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A nonlinear Markov chain is a discrete time stochastic process whose transitions depend on both the
current state and the current distribution of the process. The nonlinear Markov chain over an infinite state
space can be identified by a continuous mapping (the so-called nonlinear Markov operator) defined on a
set of all probability distributions (which is a simplex). In the present paper, we consider a continuous
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To prove the main result, we study the surjectivity of infinite dimensional nonlinear Markov operators
and apply them to the projective surjectivity of the considered QSO. Furthermore, the obtained results
are applied to the existence of the positive solution of some Hammerstein integral equations.
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1. Introduction

Recently nonlinear Markov chains became an interesting sub-
ject in many areas of applied mathematics. These chains are dis-
crete time stochastic processes whose transitions are governed
by a stochastic hypermatrix P = (B, i, k)i,.....im kee» (Where E C N)
which depends on both the current state and the current distribu-
tion of the process [1]. Such processes were introduced by McK-
ean [2] and have been extensively studied in the context of the
nonlinear Chapman- Kolmogorov equation [3] as well as the non-
linear Fokker-Planck equation [4,5]. On the other hand, we stress
that such types of chains are generated by tensors (hypermatrices),
therefore, this topic is closely related to the geometric and alge-
braic structures of tensors which have been systematically studied,
and have wide applications in applied sciences. One of the intrinsic
features of tensors is the concept of tensor eigenvalues and eigen-
vectors which turns out to be much more complex than that of the
square matrix case (see for example, [6-9]).
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Let us denote

SE = {x=(X)icr € R

x>0, Y x=1¢. (1.1)

icE
By means of P one defines an operator V : SE — SE by

VX)= Y, keE. (1.2)

i1.02,....im€E

Piy i kXiy Xiy - - - Xiyys

This operator is called an m-ordered polynomial stochastic operator
(in short m-ordered PSO). We note that such a PSO has a direct
connection with non-linear Markov operators which are intensively
studied by many scientists (see [1] for recent review). Therefore, it
is crucial to study several properties of such operators [6,8,10,11].
One of the important ones is its surjectivity. It turn out that when
the set E is finite, in [12] we have established that the sturjectivity
of V is equivalent to its orthogonal preserving property.

We notice that if the order of the operator is 2 (i.e. m = 2), then
the nonlinear Markov operator V given by (1.2) is called a discrete
quadratic stochastic operator (DQSO) which has many applications
in population genetics [13]. Note that such kind of operators is
traced back to Bernstein’s work [14| where they arose from the
problems of population genetics. We refer the reader to [3,15,16] as
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the exposition of the recent achievements and open problems in
the theory of the quadratic stochastic operators (QSO) can be fur-
ther researched. In [17-21] the surjectivity of DQSO and its relation
with orthogonal preserving property of V have been investigated.

On the other hand, there has been much interest in recent years
in self-organizing search methods in the field of quadratic stochas-
tic operators. Recently, in [22] it was started to consider QSO over
continuum state spaces, namely, on the set of o -additive measures
defined on [0, 1] (see also [23,24]). In particular, points of the unit
interval [0, 1] serves to code (continuum valued) traits attributed
to each individual from a considered population. The main aim of
the present paper is further to investigate projective surjectivity of
such kind of continuum analogous of QSO. First, in Section 3, we
revise the results of [17], and in Section 4, we apply them to the
projective surjectivity of QSO acting on the set of probability mea-
sures. We notice that very particular cases of QSO have been stud-
ied (see for example, [25-29,22,30]). In the last Section 5, a short
application of the main result to the existence of positive solutions
nonlinear Hammerstein integral equations is carried out. Certain
Hammerstein integral equations associated with finite dimensional
DQSO have been investigated in [31].

2. Discrete quadratic stochastic operators

In this section we give basic notations and some known results
from the theory of discrete quadratic stochastic operators.

Let E be a subset of N such that |E| > 2 and SE is a set given by
(1.1). We notice that there is only two case for cardinality of E. So,
in special cases we write S or S¢-1 instead of SE when E is either
infinite or |E| = d, respectively. In what follows, by e; we denote
the standard basis in SE, i.e. e; = (8y)ker (i € E), where 8;j is the
Kronecker delta.

Let V be a mapping on SE defined by

(V(x))k = Z Pij,kxixj’ Vk € E, (21)
i,jeE

here P, are hereditary coefficients which satisfy

Pjx =0, Pjkx=Pj Zpij,k =1, Vi jkeE (2.2)

keE

One can see that V maps SE into itself and V is called Discrete
Quadratic Stochastic Operator (DQSO) [32].

