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Abstract:Magnetorheological (MR) fluid is among the smart
materials that can change its default properties with the
influence of a magnetic field. Typical application of an MR
fluid based device involves an adjustable damper which
is commercially known as an MR fluid damper. It is used
in vibration control as an isolator in vehicles and civil en-
gineering applications. As part of the device development
process, proper understanding of the device properties is es-
sential for reliable device performance analysis. This study
introduce an accurate and fast prediction model to analyse
the dynamic characteristics of the MR fluid damper. This
study proposes a new modelling technique called Extreme
Learning Machine (ELM) to predict the dynamic behaviour
of an MR fluid damper hysteresis loop. This technique was
adopted to overcome the limitations of the existing models
using Artificial Neural Networks (ANNs). The results indi-
cate that the ELM is extremely faster than ANN, with the ca-
pability to produce high accuracy prediction performance.
Here, the hysteresis loop, which represents the relation-
ship of force-displacement for the MR fluid damper, was
modelled and compared using three different activation
functions, namely, sine, sigmoid and hard limit. Based on
the results, it was found that the prediction performance
of ELMmodel using the sigmoid activation functions pro-
duced highest accuracy, and the lowest Root Mean Square
Error (RMSE).
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1 Introduction
Magneto-rheological (MR) fluid is a smart fluid material
comprising soft magnetic particles and stabilizers sus-
pended in a carrying fluid [1]. The MR fluid is able to trans-
form from a liquid state to a semi-solid state, depending
on the magnetic field reversibly within milliseconds [2],
which results in controllable field strength. Studies have
shown that MR fluids also have relatively low power, high
shear stress, good temperature stability and fast response
time [1]. Due to its unique MR effect, the MR fluid has been
extensively applied over a wide range of vibration control
applications, from automobiles, to railway vehicles and
civil structures [3, 4]. A typical MR damper may have an
accumulator, electromagnetic coil, piston, and importantly,
MR fluid (Figure 1). It requires an electric current to mod-
ulate the magnetic field so that the damping properties of
the MR fluid can effectively control the operation of the MR
damper. Prominent applications utilizing the MR damper

Figure 1: A typical MR damper [10]
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can be seen in the field of civil engineering. A study on the
MR damper was done by Wang et al., [5] where the damper
was placed on a bridge’s cable in Dongting Lake for about
10 years. These 10-year operation of the MR damper manu-
factured by Lord company shows that the damping perfor-
mance only decreased about 29.8% of the damping force
since it was first operated. The MR fluid damper is among
the most discussed applications of MR fluid, and works
as a vibration isolator that is loaded with MR fluids and
controlled by an electromagnetic field [6].

The MR fluid damper is typically applied in the per-
spective of a semi-active device as a controllable damper in
vibration control systems [7]. The semi-active suspension
based on MR fluid can quickly regulate the damping coeffi-
cient with a reaction time of only a few milliseconds. This
damper only requires little power which does not exceed
20 W per damper, to significantly change the suspension
damping force [8]. This is due to fast the reversible rheol-
ogy characteristics of the MR fluid in a high magnetic field,
where the damping force of the MR damper contributes by
the uncontrollable MR fluid zero magnetic field viscosity
and the Coulomb damping force by the controllable exter-
nal magnetic field respectively [9].

It is well-known that precise mathematical modeling
is necessary to control the damping force produced by the
MR fluid damper [11]. The existing parametric models are
difficult to adapt, as there are many parameters to be imple-
mented [12]. Additionally, these models consume a great
deal of time in terms to be developed [6]. However, for non-
parametric models, the issue is on the training time during
the development process, where a typical ANN approach
requires a relatively longer duration. This is considered as a
shortcoming that is worthy to be highlighted. Slow gradient-
based learning algorithms are extensively applied to train
the ANN; all the parameters of the networks are tuned it-
eratively using this learning algorithm. It shows that tra-
ditional learning algorithms are slower than required [11].
Hence, to the best of the researcher’s knowledge, an inves-
tigation on whether the MR fluid damper model using the
ELM method is expected to overcome the limitations of the
ANN prediction models has not yet been reported in the
literature thus far.

