
---------- - -

75

AN AUTOMATED TOOL FOR BUSINESS RULE-DRIVEN,�

OBJECT-ORIENTED SOFTWARE EVOLUTION�

Wan M.N. Wan Kadir�

Software Engineering Department�

Faculty of Compo Science and Info. Systems, Universiti Teknologi Malaysia�

81310 UTM Skudai, Johor, Malaysia�

e-mail: wnasir@fsksm.utm.my�

Abstract: In order to remain useful, it is important for software to evolve according to the

changes in its business environment. The changes of highly volatile requirements, i.e.

business rules, may even occur prior to system implementation. In this paper, we present an

automated tool that supports the Business Rule-Driven Object-Oriented Design (BROOD)

approach in propagating business rule changes to software design. We firstly introduce the

BROOD approach that consists of a metamodel that defines the semantics and syntax of

business rules statements and links these rules to their related software design components.

The Unified Modeling Language (UML) is adopted to define the software design part of the

metamodel. We also describe the design and implementation of our automated tool using

Generic Modeling Environment (GME).

Keywords : Unified Modeling Language, Generic Modeling Environment, Adaptive Object

Model" metamodel, Business Rule

1. INTRODUCTION

Nowadays, nearly all of commercial and government organizations are highly dependent on

software systems. Due to the inherent dynamic nature of their business environment, software

evolution is inevitable. The changes generated by business policies and operations are

propagated onto software system. A large portion of total software lifecycle cost is devoted to

introduce new requirements, and remove or change the existing requirements [J]. However,

software evolution must be accomplished for the software to remain useful in its environment

[2]. Due to this reason, software evolution is considered as a key research challenge in software

engineering.

Many research projects attempt to find a more applicable way for building a software

system that is flexible to changes as well as predicting the effect of requirements change [3].

Jilid 20, Bil.2 (Disember 2008) Jumal TeknoJogi Maklumat

75

AN AUTOMATED TOOL FOR BUSINESS RULE-DRIVEN,

OBJECT-ORIENTED SOFTWARE EVOLUTION

Wan M.N. Wan Kadir

Software Engineering Department

Faculty of Compo Science and Info. Systems, Universiti Teknologi Malaysia

81310 UTM Skudai, Johor, Malaysia

e-mail: wnasir@fsksm.utm.my

Abstract: In order to remain useful, it is important for software to evolve according to the

changes in its business environment. The changes of highly volatile requirements, Le.

business rules, may even occur prior to system implementation. In this paper, we present an

automated tool that supports the Business Rule-Driven Object-Oriented Design (BROOD)

approach in propagating business rule changes to software design. We firstly introduce the

BROOD approach that consists of a metamodel that defines the semantics and syntax of

business rules statements and links these rules to their related software design components.

The Unified Modeling Language (UML) is adopted to define the software design part of the

metamodel. We also describe the design and implementation of our automated tool using

Generic Modeling Environment (GME).

Keywords : Unified Modeling Language, Generic Modeling Environment, Adaptive Object

Model" metamodel, Business Rule

1. INTRODUCTION

Nowadays, nearly all of commercial and government organizations are highly dependent on

software systems. Due to the inherent dynamic nature of their business environment, software

evolution is inevitable. The changes generated by business policies and operations are

propagated onto software system. A large portion of total software lifecycle cost is devoted to

introduce new requirements, and remove or change the existing requirements [l]. However,

software evolution must be accomplished for the software to remain useful in its environment

[2]. Due to this reason, software evolution is considered as a key research challenge in software

engineering.

Many research projects attempt to find a more applicable way for building a software

system that is flexible to changes as well as predicting the effect of requirements change [3].

Jilid 20, Bil.2 (Disember 2008) Jumal TeknoJogi Maklumat

mailto:wnasir@fsksm.utm.my

•

76

However, most of them focus more on software technology, ignoring the consideration of the

sources of changes in a software operational environment.

Business rules, which are frequently changing in accordance with the business changes [4],

have been identified as the important sources of changes. In addition, their changes bring the

highest impact on both software and business process [5, 6). The explicit consideration of

business rules in software development is important in assisting future evolution.

In this paper, we present how the business rule approach to software evolution, which is

called Business Rule-Driven Object-Oriented Design (BROOD), supports automated

propagation of business rule changes to software design. It starts with a brief description of

the BROOD approach. Next, it presents the design of the BROOD tool. It is followed by the

demonstration of using the BROOD tool based on the examples from the web-based

healthcare information system case study. Finally, we give the summary and conclusion.

2. THE BROOD ApPROACH

There are two main categories of business rule approaches to software evolution i.e.

business rule conceptual modelling and evolvable software systems. Business rule conceptual

modelling focus on specification issues such as the typology and structure of business rules.

For example, the Business Rules Group (BRG) that classifies business rules into three main

types i.e. structural assertions, action assertions, and derivations [7] and Business Rule­

Oriented Conceptual Modeling (BROCOM) that introduces a metamodel that formalizes

business rules in conceptual modelling [8, 9]. Morgan suggested formalization in terms of the

pattern of business rule statements which is capable to be translated into formal logic [10].

Ross proposed the functional categories of business rules Le. rejectors, projectors, and

producers [11].

With regard to evolvable software systems, business rule extemalization in software

implementation was considered as the main objective. Among the leading approaches is

Adaptive Object Model (AOM), which is dermed as "a system that represents classes,

attributes, and relationships as metadata" [12, 13]. Other examples include Coordination

Contract and Business Rule Beans. Coordination Contract aims to separate core business

entities which are relatively stable and volatile business products which keep changing for the

business to remain competitive [14]. Business Rule Beans (BRBeans), formerly known as

Jilid 20, Bil. 2 (Disember 2008) Jurnal Teknologi Maklumat

ly two models are i

pectively model thl

ey can be maintail

'deleted when a bush

phrase is not recom

'0 business rules. In a

elements. As shown

UML model element

[17] whilst the more

is discussed in [18].

Jilid 20, Bil.2 (Disembl

76

However, most of them focus more on software technology, ignoring the consideration of the

sources ofchanges in a software operational environment.

Business rules, which are frequently changing in accordance with the business changes [4],

have been identified as the important sources of changes. In addition, their changes bring the

highest impact on both software and business process [5, 6]. The explicit consideration of

business rules in software development is important in assisting future evolution.

In this paper, we present how the business rule approach to software evolution, which is

called Business Rule-Driven Object-Oriented Design (BROOD), supports automated

propagation of business rule changes to software design. It starts with a brief description of

the BROOD approach. Next, it presents the design of the BROOD tool. It is followed by the

demonstration of using the BROOD tool based on the examples from the web-based

healthcare information system case study. Finally, we give the summary and conclusion.

