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Abstract: This study projects water availability and sustainability in Nigeria due to climate change.
This study used Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data
(TWS), Global Precipitation Climatology Center (GPCC) precipitation data and Climate Research
Unit (CRU) temperature data. Four general circulation models (GCMs) of the Coupled Model
Intercomparison Project 5 were downscaled using the best of four downscaling methods. Two
machine learning (ML) models, RF and SVM, were developed to simulate GRACE TWS data for
the period 2002–2016 and were then used for the projection of spatiotemporal changes in TWS.
The projected TWS data were used to assess the spatiotemporal changes in water availability and
sustainability based on the reliability–resiliency–vulnerability (RRV) concept. This study revealed
that linear scaling was the best for downscaling over Nigeria. RF had better performance than SVM
in modeling TWS for the study area. This study also revealed there would be decreases in water
storage during the wet season (June–September) and increases in the dry season (January–May).
Decreases in projected water availability were in the range of 0–12 mm for the periods 2010–2039,
2040–2069, and 2070–2099 under RCP2.6 and in the range of 0–17 mm under RCP8.5 during the wet
season. Spatially, annual changes in water storage are expected to increase in the northern part and
decrease in the south, particularly in the country’s southeast. Groundwater sustainability was higher
during the period 2070–2099 under all RCPs compared to the other periods and this can be attributed
to the expected increases in rainfall during this period.

Keywords: GRACE; water storage; climate change; sustainability; Nigeria

1. Introduction

Water is not uniformly distributed across the globe as there is variability in its natural
occurrence, and it can be affected by direct and indirect human actions [1,2]. This is partic-
ularly the case for socioeconomic developments, which are strongly dependent on steady
freshwater resources availability in local water systems, leading to a decrease in water
availability due to overexploitation [3]. Climate changes have further aggravated water
availability due to decreases in rainfall [4–7] and generally increasing temperature [8–10].
These have led to shrinkages of lakes and other surface water bodies in some parts of the
globe. For example, Chen et al. [11] found that lake Zhari Namco in Tibet, China, has
shrunk from 4605 km2 about 8.2 ka ago to 996 km2, with about 300 km3 of water lost from
the lake. Additionally, Lake Chad in the Sahelian zone of west-central Africa has been
reported to have shrunk from 1339.018 km2 in 1987 to 130.686 km2 in 2005 [12].

Like surface water, groundwater has faced the impacts of climate change because it
is seen as a buffer to droughts when there is insufficient rainfall or decrease in surface
waters. However, historical and projected assessments of climate variability on water
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resources usually exclude groundwater, particularly in Africa, due to the unavailability
of appropriate observation wells [13]. Nevertheless, studies on the impacts of climate
change on groundwater showed an overall decline in water availability due to climate
variability [14–16]. Thus, general circulation models (GCMs) have been used to project
climate change impacts on water availability, showing a more severe decline in water in
the future [17,18].

Across the globe, Africa has the highest growing national population, with a growth
rate of between 1.6 and 3.1% annually [19,20], and a projection of half a billion more
people in the middle of the 21st century [21]. The climate of Africa is changing in line with
global climate variability. In response to these changes, the current and future adaptation
measures and increasing growth in population place much reliance on groundwater for
domestic, industrial, and agricultural purposes [21]. Groundwater stresses are increasingly
being reported in many parts of the continent and projections indicate that this will intensify
in the future [19,22,23].

While studies on the impacts of changing climate on water resources have been
conducted in some parts of Africa, such studies are mostly lacking in Nigeria. In addition,
unlike in the Indian subcontinent, where the declination of water resources has become
alarming due to over-abstraction for irrigation purposes [24], agricultural practices in
Nigeria are mostly rain-fed, making changes in other sources of water such as groundwater
less studied. Nevertheless, there have been reports of declining groundwater levels in the
country, mostly in the arid and semi-arid areas [25,26].

The Gravity Recovery and Climate Experiment (GRACE), launched in April 2002,
provides opportunities to study water resources changes. GRACE provides an estimation
of terrestrial water storage (TWS), which is the total water available on the earth’s surface
(river, lakes, atmosphere, and ice) and subsurface (soil moisture and groundwater) [27].
Therefore, the TWS of an area represents the total water available in the area [28]. The
collection of water sources data is virtually impossible, and thus, GRACE has been widely
used in recent years for the estimation of the changes in water availability, sustainability,
and different kinds of droughts [29–31].