ELM have been used to model the characteristics of
the MR fluid actuator. A SLFN network structure was devel-
oped to predict the field-dependent shear stress with input
variables, magnetic field and shear rate. The results demon-
strate that the model achieves better accuracy compared to
conventional mathematical models such as the Herschel-
Bulky and Robertson-Stiff model [2]. Besides, Bahiuddin
et al. [13] integrated a basic ELMmodel with PSO to mini-
mize the use of hidden nodes, while maintaining an error

of less than 1% in predicting the shear stress of theMR fluid.
However, the drawback is that the training time increases
due to the optimization algorithm. MR grease, which is
slightly different from MR fluid properties, has been mod-
elled in terms of its rheological properties using ELM [14].
The model was able to predict the prominent parameters
such as shear stress, and also the derived parameters which
are dynamic yield stress and yield stress magnetorheolog-
ical effects, by including various CIP compositions as the
ones in the input model. Other thanMRmaterials, ELMwas
applied in a cubic crystal by integrating basic ELM learn-
ing algorithms with a grid search (GS) hyper-parameter
optimization method to predict the lattice parameters and
describe the material crystal structure [15]. In addition, an
ELM algorithm was employed to predict the tribological
characteristics of biodiesel from palm sesame oil by using a
cuckoo search optimization algorithm [16]. Besides, various
applications using ELM were published [17–20]. The fast
prediction and good generalization performance demands
ELM to be employed in many applications.

Therefore, the purpose of this study is to improve the
modeling technique to model the MR fluid damper hys-
teresis loop by describing the device characteristics such
as damping force. The influence of the magnetic field on
the device structure is crucial to determine the overall
performance of the device. Hence, this work proposed a
novel modeling technique for an MR fluid damper using
the ELMmethod to predict the force-displacement perfor-
mance through a hysteresis loop. Here, several activation
function performances were compared. The proposed pre-
diction model was analyzed based on its prediction accu-
racy performance via the Root Mean Square Error (RMSE),
with respect to experiment data. Moreover, the correlation
between input and predicted output (i.e. regression fitness)
was also analysed through the resultant R2 values for each
selected activation function.

Figure 2:MR damper on cable bridge [5]
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Figure 3:MR damper based prosthetic device [21]

2 MR fluid damper model based on
Extreme Learning Machine

Machine learning is an alternative method that is able to
obtain a model due to the ease of adjusting the input and
output variables. It can learn from data based on past input
data, and effectively predict future performance [22]. There-
fore, Extreme Learning Machine (ELM) is an algorithm that
calculates single-hidden layer neural networks (SLFNs) to
achieve the optimal generalization, without iterations [23].
Single-hidden layer feedforward neural network (SLFN) is
a common architecture to perform ELM. It is consists of ith
input (xi), weighting input (wj) on each ith input, activa-
tion function g (wj , bj , xi) in each hidden node, bias (bj)
on the jth hidden node, weighting outputs (βj) and outputs
Ok. The single-hidden layer neural network for theMR fluid
damper model as described in Figure 1.

Figure 4: Single hidden layer feed-forward neural network of MR
fluid damper

The derived mathematical form of the SLFNs can be
seen in Equation (1), and can be simplified to Equation (2)
[23].

L∑︁
j
= 1βjg

(︀
wj , bj , xi

)︀
= oi , i = 1, . . . , N (1)

Hβ = T (2)

where the H, β and T can be defined as follows:

H =

⎡⎢⎢⎣
g (w1, b1, x1) · · · g (wL , bL , x1)

...
. . .

...
g (w1, b1, xN) · · · g (wL , bL , xN)

⎤⎥⎥⎦
N×L

(3)

β =

⎡⎢⎢⎣
βT1
...
βTL

⎤⎥⎥⎦
L×m

(4)

T =

⎡⎢⎢⎣
tT1
...
tTL

⎤⎥⎥⎦
N×m

(5)

Various nonlinear piecewise continuous functions are avail-
able to be implemented in ELM. In this work, the following
functions were considered:

1. Sigmoid function

g (w, b, x) = 1
1 + exp (− (w.x + b))

(6)

2. Hard limit function

g (w, b, x) =
{︃
1, ifw.x − b ≥ 0
0, ifw.x − b ≤ 0

}︃
(7)

3. Sine function

g (w, b, x) = sin (w.x + b) (8)

The application of these nonlinear piecewise continuous
functions are possible for almost all the hidden node func-
tions. The number of hidden nodes for the SLNFs were ran-
domly assigned, and the output weights of SLFNs were
analytically determined in the ELM algorithm. To develop
the MR fluid damper prediction model, the force and dis-
placement were used as inputs, and the damping force was
chosen as the targeted output respectively. Here, the model
structure was considered in a single-hidden layer neural
network (SLFN), as depicted in Figure 4. As in machine
learning, a few terms for variables were considered as fol-
lows: (1) Inputs: The inputs (xi) like force variables and
displacement variables which can be obtained from the
experimental work; (2) Outputs: The outputs (Oi) represent
the damping force prediction of the obtained ELMmodel
after training; (3) Targets: The targets T are experimental
data of the damping force for benchmarking the outputs
from the ELM modelling prediction, and the error between
prediction and measured data.
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Figure 5: The proposed MR fluid damper hysteresis loop modelling process

The flow of the modelling process is shown in Figure 5.
It starts from the pre-processing phase, which involves
training the model. In the training phase, reference data is
required, which are inputs and outputs from the experimen-
tal work. In this process, all proposed activation functions
vary by finding the optimal one, based on the highest ac-
curacy obtained. Then, after the training phase, the model
was developed. The model was visualized by the user as a
prediction system to forecast the hysteresis loop of the MR
fluid damper.