2. THE BROOD ApPROACH

There are two main categories of business rule approaches to software evolution i.e.

business rule conceptual modelling and evolvable software systems. Business rule conceptual

modelling focus on specification issues such as the typology and structure of business rules.

For example, the Business Rules Group (BRG) that classifies business rules into three main

types i.e. structural assertions, action assertions, and derivations [7] and Business Rule­

Oriented Conceptual Modeling (BROCOM) that introduces a metamodel that formalizes

business rules in conceptual modelling [8, 9]. Morgan suggested formalization in terms of the

pattern of business rule statements which is capable to be translated into formal logic [10].

Ross proposed the functional categories of business rules i.e. rejectors, projectors, and

producers [11].

With regard to evolvable software systems, business rule extemalization in software

implementation was considered as the main objective. Among the leading approaches is

Adaptive Object Model (AOM), which is dermed as "a system that represents classes,

attributes, and relationships as metadata" [12, 13]. Other examples include Coordination

Contract and Business Rule Beans. Coordination Contract aims to separate core business

entities which are relatively stable and volatile business products which keep changing for the

business to remain competitive [14]. Business Rule Beans (BRBeans), formerly known as

Jilid 20, Bi\. 2 (Disember 2008) Jurnal Teknologi Maklumat

77

Accessible Business Rules [4, 15], is a framework that provides guidelines and infrastructures

for the extemalization of business rules in a distributed business application.

Business Rule-Driven Object-Oriented Design (BROOD) attempts to fill the gap between

business rule conceptual modelling and evolable software systems. It consists of a metamodel

that defines the structure of business rules. The ultimate aim of the BROOD metamodel is to

support the linking of business rules to software design, which in tum facilitates the

traceability and propagation of the rule changes to its related design components. Since

business rules are often managed by business users, the metamodel should naturally define

business rules from the users' perspectives. At the same time, the definition should be well

structured enough to be linked to software design. There are three main goals of the business

rule metamodel. First, it should have an exhaustive and mutual exclusive typology to capture

all possible types of business rules. Second, it should have the structured forms of expressions

for linking the business rules to software design. Third, it should include rule management

elements to improve business rule traceability in business domain, which consequently

simplifies business rule management. These three characteristics form the basis for the

development of the business rule metamodel..

The Unified Modelling Language (UML) [16] metamodel is used to represent software

design since it is widely accepted in research and industry communities. In general, the UML

metamodel consists of three packages Le. Foundation, Behavioral Elements and Model

Management. These packages define various useful models for the understanding and

specification of the system under development. For the purpose and scope of this research,

only two models are included in the study namely class diagram and statechart diagram which

respectively model the static and dynamic aspects of software systems.

BROOD introduces rule phrases that link the user-oriented business rule specification to

software design. Rule phrases are considered as the building blocks for the rule statements.

They can be maintained independently during implementation, in other words, they are not

deleted when a business rule is deleted. However, the modification and deleting of a rule

phrase is not recommended since a careful effort is needed in reviewing its aggregated

business rules. In addition to playing a role as the building blocks for business rule

statements, rule phrases are also important in linking business rules to software design

elements. As shown in the metamodel in Figure 1, each rule phrase is linked to zero or more

UML model elements. The conceptual framework of the BROOD approach can be found in

[17] whilst the more detailed discussion specifically on the BROOD metamodel and process

is discussed in [18].

Jilid 20, Bi1.2 (Disember 2008) Jumal Teknologi Maklumat

77

Accessible Business Rules [4, 15], is a framework that provides guidelines and infrastructures

for the extemalization of business rules in a distributed business application.

Business Rule-Driven Object-Oriented Design (BROOD) attempts to fill the gap between

business rule conceptual modelling and evolable software systems. It consists of a metamodel

that defines the structure of business rules. The ultimate aim of the BROOD metamodel is to

support the linking of business rules to software design, which in tum facilitates the

traceability and propagation of the rule changes to its related design components. Since

business rules are often managed by business users, the metamodel should naturally define

business rules from the users' perspectives. At the same time, the definition should be well

structured enough to be linked to software design. There are three main goals of the business

rule metamodel. First, it should have an exhaustive and mutual exclusive typology to capture

all possible types of business rules. Second, it should have the structured forms of expressions

for linking the business rules to software design. Third, it should include rule management

elements to improve business rule traceability in business domain, which consequently

simplifies business rule management. These three characteristics form the basis for the

development of the business rule metamodel..

The Unified Modelling Language (UML) [16] metamodel is used to represent software

design since it is widely accepted in research and industry communities. In general, the UML

metamodel consists of three packages Le. Foundation, Behavioral Elemt:nts and Model

Management. These packages define various useful models for the understanding and

specification of the system under development. For the purpose and scope of this research,

only two models are included in the study namely class diagram and statechart diagram which

respectively model the static and dynamic aspects of software systems.

BROOD introduces rule phrases that link the user-oriented business rule specification to

software design. Rule phrases are considered as the building blocks for the rule statements.

They can be maintained independently during implementation, in other words, they are not

deleted when a business rule is deleted. However, the modification and deleting of a rule

phrase is not recommended since a careful effort is needed in reviewing its aggregated

business rules. In addition to playing a role as the building blocks for business rule

statements, rule phrases are also important in linking business rules to software design

elements. As shown in the metamodel in Figure I, each rule phrase is linked to zero or more

UML model elements. The conceptual framework of the BROOD approach can be found in

[17] whilst the more detailed discussion specifically on the BROOD metamodel and process

is discussed in [18].

Jilid 20, Bi1.2 (Disember 2008) Jumal TeknoJogi Maklumat

78

3. THE DESIGN OF THE BROOD TOOL

The BROOD approach simplifies the evolution activities by providing business rule

traceability in object-oriented software design which in tum facilitating business rule-driven

evolution. However, the process introduces several additional activities to the traditional

object-oriented software development. These additional activities include the documentation

of business rules and linking them to software design. Although these activities bring great

benefit in the evolution of a business rule intensive software system, but they make a software

development process too complicated without an automated tool support.