Sustainability in water resources is the major component of economic development
and improvement of human wellbeing [32,33]. Therefore, the task to “ensure availability
and sustainable management of water and sanitation” has been made a major sustainable
development goal. Sustainability in water resources is generally estimated based on
its reliability, resiliency and vulnerability—among other characteristics. The reliability–
resiliency–vulnerability (RRV) concept has grown rapidly in assessing sustainability in
water resources [14,34,35]. Previous studies of water sustainability based on RRV have
focused on assessing current water sustainability. No attempt has been made to date to
use the concept to assess future changes in water sustainability due to climate change.
Future projections of climate, rainfall, and temperature by GCMs provide opportunities for
simulating future changes in water resources. Despite the future abstraction rates of water
and population growth are not clear, and the uncertainties associated with climate models
which can be reduced through the appropriate selection of GCMs or an aggregation of a
multi-model ensemble (MME), projecting changes in water resources due to climate change
may be invaluable in sustainable water resources planning and management.

This study aimed to project water availability and sustainability in Nigeria due to
climate change. Historical GRACE TWS and climate data were used to develop water
storage estimation models from rainfall and temperature. Projected MME rainfall and
temperature by the selected GCMs were used for simulating the future changes in TWS
for selected GCMs under four RCPs. The projected climate was used to evaluate the
annual changes in water resources and sustainability for three future periods: 2010–2039;
2040–2069; and 2070–2099.
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2. Study Area and Data
2.1. Study Area

Nigeria is located at latitude: 4◦15′–13◦55′ N and longitude: 2◦40′–14◦45′ E and has
an area of 923,000 km2 (Figure 1). Elevation varies between 0 m around the Atlantic
Ocean in the southern parts and 2419 m at Chappal Waddi in the northeast of the country.
The wet/rainy and the dry seasons are the two main seasons in the country. There is
variation in the climate from the south to the north of the country, with precipitation mostly
concentrated form April to October in the central and southern parts and from June to
September in the arid and semi-arid northern regions.
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While annual average precipitation is more than 2000 mm in some southern parts, it
is less than 800 mm in the arid northern parts [36] where daily maximum temperatures are
higher and can reach 45 ◦C in summer [37]. In the southern part, daily temperatures are
between 30 ◦C and 37 ◦C. Temperatures reach a minimum of 12 ◦C in the northern parts
and between 17 ◦C and 24 ◦C in the southern parts during dry cold seasons. The average
temperature is lower than 22 ◦C in the high elevation areas but can be more than 28 ◦C in
other parts of the country.

Nigeria is climatologically divided into four zones: warm desert climate, warm semi-
arid climate, monsoon climate, and tropical savanna climate from the north to the south.
Different ecological zones also exist in the country, namely the Sahel Savanna, Sudan
Savanna, Guinea Savanna, rainforest, and mangrove swamp types from the north to the
south (Figure 1).

Water resources are relatively available in Nigeria compared to other countries in arid
and semi-arid regions like Afghanistan, Iraq, and Syria, which receive much less rainfall in
many parts of the country than the arid northern part of Nigeria [38–40]. However, this
resource is experiencing many threats from pollution, over-abstraction, mismanagement
and the impacts of climate change. Nigeria is drained by a network of streams and rivers of
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Precambrian basement complex sources that flows over the sediment at lower reaches [41].
The country’s drainage system is dominated by the largest rivers, River Niger and River
Benue (Figure 1).

2.2. Data and Sources
2.2.1. Gridded Data

The GRACE satellites’ monthly gridded groundwater data of the Jet Propulsion
Laboratory (JPL) of the National Aeronautics and Space Administration (NASA) [42], the
rainfall data of the Global Precipitation Climatology Center (GPCC) full data reanalysis
product of the Deutscher Wetterdienst [43], and the temperature data of the Climatic
Research Unit (CRU) [44] of the University of East Anglia, all at 1.0◦ × 1.0◦ during the
period 2002–2016 at 80 grid points covering Nigeria, were used.

