeling is required. All these fields are encompassed in the study of turbulent 

flow modeling. 

Turbulent modeling has been around since the late 1800s, when the analytical 

approach to solve for turbulent fluid flow has been all but exhausted. Some of the 

prominent figures in fluid mechanics began to introduce various concepts to describe the 

interactions between fluid particles and the factors that come into play at various 

conditions. The following Table 1.2 gives an overview of turbulent modeling 

development in chronological order. 
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