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Since the emergence of the novel coronavirus disease (COVID-19) pandemic, intense research has been
carried out to find the effective vaccine. However, this issue remains as a global challenge. Graphene
has captured various attention due to promising antimicrobial and antiviral applications, hydrophobic
characteristic and superior electrical conductivity. Recently, biomass derived graphene also promises
great opportunity to combat the spread COVID-19. In this paper, we demonstrated the ability and role
of biomass derived graphene as superhydrophobic coating, biosensors and disinfectant in the fight
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1. Introduction

Coronavirus disease-2019 (COVID-19) has been a world pan-
demic since December 2019 caused by the severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) (Fig. 1) [1,2]. To date, the
world is still fighting to halt the virus from spreading and the cure
is still nowhere in sight [3]. As in July 2020, 13,042,340 has been
infected with COVID-19 and 571,689 deaths are reported world-
wide [4]. SARS-CoV-2 is a virus strain that possesses a similar char-
acteristic with bat coronavirus. Generally, SARS-CoV-2 is made up
of positive-sense single-stranded RNA virus with 50 - 200 nm in
diameter [5].

COVID-19 is transmitted by respiratory droplets through mouth
and nose [7]. Typically, SAR-CoV-2 has different lifetime on various
surfaces. It is reported that SAR-CoV-2 able to survive longer on a
smooth surface compared to rough surface. For instance, SAR-CoV-
2 can survive up to three days on plastic, two days on stainless
steel materials and one day on cardboard. In contrast on surfaces
like tissue papers, wood and clothes the SAR-CoV-2 only able to
last for about 3 - 2 h [8]. Currently, viral nucleic acid real-time
PCR (RT-PCR) method is an effective way to identify active carriers.
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However, RT-PCR is a slow method that requires an expensive
equipment and trained technicians for nasopharyngeal swab anal-
ysis [9]. Thus, the current pandemic caused by COVID-19 has urged
researchers to find a solution in order to combat the virus from
worsen. Graphene and its derivatives were found as promising
materials to help deal with the daily challenges posed by COVID-
19 and related future diseases [10]. Graphene is the thinnest
two-dimensional (2D) atomic material that has immerged as a rev-
olutionary material due to its high specific surface area, superior
mechanical, electrical, optical and thermal properties. Due to its
unique properties, graphene has been applied in many applications
including sensors, biomedical aids and membranes [11]. On top of
that, graphene is acknowledged as having superior anti-bacterial
and antiviral properties due to the movement of electron towards
bacteria which induces cytoplasmic efflux, decreases metabolism,
affects lipid membrane, causes oxidative stress, produces reactive
oxygen species (ROS) and finally destroys the bacteria [12]. It is
claimed that lipid bilayer of feline corona virus is adsorbed on
the surface of graphene via hydrogen bonding and electrostatic
interactions [13]. Of all the graphene derivatives, graphene oxide
(GO) is the most negatively charged material which has higher
affinity for positively charged viruses. Eventually, the binding of
graphene destroyed the viral membrane and confirmed the effec-
tiveness of graphene against viruses [12,14].
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Fig. 1. Illustrations of SARS-CoV-2 (). Adapted from [5]

Currently, a study reported by Palmieri and Papi [14] have
shown that graphene can be one of the best materials to combat
COVID-19 as it can be used as filters and coatings. However, the
synthesize method of graphene is rather complex and expensive.
Furthermore, the use of toxic materials and solutions will harm
the environment [15]. Nowadays, biomass materials has been used
to prepare graphene-like material [16] which include rice husk
[17,18], olive stone [19], chitosan [20] and sugarcane bagasse
[21]. The biomass derived graphene exhibits similar characteristics
with conventional prepared graphene [22] thus, making it as
promising material that can also be used to prevent the spread of
COVID-19. To further enhance the effectiveness of biomass derived
graphene towards corona virus, it can be modified. Instantly, the
modification of reduced graphene oxide (rGO) with sulfate deriva-
tives able to destroy herpesvirus strains, swine fever and orthopox-
virus [23]. As illustrated in Fig. 2, it shows that thermally reduced
graphene oxide (TRGO) is functionalized with dendritic polyglyc-
erol (dPG) and it was further modified by sulfation to allow a mul-
tivalent interaction with viruses. The sulfonation degree and
polymer density will affect the interactions between the rGO sul-
fated derivatives and viruses. The higher the degree of sulfation

Interaction

and the smaller the size, the effectiveness on the herpesvirus is
greater [14,24]. Based on this hypothesis, it is clear that the poten-
tial use of biomass derived graphene in the application for COVID-
19 is promising.

2. Biomass derived graphene as promising material to combat
the spread of COVID-19

Kulal and team [25] reported that, graphene derived from sug-
arcane waste powder exhibits a hydrophobic characteristics.
Therefore, graphene is also able to form a superhydrophobic coat-
ings with appropriate nanostructures [26]. Superhydrophobic can
be defined as a material that strongly repel aqueous liquids [27].
Superhydrophobic materials can be used on surgical masks to pre-
vent respiration droplets from entering the lungs. Hence, if the
potential of biomass derived graphene to form superhydrophobic
coating is maximized, it can be beneficial for community in the
war against this pandemic. A study conducted by Zhong and
coworkers [26] also reported that the graphene-coated masks
can be sterilized by exposing them to sunlight for 40-100 s as gra-
phene absorbs more than 95% of light across the solar spectrum of