GRACE has its basis on the gravity phenomenon, which has the advantages of (1)
direct linkage between mass storage and gravity giving independence of lithology and
non-requirement of calibration, and (2) the satellite’s distant effects, which allow for deep
penetration into the earth and mass storage recording of the groundwater systems [45].
Though not widely used in Nigeria, the monthly gridded GRACE water data have found
use among groundwater assessment across the globe, including in Africa [28,46,47].

The precipitation product of the GPCC has the advantages of (1) being of good quality
for hydrological studies; (2) availability spanning a longer period; (3) development from
the highest number of collected precipitation records; and (4) time series completeness
after 1951 [48]. The GPCC has been found to be suitable and has been used in Africa for
many hydro-climatic studies [49–51].

The development of the CRU was based on gauge measurements from about 4000 weather
stations distributed across the globe. All data collected for the development of the CRU
database are taken through a two-stage extensive manual and semi-automatic quality
control. First, data are checked for consistency, and second, the months or the stations
having large errors during the interpolation process are deleted. Many studies have found
the CRU suitable for climate studies in Africa [37,52,53].

2.2.2. General Circulation Models

The precipitation and temperature simulation of GCMs of the Coupled Model Inter-
comparison Project 5 (CMIP5) were used for the future assessment of the impacts of climate
change on water availability and sustainability. The CMIP5 constitutes a set of globally
coordinated GCM of historical and future simulations produced by different modeling
groups [54]. Historical and future projections of 20 GCMs were obtained from the CMIP5
database during the periods 1961–2005 and 2006–2099, respectively. The availability of all
representative concentration pathways (RCPs) and the period of availability of the models
were considered for the initial selection of GCMs. Among the selected 20 GCMs, four were
found to simulate the observed climate of Nigeria more reliably [10] and therefore, used in
this study. The basic information on selected GCMs is presented in Table 1.

Table 1. Information about the global climate models considered in this study.

No Institution Model Name Resolution
(Lon × Lat)

1 National Center for Atmospheric
Research, USA CESM1-CAM5 1.25 × 0.95

2
Commonwealth Scientific and

Industrial Research Organization,
Australia

CSIRO-Mk3-6-0 1.875 × 1.875

3 Met Office Hadley Centre, UK HadGEM2-ES 1.875 × 1.25
4 Meteorological Research Institute MRI-CGCM3 1.25 × 1.25
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3. Methodology

Modeling Climate Influences on Water Storage
Data-driven models: random forest (RF) and support vector machine (SVM) were

employed in the modeling of climatic influence on TWS due to climate change. Projected
changes in TWS were used for the assessment of water availability and sustainability. The
procedure used was as follows:

(1) Use of historical GPCC and CRU data to calibrate and validate TWS prediction models
using SVM and RF and selecting the better performing model;

(2) Use of the selected GCM simulated rainfall and temperature for the four RCPs in the
best TWS model for the projection of TWS for different RCPs;

(3) Projection of changes in TWS under all RCPs for the selected GCMs and the generation
of ensemble TWS projection for each RCP from the selected GCMs and comparison
of the projections with the observed TWS in all climatic zones of Nigeria during the
periods 2010–2039, 2040–2069, and 2070–2099;

(4) Assessment of spatial changes in water availability for all RCPs for the future periods
2010–2039, 2040–2069, and 2070–2099 compared to the observed period;

(5) Estimation of sustainability in water resources during the periods 2010–2039, 2040–2069,
and 2070–2099 to assess climate change impacts on water sustainability.

The performances of the bias correction methods: LS, GAQM, PT, GEQM was evalu-
ated based on their ability to correct bias in GPCC rainfall and CRU temperature. Their per-
formances were compared using five indices: normalized root mean square error (NRMSE),
percentage of bias (PBIAS), Nash–Sutcliff efficiency (NSE), relative of standard deviation
(RSD) and modified coefficient of agreement (MD). GCM projections were downscaled and
bias-corrected for their uses in the projection of TWS using the best bias correction method.
GCMs simulating rainfall and temperature were first interpolated to GRACE grid locations
using the bilinear interpolation method, and then the interpolated rainfall and temperature
were compared with GPCC rainfall and CRU temperature to correct the bias in GCM
simulations. Current methods of bias correction include linear scaling (LS) [55], gamma
quantile mapping (GQM) [56], power transformation (PT) [57], analogue methods [58],
generalized quantile mapping (GEQM) [59], local intensity scaling [60], multiple linear
regression [61] and delta change [62]. Due to their simplicity, the scaling, quantile mapping,
and power transformation methods were widely employed. Therefore, these methods were
compared, and the best method in terms of performance was applied in the downscaling
of the future climate of the study area at 80 GRACE grid points.