2.1 Modeling data

The data contains about 5,000 measurement points, where
the datawere then separated into different applied currents,
ranging from 0.1A to 0.4A. Five datasets representing five
different applied currents were used. Each dataset contains
1000 data samples. This paper only considers on-state con-
ditions to find the damping force in the presence of a mag-
netic field. Thus, the off-state condition is not discussed
further. Table 1 shows the distribution of the experimental
data which have been divided into learned and unlearned
data for the purpose of training and testing the ELM algo-
rithm respectively.

Table 1: Distribution of training and testing data

Experiment data Value (A)
Learned current (Training) 0.1

0.2
0.3
0.4

Unlearned current (Testing) 0.35

2.2 Simulation setups

The experimental data were divided into two groups, which
are training and testing respectively. These two groups play
a significant role to evaluate the model, where the training
data are used for determining the outputweights in the ELM
model. The trained data performance was then assessed for
the simulation in order to calculate for the accuracy based
on the outputs and targets of the testing data. Using ELM,
the data can be determined into testing and training, where
80% of the data was used for training, while the remaining
20% were used for testing. On the other hand, the number
of hidden nodes was selected intuitively on a trial and error
basis, with the selected value being 100.

In this work, the input weights and bias were assigned
using a normal distribution function. The setup values for
all the parameters are shown in Table 2. The simulations
were conducted using Matlabr, with a 64 bit (3.4GHz) CPU.
The accuracy and regression fitness of the training and
prediction performance were evaluated based on the RMSE
and R2, as shown in Equations (9) and (10) respectively.

RMSE =

√︃∑︀N
i (τe − τp)

2

N (9)

Table 2:Modeling parameters

Model parameter Setting/Values
Hidden nodes 100

Activation function Hard limit, Sigmoid, Sine
Input weight and bias

determination
Normal Distribution

Training data 80%
Testing data 20%
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R2 = 1 −
∑︀N

i=1(τe − τ̂p)
2∑︀N

i=1(τe − τe)2
(10)

where τe, τ̂p, and τe were measured damping force, pre-
dicted damping force andmean ofmeasured damping force
respectively. N represents the number of the sample mea-
surements.

3 Result and Discussion

3.1 Fitting error of Training data

In order to evaluate the prediction capability of the ELM
algorithm in modeling the MR fluid damper, different acti-
vation function schemes were compared, including sine,
hard limit and sigmoid, using the training data for current
variations of 0.1A, 0.2A, 0.3A and 0.4A. The results for each

activation function scheme is illustrated in Table 3. The
comparison between the schemes plays a significant role in
determining the best parameter setup, as this would affect
the performance in predicting the hysteresis loop of the
adopted MR fluid damper. Here, the optimal choice for the
activation function associated with the ELM technique is a
crucial to achieve the highest prediction accuracy possible.

Table 3: Prediction accuracy of training data

Activation
function

Hidden
nodes

Training
time (s)

RMSE(N) R2

Sine 100 0.734 1.99 0.999
Hard limit 100 0.375 3.99 0.991
Sigmoid 100 0.359 2.09 0.999

(a) (b)

(c)

Figure 6: The hysteresis loop of MR fluid damper on three activation functions; (a) Sine function, (b) Hard limit function, (c) Sigmoid func-
tion
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Figure 7: The process of proposed research

Based on Table 3, the training data with the sine func-
tion performed better on RMSE, with a slight difference of
1.99N, followed by the sigmoid function and hard limit func-
tion. In addition, the R2 for both sigmoid and sine functions
were close to 1, showing that the correlation between input
and predicted output is excellent. In addition, the training
time for the sigmoid function was the least. Even though
the training time for hard limit functionswas lower than the
sine function, the training accuracy for the hard limit was
lower than the sine function. However, the prediction per-
formance of the hard limit function shows acceptable error,
where the R2 reached 99.1%. Besides this statistical analy-
sis, the graphical representations are shown in Figure 6(a),
6(b) and 6(c) for sine, hard limit and sigmoid activation
function respectively. The patterns of predicted damping
force were approximately identical to measured damping
force for sigmoid and sine models, compared to the hard
limit model, for all the applied currents.

Generally, the sigmoid and sine function models were
the best models in terms of training performance to repli-
cate the MR fluid damper hysteresis loop on the force-
displacement relationship. Nevertheless, one cannot gen-
eralize the model through only the training data. Thus, it
is crucial to test the unlearned data (i.e. testing data) to
validate the ELM algorithm performance.