The BROOD tool assists users in performing the development and evolution activities such

as business rule creation and management, software design editing, and business rule change

propagation. It was developed on top of the Generic Modelling Environment (GME). The

Generic Modeling Environment (GME) [19, 20], which was developed by the Vanderbilt

University, is a configurable toolset that supports the easy creation of a modelling

environment. The created modelling environment can be subsequently used for building large

scale, complex models. The powerful modelling concepts such as model hierarchy, multiple

aspects, sets, references and constraints are integrated in GME. GME also contains integrated

model interpreters for translating and analysing the models under construction. The

configurable feature of GME provides great flexibility for methodologist especially for the

frequently evolved modelling paradigm. This feature was also considered as the main reason

for this research to choose GME in experimenting and demonstrating its proposed concepts.

In GME, the modelling configuration is accomplished through a metamodel that specifies

the modelling paradigm (or modelling language) of the application domain. The metamodel

defines the syntactic, semantic and presentation information of the domain for example, the

concepts that are used to construct the models, the relationships that may exist among those

concepts, the organization and view of the concepts by the modeller, and the rules governing

the construction of models. The metamodel is composed using different combinations of the

GME modelling concepts such as model, atom, reference, connection, and aspect. The

BROOD metamodel, which is discussed in section 2, is used to generate the BROOD tool

environment. Figure 1 shows the example of business rule metamodel definition using GME

environment.

Jilid 20, Bil. 2 (Disernber 2008) Jumal Teknologi Maklurnat

78

3. THE DESIGN OF THE BROOD TOOL

The BROOD approach simplifies the evolution activities by providing business rule

traceability in object-oriented software design which in turn facilitating business rule-driven

evolution. However, the process introduces several additional activities to the traditional

object-oriented software development. These additional activities include the documentation 1

of business rules and linking them to software design. Although these activities bring great

benefit in the evolution of a business rule intensive software system, but they make a software

development process too complicated without an automated tool support.

The BROOD tool assists users in performing the development and evolution activities such

as business rule creation and management, software design editing, and business rule change

propagation. It was developed on top of the Generic Modelling Environment (GME). The

Generic Modeling Environment (GME) [19, 20], which was developed by the Vanderbilt

University, is a configurable toolset that supports the easy creation of a modelling

environment. The created modelling environment can be subsequently used for building large

scale, complex models. The powerful modelling concepts such as model hierarchy, multiple

aspects, sets, references and constraints are integrated in GME. GME also contains integrated

model interpreters for translating and analysing the models under construction. The

configurable feature of GME provides great flexibility for methodologist especially for the

frequently evolved modelling paradigm. This feature was also considered as the main reason

for this research to choose GME in experimenting and demonstrating its proposed concepts.

In GME, the modelling configuration is accomplished through a metamodel that specifies

the modelling paradigm (or modelling language) of the application domain. The metamodel

defines the syntactic, semantic and presentation information of the domain for example, the

concepts that are used to construct the models, the relationships that may exist among those

concepts, the organization and view of the concepts by the modeller, and the rules governing

the construction of models. The metamodel is composed using different combinations of the

GME modelling concepts such as model, atom, reference, connection, and aspect. The

BROOD metamodel, which is discussed in section 2, is used to generate the BROOD tool

environment. Figure 1 shows the example of business rule metamodel definition using GME

environment.

Jilid 20, Bil. 2 (Disember 2008) Jumal Teknologi Maklumat

79

Figure I. Defming business rule metamodel in GME environment

We also developed three main modules (Le. interpreters in GME terms) in order to

simplify the rule phrase management, business rule composition, and business rule

modification. These modules also perform the automated propagation of business rule

changes to the respective software design elements, which is impractical to be performed

manually. The metamodel, the graphical model editor, and the above three modules are

located at the core component and user application layer in the BROOD tool architecture. The

rule phrase entries, business rule specification, and software design models are considered as

the stroge layer in the tool architecture. The BROOD tool architecture, which is based on

GME architecture, is shown in Figure 2.

Figure 2. The BROOD tool architecture [21]

GME provides a constraint manager as a general mechanism for representing modelling

rules and constraints. In GME, constraints are expressed using the MultiGraph Constraint

Language (MCL), a predicate logic language based on the Object Constraint Language

(OCL). The constraint manager is fully compliant with the standard OCL 1.4 specification

[22]. The examples of the constraints defined for the BROOD tool and their OCL

specifications are given below:

Jilid 20, Bil.2 (Disember 2008) Jurnal Teknologi Maklumat

79

Figure I. Defming business rule metamodel in GME environment

We also developed three main modules (Le. interpreters in GME terms) in order to

simplify the rule phrase management, business rule composition, and business rule

modification. These modules also perform the automated propagation of business rule

changes to the respective software design elements, which is impractical to be performed

manually. The metamodel, the graphical model editor, and the above three modules are

located at the core component and user application layer in the BROOD tool architecture. The

rule phrase entries, business rule specification, and software design models are considered as

the stroge layer in the tool architecture. The BROOD tool architecture, which is based on

GME architecture, is shown in Figure 2.

Figure 2. The BROOD tool architecture [21]

GME provides a constraint manager as a general mechanism for representing modelling

rules and constraints. In GME, constraints are expressed using the MultiGraph Constraint

Language (MCL), a predicate logic language based on the Object Constraint Language

(OCL). The constraint manager is fully compliant with the standard OCL 1.4 specification

[22]. The examples of the constraints defined for the BROOD tool and their OCL

specifications are given below:

I
!

I
I

Ii

I.
Jilid 20, Bi\.2 (Disember 2008) Jurnal Teknologi Maklumat

80

•� RPEntriesSingleton: project.allInstancesOf(RulePhraseEntries)�
->size <2�

•� NotEmptyTemplateID:�
self.templateID.trimO <> ""�

•� UniqueRulePhrase:�
project.allInstancesOf(Cardinality) ->�
select(c Ic.name = self.name) -> size = I�

In the above examples, RPEntriesSingleton controls the project to only have a single rule

phrase entries model. This restriction may simplifY the maintenance of a large number

of unique rule phrases. The second constraint, Le. NotEmptyTempiatelD, checks the

templatelD attribute of the connected business rule instance to ensure that the value is

not empty. It is important in ensuring that tempiatelD always has a value since it is

frequently used in the developed interpreters for instance the generated business rule

statement depends on the selected templatelD. The last constraint in the above examples,

namely UniqueRulePhrase, was attached to all rule phrase atoms or objects to ensure that

each rule phrase is unique. A unique rule phrase name may avoid the business user

confusion on the meaning of the selected rule phrases in composing a business rule.

4. BROOD TOOL FEATURES

Having completed and interpreted the physical metarnodels discussed in the previous

section, the newly generated tool environment of the BROOD modelling paradigm that is

based on the GME meta-paradigm is now ready to be used. In its main window, which is

shown in Figure 3, the name of the currently opened project is displayed on the Title bar.