Downscaled simulations of different GCMs were merged to generate an MME mean
for each climate variable. RF was used for this purpose. RF has its basis on the analysis of
classification and regression trees (CART) [63]. It is a non-parametric statistical regression
algorithm that generates several independent trees to attain a final decision through two
randomizations: training samples selection and variables selection at an individual node
of a tree. The problems of overfitting and sensitivity to the configuration of the training
sample, which are the CART’s drawbacks, are eliminated by the randomness [64]. Applying
out-of-bag (OOB) data from random selection, the RF method allows for internal cross-
validation and each variable’s relative importance when samples are held in OOB [65].

In RRV, sustainability (S) is defined as a function of the resiliency, reliability, and
vulnerability of water resources. It can be calculated as follows [35]:

S = [Reliability× Resiliency× (1− Dimensionless Vulnerability)](1/3) (1)

Reliability, resiliency, and vulnerability can be assessed by the use of standardized
TWS anomaly data. This study considered the (a− 1) threshold to define the declination
of water storage below one standard deviation from the mean.

The reliability of water resources relative to water storage is determined by how
frequently it falls below the normal condition [66]. The resiliency of water resources is the
possibility of regaining its normal level after a drop in level. The magnitude of an event



Sustainability 2021, 13, 6284 6 of 16

extent is termed as the water resources’ vulnerability. The dimensionless vulnerability
is obtained by the division of the vulnerability by the demand. The calculations of the
reliability, resiliency, and vulnerability are based on these concepts, as follows:

Reliability = 1−
∑M

j=1 d(j)

T
(2)

Resiliency =

{
1
M

M

∑
j=1

d(j)

}−1

(3)

Dimensionless Vulnerability =
1
M

M

∑
j=1

v(j)/Demand (4)

Vulnerability =
1
M

M

∑
j=1

v(j) (5)

where M denotes the total number of water storage negative changes, d is the event’s
duration, T is the number of time intervals, and v is the vulnerability. This study considered
the demand as −1, and it is expected that the total water availability should not decline below
one standard deviation from the mean. Details of RRV can be found in Ahmed et al. [14].

4. Results
4.1. Climate Downscaling

Obtained results in downscaling rainfall are presented in Table 2. There is overall
better performance of the LS for the selected GCMs though the GAQM showed higher
performance for CSIRO-Mk3.6.0. Similar results were obtained for temperature. As the best
performing downscaling method, the LS was applied in the downscaling of the selected
GCMs for Nigeria. The downscaled rainfall and temperature of different GCMs were used
to generate MME mean rainfall and temperature for different RCPs using RF.

Table 2. Results of performance metrics of the selected bias correction methods for downscaling.

GCM Bias Correction Method NRMSE PBIAS NSE RSD MD

CESM1-CAM5

Linear Scaling 38.5 0 0.85 0.99 0.84
General Quantile Mapping 100.2 −100 −0.01 0 0.66

Power Transform 53.2 0 0.72 1.04 0.76
Gamma Quantile Mapping 45.8 0.4 0.79 0.97 0.82

GCM 79.6 −18.1 0.36 1.14 0.68

CSIRO-Mk3.6.0

Linear Scaling 44 0 0.81 0.95 0.82
General Quantile Mapping 100 −100 0 0 0.66

Power Transform 47.5 0 0.77 1.06 0.79
Gamma Quantile Mapping 40.6 0.8 0.83 0.98 0.84

GCM 82.1 −42.9 0.33 0.65 0.65

HadGEM2-ES

Linear Scaling 34.6 0 0.88 1 0.86
General Quantile Mapping 100 −100 0 0 0.67

Power Transform 0 0 0.73 1.04 0.77
Gamma Quantile Mapping 44.7 1.2 0.8 0.97 0.82

GCM 42.9 −7 0.82 1.06 0.83

MRI-CGCM3

Linear Scaling 30.7 0 0.91 1.01 0.88
General Quantile Mapping 100 −100 0 0 0.66

Power Transform 48.8 0 0.76 1.06 0.78
Gamma Quantile Mapping 41.1 4.3 0.83 0.95 0.83