dPG coating
~graft from*
—_—
TRGO-dPG derivatives
lSquation
C

TRGO-dPGS derivatives

Fig. 2. Schematic representation of (a) thermally reduced graphene oxide (TRGO); (b) polyglycerol functionalized TRGO derivatives (TRGO-dPG) by “grafting from” method;
(c) polysulfated dPG-functionalized TRGO derivatives (TRGO-dPGS); (d) interaction of an orthopoxvirus particle with a TRGO-dPGS sheet. (). Adapted from [19]
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300-2500 nm. Thus, the coated masks can adsorb heat very fast
(reaching 70 °C after 40 s of solar illumination and more than
80 °C after 100 s) [26]. This shows that the graphene-coated masks
able to inactivate most type of viruses. As a result, the graphene-
coated masks are reusable and reducing waste. Recently, it has
been claimed that graphene-based coatings able to destroy the
COVID-19. This coating is specifically designed to be used in almost
any surface. For instance, it can be coated on doorknob and clinical
apparatus. The effectiveness of this graphene-coatings can last up
to 60 days where the graphene can destroy the virus as soon as
it contacts the coatings [28]. Hence, with the right technique bio-
mass material can be a great source to produce graphene and help
in preventing the spread of COVID-19.

Graphene is an established lightweight, chemically stable and
conductive material that can be employed for the detection of
numerous virus strains. The sensitivity and selectivity of graphene
can be emphasized by its functionalization as well as combination
with other materials. Acceptable functional groups in the hybrid
structure allows tuning of optical and electrical properties, that is
appealing for rapid and easy-to-use virus detection [29]. To moni-
tor vitals, diagnose patients and improve the critical care of
patients, sensors is widely used in medicine field. The urge for
early detection, diagnosis of diseases and minimally invasive
detection approaches, various novel sensors have been evolved
[30]. For instance, Palmieri and Papi [14] reported that a textile
screen-printed biosensor based on a graphene oxide (GO) trans-
duction film is developed in 2018 for the detection of environmen-
tal exposure to influenza A virus HIN1. The biosensor is sensitive
to influenza proteins. The sensors can be interfaced within cloth-
ing, gloves and other textiles to detect if a user has been in contact
with the virus [31]. Hence, it is hoped that future research can fore-
see the development of SARS-CoV-2 sensors for epidemiological
control of virus spreading through protective clothing. Besides
that, graphene has been used as biosensor chip to detect zika virus
in 2018. The results shows that graphene biosensor chip was sen-
sitive towards zika viral nonstructural protein 1 (ZIKV NS1) [32].
The data readout is conducted via the Agile Plus software, which
is run on a PC attached to the system via USB (Fig. 3). Since
biomass-derived graphene has also been applied widely in elec-
tronic, electrical and optical sensors [33], this can be a great oppor-
tunity for the materials to be used as a virus detection.

Reader — '
>
Sensor __'

chip
Fig. 3. Illustration of the entire sensor chip system (). Adapted from [27]
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In the midst of pandemic, it is vital for the people to take a good
care of personal hygiene. Therefore, biomass derived graphene can
also be used in disinfectant solutions or detergents. This is due to
the fact that graphene has shown positive results as disinfectants
in previous study [34]-[36]. For example, GO can destroy bacterial
membranes by direct inorganic-biomolecule interactions where
the attached proteins on GO always result in altering intrinsic
structures and denature effects [37]. To further support the state-
ment, Song and team [38] have shown that the viruses can bind
with GO via hydrogen bonding, electrostatic interactions and redox
reaction. Furthermore, the presence of oxygenated groups on GO’s
surface makes the binding of the viruses easier. This interaction is
vital for the destruction of viruses particles [38]. Therefore, GO
based materials shows a physical toxicity associated with the
interaction with cells or tissues [39].With a proper modification
technique, biomass materials able to form GO [40] and aid to halt
the spread of COVID-19. On top of that, based on aforementioned
properties graphene and its derivatives can serve to kill bacteria
and viruses. Hence, biomass derived graphene able to serve as an
efficient detergents and disinfection of viruses.

Apart from that, graphene can also be applied in textile to fight
against COVID-19. Due to the hydrophobic [12] properties pos-
sesses by graphene, this material shows a promising characteristic
that is good for fabrication of personal protective equipment (PPE).
It has been reported that graphene-based material has the ability
to destroy viruses when introduced in face mask or PPE. For
instance, face mask incorporated graphene able to self-sterilizing,
kills the virus and reusable. It is noteworthy that the effectiveness
of face mask incorporated graphene against viruses is 99% as com-
pared to N95 face mask [41]. On top of that, a PPE that is layered
with biomass-derived graphene able to prevent the transmission
of COVID-19 since the material is hydrophobic [12].

3. Limitation and challenges

Although the antiviral properties of graphene has been proven,
the immediate use of graphene for treatment of COVID-19 is
impractical [14]. This is due to the fact that, the effectiveness of
biomass derived graphene towards COVID-19 is yet to be tested.
This is crucial to ensure the idealness of biomass derived graphene
for various applications in the war against COVID-19 and beneficial
for the community.

4. Conclusions

Graphene is a versatile nanomaterial. Thus, the use of biomass
derived graphene in preventing COVID-19 should be taken seri-
ously. The biomass derived graphene can be used as superhy-
drophobic coatings on face masks to prevent any droplets from
entering our body. Since graphene has been widely used is sensors,
the biomass derived graphene can also be applied in biosensors to
detect the presence of COVID-19 in human. On the other hand, bio-
mass derived graphene has a great potential to be used as disinfec-
tant to prevent the spread of the COVID-19.
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