Menu bar and tool bar allow access to certain commands provided by the environment. The

buttons to execute the interpreters are located at the right-end of the tool bar. Mode bar

contains selection and connection buttons. Model editing window is used to visually construct

and edit the models. Users may add the model component, which is called part in GME, by

selecting it from part browser window and dragging it to the model editing window. Each

model editing window has its own title bar that displays the name of the currently edited

model. The attributes of the model can be added or modified using the form-based attribute

browser window. Users may navigate the models in the current project using the tree structure

view provided by model browser window.

..:;' 1lIdI_.�
.....��

F

Jilid 20, Bil. 2 (Disember 2008)� Jumal Teknologi Maklumat

80

• RPEntriesSingleton: project.allInstancesOf(RulePhraseEntries)
->size <2

• NotEmptyTemplateID:
self.templateID.trimO <> 1111

• UniqueRulePhrase:·
project.alllnstancesOf(Cardinality) ->
select(c Ic.name == self.name) -> size == I

In the above examples, RPEntriesSingleton controls the project to only have a single rule

phrase entries model. This restriction may simplify the maintenance of a large number

of unique rule phrases. The second constraint, i.e. NotEmptyTemplatelD, checks the

templatelD attribute of the connected business rule instance to ensure that the value is

not empty. It is important in ensuring that tempiatelD always has a value since it is

frequently used in the developed interpreters for instance the generated business rule

statement depends on the selected tempiatelD. The last constraint in the above examples,

namely UniqueRulePhrase, was attached to all rule phrase atoms or objects to ensure that

each rule phrase is unique. A unique rule phrase name may avoid the business user

confusion on the meaning of the selected rule phrases in composing a business rule.

4. BROOD TOOL FEATURES

Having completed and interpreted the physical metamodels discussed in the previous

section, the newly generated tool environment of the BROOD modelling paradigm that is

based on the GME meta-paradigm is now ready to be used. In its main window, which is

shown in Figure 3, the name of the currently opened project is displayed on the Title bar.

Menu bar and tool bar allow access to certain commands provided by the environment. The

buttons to execute the interpreters are located at the right-end of the tool bar. Mode bar

contains selection and connection buttons. Model editing window is used to visually construct

and edit the models. Users may add the model component, which is called part in GME, by

selecting it from part browser window and dragging it to the model editing window. Each

model editing window has its own title bar that displays the name of the currently edited

model. The attributes of the model can be added or modified using the form-based attribute

browser window. Users may navigate the models in the current project using the tree structure

view provided by model browser window.

Jilid 20, Bi!. 2 (Disember 2008) Jurnal Telcnologi Maklumat

8\

Figure 3. The generated BROOD tool environment

4.1 Model Editing

There are four main types of models can be created using the BROOD tool: rule phrase

entries, business rule, class diagram, and statechart diagram. The simplest way to create a new

model is to right-click the project name in the model browser window and select Insert Model

command from the pop-up menu. Users may select the type of the model to be created from

the displayed choices. As the type is selected, a new item with the default model name is

inserted in the tree view of the current project. By double-clicking on the model name, the

model editing window is displayed and the model is now ready for editing.

4.2 Adding a New Business Rule

The Add Business Rule (ABR) module was developed to assist user in adding a new

business rule to the selected business rule model. The ABR module performs two main tasks:

business rule composition and software design updating. In business rule composition, rule

phrases are used as the building blocks to construct a new business rule statement. Majority of

the rule phrases are available from the rule phrase entries. For certain types of rule phrases,

such as value and number, they are not stored in the rule phrase entries. Instead, their values

are entered during rule composition and stored as the rule attributes. With regard to updating

the software design, the ABR module automatically updates the software design information

to correspond with the newly composed rule. The action taken depends on the selected rule

type and template. For example, the attribute and relationship constraints are directly linked to

the attribute and relationship in the class diagram.

As the ABR is invoked, it shows the selection window that allows a user to specify the

type of the business rule to be added. A business rule composition window is displayed after

the user made the choice. As the example, the window that is displayed when the user

chooses a relationship constraint is shown in Figure 4. User may enter the name and choose

lilid 20, Bil.2 (Disember 2008) lurna\ Teknologi Maklumat

8\

Figure 3. The generated BROOD tool environment

4.1 Model Editing

There are four main types of models can be created using the BROOD tool: rule phrase

entries, business rule, class diagram, and statechart diagram. The simplest way to create a new

model is to right-click the project name in the model browser window and select Insert Model

command from the pop-up menu. Users may select the type of the model to be created from

the displayed choices. As the type is selected, a new item with the default model name is

inserted in the tree view of the current project. By double-clicking on the model name, the

model editing window is displayed and the model is now ready for editing.

4.2 Adding a New Business Rule

The Add Business Rule (ABR) module was developed to assist user in adding a new

business rule to the selected business rule model. The ABR module performs two main tasks:

business rule composition and software design updating. In business rule composition, rule

phrases are used as the building blocks to construct a new business rule statement. Majority of

the rule phrases are available from the rule phrase entries. For certain types of rule phrases,

such as value and number, they are not stored in the rule phrase entries. Instead, their values

are entered during rule composition and stored as the rule attributes. With regard to updating

the software design, the ABR module automatically updates the software design information

to correspond with the newly composed rule. The action taken depends on the selected rule

type and template. For example, the attribute and relationship constraints are directly linked to

the attribute and relationship in the class diagram.

As the ABR is invoked, it shows the selection window that allows a user to specify the

type of the business rule to be added. A business rule composition window is displayed after

the user made the choice. As the example, the window that is displayed when the user

chooses a relationship constraint is shown in Figure 4. User may enter the name and choose

Jilid 20, BiJ.2 (Disember 2008) Juma\ Teknologi Maklumat

82

the ruleset for the new business rule. The rule template must be chosen from the listed

choices. As the template is selected, the rule phrase type combo box is populated according to

the selected template. The available rule phrases are displayed in the rule phrase list box. User

only needs to double-click the desired rule phrase to select it. The selected rule phrase is '

inserted in the selected phrases list box. Use construct rule button to display the composed

business rule statement.