GCM 59 23 0.65 1.2 0.8
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4.2. Modeling Changes in Water Storage

The results of the model development for GRACE water storage simulation from CRU
temperature and GPCC rainfall using SVM and RF were adequate. Out of 80 GRACE grid
points, the data of 70% (56 grid points) were used to develop the model, and the remaining
30% (24 grid points) were used for model validation. The models were then used for the
projection of water storage changes using projected MME rainfall and temperature for
different RCP scenarios. Obtained results for the calibration are presented in Section 4.2.1.

4.2.1. Model Calibration and Validation

Figure 2 presents the scatter plots of the observed and simulated water storage anoma-
lies during model calibration and validation. The models show a better performance of the
RF than the SVM. Therefore, the RF was chosen for modeling climate change impacts on
water resources of the study area.

Sustainability 2021, 13, x FOR PEER REVIEW  7 of 16 
 

4.2. Modeling Changes in Water Storage 

The  results of  the model development  for GRACE water storage  simulation  from 

CRU  temperature  and  GPCC  rainfall  using  SVM  and  RF were  adequate.  Out  of  80 

GRACE grid points, the data of 70% (56 grid points) were used to develop the model, and 

the  remaining 30%  (24 grid points) were used  for model validation. The models were 

then used for the projection of water storage changes using projected MME rainfall and 

temperature  for different RCP  scenarios. Obtained  results  for  the  calibration  are  pre‐

sented in Section 4.2.1. 

4.2.1. Model Calibration and Validation 

Figure  2  presents  the  scatter  plots  of  the  observed  and  simulated water  storage 

anomalies during model  calibration and validation. The models  show a better perfor‐

mance  of  the  RF  than  the  SVM.  Therefore,  the RF was  chosen  for modeling  climate 

change impacts on water resources of the study area. 

 

Figure 2. Scatter plots of observed and simulated water storage during RF and SVM model cali‐

bration and validation. 

The RF results of the performance metrics of Pbias, NRMSE, NSE, and R2 are pre‐

sented  in Figure 3a  for calibration and Figure 3b  for validation. Results  indicate good 

performance showing RF’s ability in modeling water resources under climate change. 

 

Figure 3. Boxplots of performance metrics of the models during (a) calibration and (b) validation. 
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The RF results of the performance metrics of Pbias, NRMSE, NSE, and R2 are presented
in Figure 3a for calibration and Figure 3b for validation. Results indicate good performance
showing RF’s ability in modeling water resources under climate change.
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4.2.2. Seasonal Changes in Water Storage under Projected Climate

The projections of the seasonal changes in water storage during the periods 2010–2039,
2040–2069, and 2070–2099 are presented in Figures 4 and 5 for RCPs 2.6 and 8.5, respectively.
The changes in water storage are different for GCMs, the RCPs, the periods, and the zones.

Under RCP 2.6, it is expected that water storage will decrease for the three periods
in the range of 0–12 mm in zone 1 from projections by HadGEM2-ES and MRI-CGCM3
during the wet season (June–September). CSIRO-Mk3-6-0 and CESM1-CAM5 also showed
decreases but to a lesser extent than those of the other GCMs. During the peak of the wet
season, decreases in water storage are expected to be 8, 5, 4, and 5 mm in zones 2, 3, 4, and 5,
respectively, during the period 2010–2039. A high decline in water storage is also expected
during the periods 2040–2069 and 2070–2099 in zones 1 and 2 but expected changes are
lower in zone 3.

For RCP 8.5, water storage is expected to decrease for the three periods in the range of
0–17 mm. The highest decreases are expected in zone 4 during the period 2070–2099 based
on all GCMs. The least expected decrease was in zone 3.