By support of X = (x;)icr€SE we mean a set supp(x)=
{ieE : x; #0}. Recall that two vectors X,y € SE are called orthog-
onal (denoted by x L y) if supp(x) Nnsupp(y) = ¢. If X,y € SE, then
one can see that X Ly if and only if Xx-y = 0. Here, X -y = }"; g X;¥i.

Definition 2.1. A DQSO V given by (2.1) is called orthogonality pre-
serving DQSO (OP DQSO) if for any x,y €S with X Ly one has
V() LV(y).

Recall [32,33] that a DQSO V : SE — SE is called Volterra if
Pjp=0if k¢ i j}, Vi jkeE. (2.3)

Remark 2.2. In [33] it was given an alternative definition Volterra
operator in terms of extremal elements of SE.

One can check [32,33] that a DQSO V is Volterra if and only if
one has

V&)= Xk(1 + Zakixi)q Vk e E,
icE

where ay; = 2Py, — 1 for all i,k € E. One can see that ay; = —aj.
This representation leads us to the following definition.
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Definition 2.3. A DQSO V : SE — SE is called ;-Volterra if there is
a permutation 7t of E such that V has the following form

VX)) = Xz i) (1 +y an(k)i&'), Vk e E,

icE
where a,,(k)i = 2Pi7t(k),k — 1, aﬂ(k)i = —a,-,,(k) for any i, k e E.
In [34,24] it has been proved the following result.

Theorem 2.4. Let |E| =d and V be a DQSO on S4-1. Then the fol-
lowing statements are equivalent:

(i) V is orthogonality preserving;
(ii) V is surjective;
(iii) V is m-Volterra QSO.

We emphasize that there is a big difference between finite and
infinite dimensional settings. It is known [17] that in the infinite
dimensional setting, some implication of Theorem 2.4 fails.

Theorem 2.5. [25] Let V be infinite dimensional DQSO such that
V(e;) = ey for some permutation 7w of N. Then the following state-
ments are equivalent:

(i) V is surjective;
(ii) V is orthogonality preserving;
(iii) V is  —Volterra QSO.

Theorem 2.6. [25] Let V be a surjective and OP infinite dimensional
DQSO. Then V is a w-Volterra for some permutation w : N — N.

3. Surjectivity of DQSO

In this section, we are going to provide a sufficient condition
for the surjectivity of infinite dimensional DQSOs.
Let E be a subset of N. We denote

Bf = {X=(x)icc €R" : x>0, VieEand ) xj<1¢.

jeE

We can extend each DQSO V from SE to B{r by the same formula
(2.1). Then the following crucial result is true.

Lemma 3.1. Let V be a DQSO on BT. Then one has

V(SsE) c S, v(BT\SF) c B\ SE

Proof. For a given r >0 we denote SE :=rSE. Then it is obvious
that

Bf = J S

rel0,1]

Take any re[0,1] and an arbitrary x € SE. One can check that
(V(x)), = 0 for all k > 1. Furthermore, using (2.2) we get

S WE =YY Bxixg = Y xixj =12

keE keE i, jeE i jeE
From this we find V(x) € sz. Hence,
V() c S and V(Bf\SE) c B\ SE,
which completes the proof. O

Theorem 3.2. Let V be a DQSO on Bf. Then the following statements
are equivalent:

(i) V is surjective on Bg*;
(ii) V is surjective on St;
(iii) V is surjective on B \ SE.
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Proof. Thanks to Lemma 3.1 the implication (i) = (ii) is obvious.
(ii) = (iii). Assume that V is surjective on SE. Let re (0,1),
then we define an operator T; : SE — SE as follows T;(x) = r—!x for
all x e SE. We notice that T; is a bijection. Then keeping in mind
V(rSE) = r2V(SE) and r2SE = sz, one gets
V(SE) = V(T (SE)) = V(rsF) = SE.
From the arbitrariness of r and V(0) = 0, we find
v( U sf) - st
rel[0,1) re[0,1)
which means V (B} \ SF) = B} \ SE.
(iii) = (i). One can see that V(SE) c sz for any r e [0, 1). Due
to the surjectivity of V on {J,o 1) S, we conclude
V(SE)=SE,  Vrelo,1).
Then, for any r > 0, one has
V(SE) =V (r'SE) = r2v(sE) = r-2sE, = S,
The last one together with V(BJ \SE)=Bj \SE implies that
V(B}) = Bf. This completes the proof. O

Remark 3.3. Thanks to Theorem 3.2, to establish the surjectivity of
DQSO V on B it is enough to consider it only on SE.