3.2 Model Validation

In order to validate all three trained models, the unlearned
current (i.e. 0.35A) which was not included in training
phase was used. As depicted in Figure 8, the pattern of the
sine and sigmoidmodels were identical to the experimental
hysteresis loop, compared to the hard limit model. Table 4

describes the performance accuracy of the trained models
on unlearned current, based on RMSE and R2. Based on
Table 4, the sigmoid model shows the best performance by
producing the least prediction error. Despite the ELM algo-
rithmwith the sine activation function showing superior ac-
curacy during training phase, the prediction performance
for the unlearned data was not as good as expected.

Meanwhile, the accuracy performance of the hard limit
function for the testing phase performed worse compared
to the sine and sigmoid functions. This resulted in a large
undesirable error with respect to the experimental data (i.e.
benchmark), although the predicted data was within an
acceptable range. Similar performance was produced by
Bahiuddin et al. [2] in modeling the shear stress model of
MR grease, where the sigmoid and sine transfer functions
showed great performance, while the hard limit function

Figure 8: The comparison of testing data (i.e. unlearned data) of
different activation function with experimental data
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Table 4: Comparison between training and testing performance of three activation functions

Activation
Function

Hidden Nodes Training RMSET
(N)

R2 Prediction RMSEP
(N)

R2 RMSET − RMSEP

Hard Limit 100 3.99 0.991 8.20 0.990 4.21
Sine 100 1.99 0.999 4.80 0.999 2.81

Sigmoid 100 2.09 0.999 3.90 0.999 1.81

showed the least performance. Generally, the proposed
models with respect to all activation functions have shown
good agreement in terms of predicting the hysteresis loop
pattern. Thus, the ELM algorithm has the capability to
model the MR fluid damper hysteresis loop, which is impor-
tant in determining the force-displacement relationship.

3.3 Comparative study on ANN model

The performance of the proposedmodellingmethod is com-
pared to the ANN method in terms of training time and
accuracy. To allow for a feasible comparison, both ELM and
ANNmethods were assigned with 100 hidden nodes. The
training data used for both methods were 0.1A, 0.2A, 0,3A
and 0.4A, while 0.35A was used for prediction as unlearned
data. The results demonstrate that ELM has shown better
performance in terms of training time and prediction of un-
learned data. In fact, ANN training time is greater than ELM.
As it is known that ANN takes a longer time to train, the
greater the number of hidden nodes, the longer the train-
ing time. This is due to iteratively updating the weight and
bias parameters. In addition, ANNmay face overfitting phe-
nomena, where high testing accuracy is achieved, despite
the low training accuracy, when the hidden number is too
large [24]. Furthermore, the back-propagation algorithm
is commonly used as the learning algorithm in the ANN
applied gradient descent method to update the weights.
However, when the learning rule in gradient descent is too
small, the learning algorithm converges slowly. When the
learning rule is too large, the algorithm becomes unsta-
ble and diverges [25]. Thus, it is suggested that the ANN
has small hidden nodes to reduce the consequences. Mean-

Table 5: Comparison between ANN and ELM method

Method Hidden
nodes

Training
time (s)

Prediction
RMSE (kN)

R2

ANN 100 16.22 288.8 0.956
ELM 100 0.38 8.20 0.990

while, ELM produces higher accuracy with fast training
time, with the same number of hidden nodes.

4 Conclusion
This work introduced ELM as a new platform to model the
MR fluid damper hysteresis loop. It is extremely faster than
ANN, and involves no iteration process. In addition, it pro-
duced good accuracy. Furthermore, the ELM algorithm of
the MR fluid damper hysteresis loop was described in math-
ematical form to gain better understanding, where three
models have been introduced based on three different ac-
tivation functions. Training data is needed to develop the
model, as it involves a supervised learning method. Mean-
while, the testing data is used to find the generalization
performance. Based on the findings, the ELM prediction
model with sigmoid activation function was the best model
to replicate the MR fluid damper hysteresis loop. Lastly, the
proposed model can replicate well the complex behaviour
of MR fluid damper hysteresis loop. To enhance the model
of MR fluid damper hysteresis loop, additional input vari-
ables can be added such as velocity, so that the model may
predict both force-displacement and force-velocity relation-
ship to show the pre- and post-yield saturation levels of the
device. Besides that, in terms of modelling performance,
other appropriate activation functions can be considered
to model the MR fluid damper hysteresis loop such as ra-
dial basis function, ReLU and triangular basis function. To
conclude, the findings of this work are beneficial for the
engineering field, and expedite the development process
of related models in the literature.
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