Similar results showing decreases in water storage during the wet season were ob-
tained for RCP 4.5 and 6.0. These projections show that water storage is generally expected
to increase during the dry season for all GCMs and under all RCPs. Storage increases for
the dry season are expected to be higher during the period 2040–2069.
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4.2.3. Annual Changes in Water Storage

The spatial projections of annual average of expected changes in water storage during
the periods 2010–2039, 2040–2069, and 2070–2099 are presented in Figure 6. Projections
show decreases in water storage of −3.0–0.0 mm during the period 2010–2039 in the
northeast, southeast, and south-south areas of the country under RCP 2.6, 4.5, and 8.5,
while the same range was in the same areas for RCP 6.0 except in the northeast area. Other
parts of the country are expected to have an increase in water storage at different ranges
during this period.
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Expected changes in water storage during the period 2040–2069 show that decreases
will be highest reaching −4.0 mm under RCPs 4.5 and 8.5 at the southeast of the country.
During this period, some locations are expected to have storage increases reaching up
to 7.2 mm. During the period 2070–2099, the decreases in water storage will be up to
−1.5 mm under RCPs 2.6 and 8.5, while they will be up to−3.0 mm under RCPs 4.5 and 6.0.
Decreases will be more pronounced at the southeast and south–south areas. It is expected
that water storage will increase in most parts of the north of the country.

4.2.4. Spatial Assessment of Changes in Future Sustainability in Water Resources

The spatial distributions of water sustainability for the periods 2010–2039, 2040–
2069, and 2070–2099 for all RCPs are presented in Figure 7. There are variations in the
sustainability in water resources for the three periods and RCPs. During the period
2010–2039, sustainability in water resources expected to range from 0 to 1.0, with higher
groundwater sustainability in the north under RCP4.5 than under other RCPs. Water
resources will also be more sustainable under RCP 4.5 in the southern area than the other
RCPs during this period. More variability is expected in sustainability during the period
2040–2069. The least sustainability during this period is expected in the north under RCP
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4.5 and in the south under RCP 2.6. The highest sustainability in water resources is expected
during 2070–2099. This period is expected to have the highest increases in precipitation [67].
Water resources sustainability will be higher in the northeast of the country for all RCPs
during this period. However, under RCP 6.0, sustainability will be low (0–0.1) in some
parts of the north. RCP 8.5 shows the highest sustainability in water resources during the
period 2070–2099.
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4.2.5. Mean Water Storage under Different RCPs

The mean water storages during the periods 2010–2039, 2040–2069, and 2070–2099
under all RCPs are presented in Table 3. Mean water storage is expected to be the highest
under RCP 6.0 during the period 2010–2039, while the lowest will be under RCP 4.5.
Similarly, during the period 2040–2069, mean water storage will be highest for RCP 6.0
and the lowest for RCP 4.5. The mean water storage during the period 2070–2099 will be
highest under RCP 6.0 and the lowest under RCP 2.6.
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Table 3. Mean water storages (mm) during the period 2010–2039, 2040–2069, 2070–2099 for different RCPs.

2010–2039 2040–2069 2070–2099

RCP 2.6 0.876 2.099 1.367
RCP 4.5 0.759 1.895 1.628
RCP 6.0 2.166 3.121 3.131
RCP 8.5 1.165 2.583 2.798

5. Discussion

The historical GRACE TWS and climate data were used to develop water storage
estimation models from rainfall and temperature using two ML models, SVM and RF. The
relative model performance revealed the better performance of RF compared to SVM. The
RF could estimate TWS with rainfall and temperature data with reasonable accuracy. The
mean NSE of the model at different GRACE grid points during calibration and validation
were 0.97 and 0.42, the coefficients of determinations (R2) were 0.98 and 0.67, the bias (%)
were −0.02 and 02.4%, and NRMSE (%) of 17.2 and 74%, respectively. Studies relating
to the application of machine learning (ML) in the estimation or prediction of TWS from
climate data are limited.

Sun et al. [68] used an automated ML for the prediction of GRACE TWS data from
different combinations of meteorological and climatic variables to fill the missing values of
TWS data. They obtained a mean NSE of nearly 0.85, an R2 of about 0.95, and an NRMSE
(%) equal to 9%. However, the better performance in their study was mainly due to the
use of sea surface temperature (SST) and atmospheric oscillation indices, considering the
long-term influence of climate variability on water availability. In addition, they used a
higher amount of data for model training (85%) compared to that used in the present study
(70%). The major aim of the present study was to project TWS under future climate change
scenarios. Therefore, the predictor selection here was limited to only the variables that have
GCM simulations for future periods. Therefore, SST and large-scale oscillation indices like
El Niño and the Southern Oscillation could not be considered predictors. Nevertheless, the
RF model was able to predict the TWS with reasonable accuracy. Therefore, the model was
used to predict TWS with projected rainfall and temperature for different RCP scenarios.