Let us recall the Cauchy Product which has the following form:

(3.1)

m

o0

in = Z Xip - Xipys VmeN,
i=1 i1,...,imeN

where Y, x; < oo.

Theorem 3.4. Let V be a surjective DQSO on S. Then there exists a
sequence {jj}x=1 C N such that Py k=1 forallkeN.

Proof. Let us denote
I = {jEN: ij,kzl}
First of all, we show that surjectivity of V implies I, # @ for any

k € N. Thanks to the surjectivity of V, for every k € N there is an
x® ¢ § such that

V(x®) = e,.

Now, we consider two cases.
Case 1: Let ‘supp(x("))| = 1. Then one can find a number j, € N

such that supp(x®) = {j,} and
V&x®)) =Py =1,
which yields that P; ; , = 1. Hence, we get jj € I;.

Case 2: Let |supp(x®)| > 1 and A :=supp(x®). By (3.2) one
finds

VE®)), = Z Bjxixj = 1.
i.jeA

(3.2)

(3.3)

Now suppose that there are i, j € A such that P < 1. Then
V) =" Pjaxix;
i,jeA
= X
{i.i}cA\{Lj}

< ZXin.

ijeA

XiXj + Py (XX

The last inequality together with (3.1) implies
V) <1,
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which contradicts to (3.2). So, we conclude that
Pij,k: 1, VI,]GA

In particular, we have P;, = 1 for any i € A which mans that A C I.
Hence, we immediately get I, # @ for any k > 1.

Consequently, we infer that [, # ¢ for every k > 1. Now, we can
define a sequence {ji}y-1 by jx = infl,. Due to the construction of
I, one gets P j =1 for all k e N. This completes the proof. [

Next result gives a sufficient condition for the surjectivity of
DQSO.

Theorem 3.5. Let V be a DQSO on S. Assume that there exists a se-
quence {jn}n>1 C N such that

Pjnjmvk = O’ Vk ¢ {n’ m} (3.4)

Then V is surjective.

Proof. Let | := {jn},>1 be a subset of N for which (3.4) is satisfied.
Let us define a new cubic matrix 7 = (Pj1)ijk=1 by

5. — [Bbeiie  keli ),
k=10, otherwise,

where o (k) = j, for all k> 1. We consider a DQSO V is given by

VX)) = Z Isiijij, Vx eS.
i,j>1

Due to the construction of P one concludes that V is a Volterra
DQSO. Then, thanks to Theorem 2.5, the operator V is a surjection
on S.

Let us denote S; = {x € S : supp(x) c I}. Then it is obvious that
operator T :S— §; given by T(X); =Xy is a bijection. Further-
more, we have V =V o T. Keeping in mind that V is surjective and
T is bijection, we infer that V =V o T~ is surjective, which com-
pletes the proof. O

We stress that unfortunately, we are not able to prove that
(3.4) is necessary for the surjectivity of V. However, all construced
examples show it is true. So, we may formulate the following con-
jecture.

Conjecture 3.6. Let V be a surjective DQSO on S. Then there exists a
sequence {jn}n>1 C N such that (3.4) holds.

4. Quadratic stochastic operators on L! and associated DQSO

In this section, we consider QSO on L! and construct associ-
ated DQSO. Let (X, F,A) be a measurable space with a o-finite
measure A. By L1(X, F,1) we define an usual L' space. We no-
tice that L' can be identified with the set of all measures (signed
ones) absolutely continuous w.r.t. A. Namely, for every non nega-
tive f € L (X, F, A) we can define a measure W5 by

Mf(A)zfAfd)\, VAeQ.

Therefore, in what follows, we may identify measures with func-
tions and visa versa.

By S(X) we denote the set of all probability measures on X
which are absolutely continuous w.r.t. A.

Recall that a collection of measurable sets B = {B,};- is called
a partition of X (w.r.t. A) if it satisfies -

(M X= kU By;
>1
(2) BinB; =g for all i # j;
(3) 0 < A(By) < oo for every k > 1.
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We denote by P(X) the set of all partitions of X. Since A is o-
finite, we infer that P(X) # ¢.

Let us take B = {By};- € P(X). For any x € ¢! we define a mea-
sure u8 on F as follows:

VA e F.