EIIiIr"''''",_~ .-":~:b'i-"'---~.-

'-"'ll~'; _. ----~l

1tuIoo~ :f lUlIlo1 Ih"I•• a:.II'1.,IOO •• j,tll!(,""·_l· ~i

~. _''--''llIIUWW:''
lIel,,"""'~"'Mr' F;.·;~··-- ·'-:~l

Figure 4. Adding a new relationship constraint

Having composed the business rule statement, the business rule is now ready to be added

to the currently opened business rule model. As mentioned above, the ABR module does not

only compose business rule but it also performs a trickier task Le. updating the design

components according to the newly composed business rule. In the above relationship

constraint example, the relationship constraint atom is firstly created for the new business rule

and it is consequently added to the current model after a user clicked the Add Business Rule

button. Next, it searches for the existing association relationships between the first and second

entities. Then, it displays the pop-up window that allow user to link business rule to one of the

existing associations or create a new association. Once the association is selected or created,

the cardinalities and role information form the business rule is transformed to their respective

attributes of the selected association.

The creation of a new connection is trickier when the source and destination classes are not

located in the same diagram or the destination class is a class copy. To solve this problem, the

ABR module traverse all models and checks both classes and class copies to find the source

and destination classes. If the classes are located in the same class diagram, it will create a

connection from the source class to the destination class or class copy. However, if the classes

are located in different diagram, the ABR module must create a new class copy as the

destination for the new connection. The source codes that implement this task is shown in the

following code snippet:

Jilid 20, Bil. 2 (Disember 2008) Jurnal Teknologi Maklumat

82

the ruleset for the new business rule. The rule template must be chosen from the listed

choices. As the template is selected, the rule phrase type combo box is populated according to

the selected template. The available rule phrases are displayed in the rule phrase list box. User

only needs to double-click the desired rule phrase to select it. The selected rule phrase is'

inserted in the selected phrases list box. Use construct rule button to display the composed

business rule statement.

Figure 4. Adding a new relationship constraint

Having composed the business rule statement, the business rule is now ready to be added

to the currently opened business rule model. As mentioned above, the ABR module does not

only compose business rule but it also performs a trickier task i.e. updating the design

components according to the newly composed business rule. In the above relationship

constraint example, the relationship constraint atom is firstly created for the new business rule

and it is consequently added to the current model after a user clicked the Add Business Rule

button. Next, it searches for the existing association relationships between the first and second

entities. Then, it displays the pop-up window that allow user to link business rule to one of the

existing associations or create a new association. Once the association is selected or created,

the cardinalities and role information form the business rule is transformed to their respective J
attributes of the selected association. I
The creation of a new connection is trickier when the source and destination classes are not 1
located in the same diagram or the destination class is a class copy. To solve this problem, the I

ABR module traverse all models and checks both classes and class copies to find the source 'J

and destination classes. If the classes are located in the same class diagram, it will create a :

connection from the source class to the destination class or class copy. However, if the classes

are located in different diagram, the ABR module must create a new class copy as the

destination for the new connection. The source codes that implement this task is shown in the

following code snippet:

Jilid 20, Bil. 2 (Disember 2008) Jurnal Teknologi MakJumat

83

II--Create a new Association connection where both classes in the same class diagram
if(classDiagram I == classDiagram2)
{ if (!dstClass->GetNameO.Compare("NULL") = 0)

conn = classDiagram 1-> CreateNewConnection("Association",srcClass,dstClass);
else�

conn = classDiagram 1->�
CreateNewConnection("Association",�
srcClass,dstClassRet);�
conn->SetName(linkedRelationship);�
conn->SetAttribute(srcCardAtt,�

designCard1);
conn->SetAttribute(dstCardAtt,�

designCard2);�
conn->SetAttribute(srcRoleAtt,�

roIePhrase);
} else
II Create a new Association where srcClass and
II dstClass resided in different class diagram
{ CBuilderModelReference *newClassRef=

classDiagrarn 1->
CreateNewModeIReference("ClassCopy",dstClass);�

newClassRef->SetName(dstClass->GetNameO);�
conn = classDiagrarn 1->�

CreateNewConnection("Association"
srcClass,newClassRet);�

conn->SetName(linkedRelationship);�
conn->SetAttribute(srcCardAtt,designCard I);�
conn->SetAttribute(dstCardAtt,designCard2);�
conn->SetAttribute(srcRoleAtt,rolePhrase);�

}

4.3 Performing Business Rule Changes

The ultimate aim of the BROOD tool is to simplify the implementation of business rule

changes. The Modify Business Rule (MBR) module was developed to assist tool users in

performing this task. The MBR module starts with displaying a tree structure of the rulesets

and business rule statements of the currently opened business rule model. User may browse

the business rule statement and select the statement to be modified. After the statement is

selected, the MBR module traverse the business rule model to obtain the business rule object

(atom), create a new window according to the type of the selected rule, and populating the

window with the current business rule information.

Figure 5 shows the window when a user select 'WHEN 30 day after the creation date ofthe

invoice IF current balance of the invoice is greater than 0 THEN trigger issue the first

reminder' rule statement from the tree view.

Jilid 20, Bil.2 (Disember 2008) Jurnal Teknologi Maklumat

83

II--Create a new Association connection where both classes in the same class diagram
if(classDiagram I == classDiagram2)
{ if (!dstClass->GetNameO.Compare("NULL") = 0)

conn = classDiagram 1-> CreateNewConnection("Association",srcClass,dstClass);
else

conn = classDiagram 1->
CreateNewConnection(tIAssociation",
srcClass,dstClassRef);
conn->SetName(linkedRelationship);
conn->SetAttribute(srcCardAtt,

designCardl);
conn->SetAttribute(dstCardAtt,

designCard2);
conn->SetAttribute(srcRoleAtt,

roIePhrase);
} else
II Create a new Association where srcClass and
II dstClass resided in different class diagram
{ CBuilderModelReference *newClassRef=

classDiagram 1->
CreateNewModeIReference("ClassCopy",dstClass);

newClassRef->SetName(dstClass->GetNameO);
conn = classDiagram1->

CreateNewConnection("Association"
srcClass,newClassRet);

conn->SetName(linkedRelationship);
conn->SetAttribute(srcCardAtt,designCard I);
conn->SetAttribute(dstCardAtt,designCard2);
conn->SetAttribute(srcRoleAtt,rolePhrase);

}

4.3 Performing Business Rule Changes

The ultimate aim of the BROOD tool is to simplify the implementation of business rule

changes. The Modify Business Rule (MBR) module was developed to assist tool users in

performing this task. The MBR module starts with displaying a tree structure of the rulesets

and business rule statements of the currently opened business rule model. User may browse

the business rule statement and select the statement to be modified. After the statement is

selected, the MBR module traverse the business rule model to obtain the business rule object

(atom), create a new window according to the type of the selected rule, and populating the

window with the current business rule information.