TWS was projected for four RCP scenarios in this study. Only a few studies have
been conducted in recent years for the future projection and prediction of TWS in different
regions of the globe [69–71]. Jia et al. [69] used the MME of GCMs for the projection of
TWS in China until 2050 for two RCP scenarios, RCP 2.6 and RCP 6.0. They reported
a decrease in TWS over China during the period 2021–2050, with a larger rate than the
historical period. They also reported a higher decrease in TWS for RCP6.0 than RCP4.5.
They blamed both global warming and anthropogenic activities for declining TWS and
growing water stress in the country. Hasan et al. [71] projected TWS over the Nile River
Basin. They showed an increase in TWS in the basin during the rainy season for the period
2021–2050. During the dry season, they showed minor changes in TWS. Overall, they
suggested a reduction in TWS by 20–30%.

The present study revealed a large heterogeneity in the trends in TWS in Nigeria.
It would decrease the water stress in the north and decrease its abundance in the south,
particularly the southwest. This corresponds to the previous study [36], which showed
expected increases and decreases in precipitation in the north and south over Nigeria,
respectively. Contrary to the Nile river basin, TWS would increase in the dry season and
decrease in the wet season. This indicates a better spatial and seasonal distribution of water
availability in Nigeria for all climate change scenarios.

The RCP scenarios used in this study considered future emission scenarios and so-
cioeconomic changes, including land use change, to predict the future climate [72–74]. For
example, RCP4.5 considers a reduction in cultivated land and an increase in forest cover.
In contrast, RCP2.6 and RCP8.5 consider an increase in agriculture and a decrease in forest
cover [73]. However, it should be noted that GCM considers land use changes at a coarse
resolution (~200 km). Generally, urbanizations occur over a small spatial extent, which is
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not appropriately reflected in the land use change data considered by GCMs in climate
change simulation. However, urbanization has a significant impact on the water resources
of a region [75,76]. Increased imperviousness due to urbanization reduces groundwater
recharge, increases surface overflow, and alters the water cycle [77]. In addition, the high
consumption of water in the urban area significantly affects water resources. Those small
scales changes are not considered in RCP. Therefore, the effect of urbanization or any local
changes in water use or hydrological cycles is not reflected in the results presented in this
study. In the future, high-resolution RCM projections can be used to evaluate such changes.

6. Conclusions

This study applied machine learning to simulate terrestrial water storage and water
sustainability over Nigeria due to climate change. GRACE TWS anomaly and gridded
climate data were used in the development of a water storage simulation model. The pro-
jected MME mean for rainfall and temperature of selected GCMs were used for simulating
the water storage for RCP 2.6, 4.5, 6.0, and 8.5. Annual changes in water anomaly and
water sustainability were assessed for three periods: 2010–2039, 2040–2069, and 2070–2099.
LS was the best for downscaling GCM simulations over Nigeria, and RF was found to
have better performance than SVM in modeling water storage. There was an expected
decrease in water storage during the wet season (June–September) while increasing water
storage during the dry season (January–May). Spatially, annual changes in water storage
are expected to increase in the north and to decrease in the south, particularly in the
southeast of the country. Sustainability in water resources is projected to be higher during
the period 2070–2099 for all RCPs compared to the other periods and can be attributed
to expected increases in rainfall during this period. The increase in water storage during
the dry season and the decrease in the wet season would make the water resources more
reliable. The higher reliability of water resources would make the water resources of
Nigeria more sustainable if the unendurable human intervention can be avoided. It is
anticipated that these results can be of importance in the planning and management of
water resources in the country with a changing climate. In the future, other drivers of
water sustainability such as population density, agricultural activities and water uses by
different sectors can be incorporated to develop a much more reliable model. In addition,
other machine learning algorithms can be employed, and their results can be compared
with the results presented here.
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