Figure 5 shows the window when a user select 'WHEN 30 day after the creation date of the

invoice IF current balance of the invoice is greater than 0 THEN trigger issue the first

reminder' rule statement from the tree view.

Jilid 20, BiL2 (Disember 2008) Jurnal Teknologi Maklumat

84

[_NIl"" ~~~"'=;.,.._. ---I
~J. __ e.~=:::~;==::::::=..""".-
(:u..__ ==!:~l"""""'.""""_

~1"'I.otlltllOll __~

O:~_"l'l.~""" ~,,,,,r"";'~""'01001*,"·""'I_" .!]
~-""".... r;;i.;-"w-..;;--·------·---·--·-.!l ~

W_I_•_~~

~"",~lIlI f==::--··¥..·- r'jc---­
,.....,.a:..,~ft'o

~l::-"'~.,~~•• I ._ ..,
; n. __ ,"

¢y.1lI"".-GH ·.~I"'" _~"'..

:~ ,~.----..�_._......
~..:,..._,_�-

~--......
• lIt1..lNI.....,r~:i;ti.-·_·"3 r--. il

~_:'-"""" .::J-i~.!'j

Figure 5. Modifying an action 'assertion business role

As shown in Figure 5, the window is initially populated with the existing rule phrases and

templates of the selected business rule statement. User may modify the event, condition,

action, and linked software design components using this window. With regard to the

condition and action modification, user may change their templates by selecting one of the

listed choices in the provided combo boxes. After the Confirm Template button is clicked, the

rule phrase type combo box is populated with the names of the rule phrase types found in the

selected templates. User may select a rule phrase type to change from rule phrase type combo

box. As the rule phrase type is selected, its instances from rule phrase entries are listed in the

rule phrase list box. User may select the item by double-clicking. If the user select <value>

from the rule phrase type combo box, the edit box and Insert Value button will be activated to

allow the user to enter the value of <value>. The selected role phrases are displayed in the

selected rule phrases list box. User may view the changed rule statement using the View

Changed Rule button.

Upon clicking the Commit Change button, the business rule changes are automatically

propagated to the linked software design components. The specification of event, condition,

and action of the business rule are transformed to event, guard, and action of the linked state

transition in the selected statechart diagram. The business rule may also be linked to the

operation that performs the specified action on the occurrence of the event and the satisfaction

of the condition. For example, this action assertion is implemented in addReminderListItemO

operation of the InvoiceApp class that adds the paymaster into the list of the category I past

due paymasters when the payment is not received within 15 days from the invoice date. The

list is subsequently used to manually issue the first reminder letters. In this example, the

changed business rule specification is transformed to the design specification and

automatically inserted in the specification of the addReminderListItemO operation. In certain

Jilid 20, Bil. 2 (Disember 2008) Jumal Teknologi Maklumat

n is to chanl

of days ofl

by selecting

edit box, an(
~,1

event phrase

may click

¢I,o......~ · I·_~IIl..

:~~..~,.---
."'~._,- ...""'-

84

(:u..__ e=!:~l"----."""-
,......""I.otllMOII__~

O:~_..n.""'''''' :<....,\,f&r--.;.~..........0geI*'.......l_... .!]
~_____ r~i';;-.w_,,;;-"-·--'--·-·-·--·--.!:! ~

...._I.... ,............~~

~"...~~. f==..::=--······- "1,----:......,.d:60.,....... . . I

!~~~~~.. ~,
·llII __ 'M··............-......-_.._­_.......--......-

~--.......
• lIt1..~~r~:iMi.----'·_·"3 _~ iJ

......._c,_1IolcJ -:'!j-\~..!j

Figure 5. Modifying an action 'assertion business role

As shown in Figure 5, the window is initially populated with the existing rule phrases and

templates of the selected business rule statement. User may modify the event, condition,

action, and linked software design components using this window. With regard to the

condition and action modification, user may change their templates by selecting one of the

listed choices in the provided combo boxes. After the Confirm Template button is clicked, the

rule phrase type combo box is populated with the names of the rule phrase types found in the

selected templates. User may select a rule phrase type to change from rule phrase type combo

box. As the rule phrase type is selected, its instances from rule phrase entries are listed in the

rule phrase list box. User may select the item by double-clicking. If the user select <value>

from the rule phrase type combo box, the edit box and Insert Value button will be activated to

allow the user to enter the value of <value>. The selected role phrases are displayed in the

selected rule phrases list box. User may view the changed rule statement using the View

Changed Rule button.

Upon clicking the Commit Change button, the business rule changes are automatically

propagated to the linked software design components. The specification of event, condition,

and action of the business rule are transformed to event, guard, and action of the linked state

transition in the selected statechart diagram. The business rule may also be linked to the

operation that performs the specified action on the occurrence of the event and the satisfaction

of the condition. For example, this action assertion is implemented in addReminderListItemO

operation of the InvoiceApp class that adds the paymaster into the list of the category I past

due paymasters when the payment is not received within 15 days from the invoice date. The

list is subsequently used to manually issue the first reminder letters. In this example, the

changed business rule specification is transformed to the design specification and

automatically inserted in the specification of the addReminderListItemO operation. In certain

Jilid 20, Bil. 2 (Disember 2008) Jumal Teknologi Maklumat

85

occasions, user may need to change the linked design components. However, changing the

linked software design components is infrequently happened during the software operation.

User is also allowed to change the event specification by clicking the Change Event button.

As the button is clicked, the window shown in Figure 6 is displayed.

........,.""'n.,...IIlMIiII1lon_1�...,I.~IICIlIl\

r.tIIngt-Pi'fIIII*""-'" ~ • ..,.n,;;;;...~$It""""~ -·----------3
c ,

.,...tt__,... r;-....-------·-3
0MdM-1lnM r~·-" l ~w...-.·l

1=!"."'...._<W_~_ :=:;.~

·"'...04tTru- M il"Nft 0..... If...

Figure 6. Modifying an event rule phrase

As shown in Figure 6, the currently selected template and rule phrases are displayed on the

window. User is allowed to change the template, however it must be carefully done since the

event might be used by other action assertion rules. The most frequent change to an event

specification is to change the value of its rule phrase. For example, a user may wish to change

the number of days of a category 1 past due invoice from 30 to 15 days. This can be done by

very easily by selecting <number> from the sub-phrase type combo box, enter the value in the

<number> edit box, and press the Insert Number button. Next, user may choose either to type

in a new event phrase or automatically generate based on the modified event specification.

Finally, user may click Commit Change button to save the event changes and return to the

caller window. The event phrase and rule statement in the caller window will be updated

accordingly.

6. SUMMARY AND CONCLUSION

The design and implementation of the tool that supports the BROOD approach was

described in this paper. The BROOD tool was developed using the configurable GME

modelling environment. The physical metamodel, which is the implementation version of the

BROOD metamodel discussed in section 2, were developed for all BROOD models such as

rule phrase entries, business rule specification, class diagram, and statechart diagram. A

number of simple modelling constraints were also created and attached to the particular

metamodel components. The defined metamodels were used in generating the BROOD tool

Jilid 20, Bil.2 (Disember 2008) Jumal Teknologi Maklumat

85

occasions, user may need to change the linked design components. However, changing the

linked software design components is infrequently happened during the software operation.

User is also allowed to change the event specification by clicking the Change Event button.

As the button is clicked, the window shown in Figure 6 is displayed.

~""''nIeIlllllllJMM''''_.'''IIIIKII,''''''''ICIlIl\ ...IIIIIIn'''1
~ ~7";\";';;;;"·~~;:;;;::-·_----------3

CIlWl MI

....tt __,..... ~tni----------"3

DldltM-1lltaM r=:.-·"""- f..,.. ~w...-.· i

I§F
~..._...a ::;::r;;.~

<1I'l•••D-lIIltTl'Il"" M il.ilNft on_ III'h

Figure 6. Modifying an event rule phrase

As shown in Figure 6, the currently selected template and rule phrases are displayed on the

window. User is allowed to change the template, however it must be carefully done since the

event might be used by other action assertion rules. The most frequent change to an event

specification is to change the value of its rule phrase. For example, a user may wish to change

the number of days of a category I past due invoice from 30 to 15 days. This can be done by

very easily by selecting <number> from the sub-phrase type combo box, enter the value in the

<number> edit box, and press the Insert Number button. Next, user may choose either to type

in a new event phrase or automatically generate based on the modified event specification.

Finally, user may click Commit Change button to save the event changes and return to the

caller window. The event phrase and rule statement in the caller window will be updated

accordingly.

6. SUMMARY AND CONCLUSION

The design and implementation of the tool that supports the BROOD approach was

described in this paper. The BROOD tool was developed using the configurable GME

modelling environment. The physical metamodel, which is the implementation version of the

BROOD metamodel discussed in section 2, were developed for all BROOD models such as

rule phrase entries, business rule specification, class diagram, and statechart diagram. A

number of simple modelling constraints were also created and attached to the particular

metamodel components. The defined metamodels were used in generating the BROOD tool

Jilid 20, Bil.2 (Disember 2008) Jumal Teknologi Maklumat

86

•�

environment. The chosen GME was found very convenient in experimenting with the

implementation feasibility and technical aspect of the BROOD metamodel since it is highly

configurable in generating a new modelling paradigm. The BROOD tool provides a number

offunctionalities in assisting the development and evolution activities in the BROOD process.

These functionalities are provided using the GME-generated graphical model editor and the

developed fonn-based modules. The developed modules are provided to maintain rule phrase

entries, compose new business rules, and perfonn business rule changes. The fonn-based

graphical user interfaces of these modules facilitate the composition of a new business rule

statement using the existing rule phrases in the rule phrase entries. They also assist the linking

of business rules to their related software design components. These modules automate the

propagation of the business rule changes to software design via the extensive use of the GME

programming facilities.

As a conclusion, the BROOD tool simplifies the tedious, error-prone, and time-consuming

task of linking and propagating the business rule changes to software design components. A

business rule can be changed by changing its rule phrases and the changes are automatically

propagated to the related software design components. Apart from that, the BROOD tool

provided useful feedbacks in the improvement of the technical aspect of the BROOD

metamodel and templates.

REFERENCES

[I]� P. Grubb and A. A. Takang, Software Maintenance: Concepts and Practice. Singapore: World Scientific

Publishing, 2003.

[2]� M. M. Lehman, "Laws of Software Evolution Revisited," presented at European Workshop on Software

Process Technology '96,1997.

[3]� A. Finkelstein and J. Kramer, "Software Engineering: A Roadmap," presented at Conference on the Future

of Software Engineering, Limerick, Ireland, 2000.

[4]� I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnebuske, and B. McKee, "Extending Business Objects with

Business Rules," presented at 33rd International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS Europe 2000), Mont Saint-Michell St-Malo, France, 2000.

[5]� N. Chapin, 1. E. Hale, K. M. Khan, 1. F. RamiI, and W. Tan, "Types of software evolution and software

maintenance," Journal of Software Maintenance and Evolution: Research and Practice, vol. 13, pp.' 3·30,

2001.

[6]� L. Andrade and 1. Fiadeiro, "Coordination Technologies for Managing Infonnation System Evolution,"

presented at 13th Conference on Advanced Information Systems Engineering, Interlaken, Switzerland, 200 I.

[7]� D. Hay and K. A. Healy, "Defining Business Rules - What Are They Really?," the Business Rules Group

Rev 1.3, July 2000.

[8]� H. Herbst, Business Rule-Oriented Conceptual Modeling. Germany: Physica-Verlag, 1997.

[9]� H. Herbst, "Business Rules in Systems Analysis: A Meta-model and Repository System," lriformation

Systems, vol. 21, pp. 147-166,1996.

Jilid 20, Bil. 2 (Disember 2008)� Jurnal Teknologi Maklumat

86

environment. The chosen GME was found very convenient in experimenting with the

implementation feasibility and technical aspect of the BROOD metamodel since it is highly

configurable in generating a new modelling paradigm. The BROOD tool provides a number

offunctionalities in assisting the development and evolution activities in the BROOD process.

These functionalities are provided using the GME-generated graphical model editor and the

developed form-based modules. The developed modules are provided to maintain rule phrase

entries, compose new business rules, and perform business rule changes. The form-based

graphical user interfaces of these modules facilitate the composition of a new business rule

statement using the existing rule phrases in the rule phrase entries. They also assist the linking

of business rules to their related software design components. These modules automate the

propagation of the business rule changes to software design via the extensive use of the GME

programming facilities.

As a conclusion, the BROOD tool simplifies the tedious, error-prone, and time-consuming

task of linking and propagating the business rule changes to software design components. A

business rule can be changed by changing its rule phrases and the changes are automatically

propagated to the related software design components. Apart from that, the BROOD tool

provided useful feedbacks in the improvement of the technical aspect of the BROOD

metamodel and templates.

REFERENCES

[I] P. Grubb and A. A. Takang. Software Maintenance: Concepts and Practice. Singapore: World Scientific

Publishing, 2003.

[2] M. M. Lehman, "Laws of Software Evolution Revisited," presented at European Workshop on Software

Process Technology '96,1997.

[3] A. Finkelstein and J. Kramer, "Software Engineering: A Roadmap," presented at Conference on the Future

of Software Engineering, Limerick, Ireland, 2000.

[4] I. Rouvel1ou, L. Degenaro, K. Rasmus, D. Ehnebuske, and B. McKee, "Extending Business Objects with

Business Rules," presented at 33rd International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS Europe 2000), Mont Saint-Michell St-Malo, France, 2000.

[5] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W. Tan, "Types of software evolution and software

maintenance," Journal of Software Maintenance and Evolution: Research and Practice, vol. 13, pp.' 3-30,

2001.

[6] L. Andrade and J. Fiadeiro, "Coordination Technologies for Managing Infonnation System Evolution,"

presented at 13th Conference on Advanced Infonnation Systems Engineering, Interlaken, Switzerland, 200 I.

[7] D. Hay and K. A. Healy, "Defining Business Rules - What Are They Real1y?," the Business Rules Group

Rev 1.3, July 2000.

[8] H. Herbst, Business Rule-Oriented Conceptual Modeling. Gennany: Physica-Verlag, 1997.

[9] H. Herbst, "Business Rules in Systems Analysis: A Meta-model and Repository System," Information

Systems, vol. 21, pp. 147-166, 1996.

Jilid 20, Bil. 2 (Disember 2008) Jurnal Teknologi Maklumat

87

[10]� T. Morgan, Business Rules and Information Systems: Aligning IT with Business Goals. Boston, MA:

Addison-Wesley, 2002.

[II]� R. G. Ross, Principles ofthe Business Rule Approach. Boston, USA: Addison-Wesley, 2003.

[I2]� D. Riehle, M. Tilman, and R. Johnson, "Dynamic Object Model," Dept. of Computer Science, Washington

University WUCS-00-29, 2000.

[13]� J. W. Yoder, F. Balaguer, and R. Jolmson, "Adaptive Object Models for Implementing Business Rules,"

presented at Third Workshop on Best-Practices for Business Rules Design and Implementation, Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2001), Tampa Bay,

Florida., USA, 200 I.

[I4]� L. Andrade and J. Fiadeiro, "Evolution by Contract," presented at ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications 2000, Workshop on Best-practice in Business ,Rules

Design and Implementation, Minneapolis, Minnesota USA, 2000.

[IS]� I. Rouvellou, I. Degenaro, K. Rasmus, D. Ehnebuske, and B. McKee, "Externalizing Business Rules from

Enterprise Applications: An Experience Report," presented at Conference on Object-0riented Programming,

Systems, Languages, and Applications, Denver, Colorado, 1999.

[16]� OMG, "UML Specifications," 1.5 ed: Object Management Group, 2003.

[17]� W. M. N. Wan Kadir and P. Loucopoulos, "Relating Evolving Business Rules to Software Design," Journal

ofSystems Architecture, vol. 50, pp. 367-382,2004.

[18]� W. M. N. Wan Kook and R. Md Shariff, "Metamodel and Process for Design-Level Object-0riented

Software Evolution," presented at the 1st Malaysian Software Engineering Conference (MySEC'05), Tg

Bungah, Pulau Pinang, 2005.

[19]� A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle, and P.

Volgyesi, "The Generic Modeling Environment," presented at Workshop on Intelligent Signal Processing,

Budapest, Hungary, 2001.

[20]� VU, "GME 3 User's Manual," 3.0 ed: Institute for Software Integrated System, Vanderbilt University, 2003.

[21]� A. Ledeczi, P. Volgyesi, and G. Karsai, "Metamodel Composition in the Generic Modeling Environment,"

presented at 15th European Conference on Object-Oriented Programming, University Eiitvos Lorand,

Budapest, Hungary, 2001.

[22]� OMG, "OMG Unified Modeling Language Specification," 1.4 ed: Object Management Group, 2001.

Jilid 20, Bil.2 (Disember 2008)� Jurnal Teknologi Maklumat

87

[10] T. Morgan, Business Rules and Information Systems: Aligning IT with Business Goals. Boston, MA:

Addison-Wesley, 2002.

[II] R. G. Ross, Principles ofthe Business Rule Approach. Boston, USA: Addison-Wesley, 2003.

[12] D. Riehle, M. Tilman, and R. Johnson, "Dynamic Object Model," Dept. of Computer Science, Washington

University WUCS-00-29, 2000.

[13] J. W. Yoder, F. Balaguer, and R. Johnson, "Adaptive Object Models for Implementing Business Rules,"

presented at Third Workshop on Best-Practices for Business Rules Design and Implementation, Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2001), Tampa Bay,

Florida, USA, 200 I.

[14] L. Andrade and J. Fiadeiro, "Evolution by Contract," presented at ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications 2000, Workshop on Best-practice in Business ,Rules

Design and Implementation, Minneapolis, Minnesota USA, 2000.

[15] I. Rouvellou, I. Degenaro, K. Rasmus, D. Ehnebuske, and B. McKee, "Externalizing Business Rules from

Enterprise Applications: An Experience Report," presented at Conference on Object-0riented Programming,

Systems, Languages, and Applications, Denver, Colorado, 1999.

[16] OMG, "UML Specifications," 1.5 ed: Object Management Group, 2003.

[17] W. M. N. Wan Kadir and P. Loucopoulos, "Relating Evolving Business Rules to Software Design," Journal

ofSystems Architecture, vol. 50, pp. 367-382,2004.

[18] W. M. N. Wan Kook and R. Md Shariff, "Metamodel and Process for Design-Level Object-Qriented

Software Evolution," presented at the 1st Malaysian Software Engineering Conference (MySEC'05), Tg

Bungah, Pulau Pinang, 2005.

[19] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle, and P.

Volgyesi, "The Generic Modeling Environment," presented at Workshop on Intelligent Signal Processing,

Budapest, Hungary, 2001.

[20] VU, "GME 3 User's Manual," 3.0 ed: Institute for Software Integrated System, Vanderbilt University, 2003.

[21] A. Ledeczi, P. Volgyesi, and G. Karsai, "Metamodel Composition in the Generic Modeling Environment,"

presented at 15th European Conference on Object-Oriented Programming, University Eotvos Lorand,

Budapest, Hungary, 2001.

[22] OMG, "OMG Unified Modeling Language Specification," 1.4 ed: Object Management Group, 2001.

IBid 20, Bil.2 (Disember 2008) Iurnal Teknologi Maklumat