B _ - Xk
HEA) = 3 55 HANB. (41)

We notice that £ is not probability measure when [|X||,1 # 1.
A natural question arises: for what kind of x € ¢! is it true uf e
S(X)?

Recall that S={xe¢':x>0, Vi>1 and | x| ,1=1}. Then
the following result holds.

Lemma 4.1. Let 5 be a measure given by (4.1). Then u8 e S(X) iff
XeS.

Proof. Let us assume that uZ e S(X). We have uB3(B,) = x, for ev-
ery k e N. It yields that 0 <x, <1 for every k e N. On the other
hand, we obtain

1= 800 = (U B) = e
k>1 k>1
which implies that x € S.

Now we suppose that x € S. Then uB8(X) = Y 4.1 X = 1. This
means that 2 is a probability measure on X. Moreover, it is obvi-
ous that the measure given by (4.1) is absolutely continuous w.r.t.
M. Hence, we infer that ux € S(X). O

Remark 4.2. For a given partition B of X, thanks to
Lemma 4.1 there exists a one-to-one correspondence between
S and M(X,B):={uf eS(X): xe¢!}. In other words, every
e M(X, B) is uniquely defined by the values ©(By), k > 1.

Proposition 4.3. Let B € P(X). Then M(X, B) is a convex and closed
set w.r.t. strong convergence. Moreover, M(X, B) is not compact w.r.t.
weak convergence.

Proof. One can see that T : S — M(X, B) given by Tx = u5 is a bi-
jection. Then any sequence on M(X, B) is defined by a sequence

-1l
{xM},; CS. It is obvious that if x™ —3 x then Jlim 1B, A) =
= — 00

uB(A) for all Ae F.

Let us pick a sequence {uf(n)}nz1 Cc M(X, B). Assume that
Ww(A) = 111Lno10 p,f(n) (A) for every A e F. Then we have u e S(X). On
the other hand, we obtain

(B = limx™,  Vk>1.
n—oo

The last one together with 1 (X) = 1 implies that x(™) converges on
S w.r.t. ¢'-norm. Hence, we conclude that T is a homeomorphism.
Then due to closedness and convexity of S we infer that M(X, B)
has the same topological properties. We notice that S is not com-
pact w.r.t. ¢!-norm. Consequently, M(X, B) is not a compact w.r.t.
the weak convergence. O

Lemma 4.4. Let $(X) = {uy € S(X) : f is a simple function on L'}.
Then

SX)= |J MX.B).
BeP(X)

(4.2)

Proof. It is clear that |J M(X,B) c S$(X). Indeed, for any 2 we

BeP(X)
define a simple function
Xk
fus() = ——, YueB,, Vk=>1,
T B ‘

which satisfies

,uf(A):/fMgd)», VAe F.
A
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Now, we take an arbitrary uy € S(X). Then for any i>1 we
have a measurable set A; = {ueX: f(u) =y;}. One may assume
that A(4;) > 0 for every i> 1. We notice that if A(A;) < oo for
each i e N then A = {A;};>1 is a partition of X and pu = 14, where
X= (us(Ar1), us(Az),...) €S.

If A(Aj) = oo for some j>1 then one has y; =0 (otherwise f
is not integrable). Hence, 1 ¢(A;) = 0. So, without loss of generality
we may assume that y; =0, A(A;) = o0 and y; > 0, A(4;) < oo for
any i > 1. Pick any partition {By};.; of X and define a new parti-
tion B of X as follows:

5 A]mB,%], if k is odd,
K= 1Ak, if k is even.

2

Then py = ,ug, where coordinates of § € S are given by

. 0, if k is odd,

Yie= pcf(A%), if k is even.

The arbitrariness of w, yields that SX) c Usepxy M(X, B). The
last one together with (s px) M(X. B) € S(X) implies (4.2). O

Due to the density argument, from Lemma 4.4 we immediately
infer the following result.

Proposition 4.5. One has S(X) = |J M(X, B), here the closure in

BeP(X)
sense of weak convergence.

4.1. Projective surjectivity of QSO

Let (X, F,\), as before, be a measurable space with a o-finite
measure A. Now, we consider a measurable function P: X x X x
F — [0; 1] which satisfies the following conditions:

P(u,v,A) = P(v,u,A), YuveX, VAeTF, (4.3)

Pu,v,-)eSX), VuveX. (4.4)

This function is called transition kernel, and defines a Quadratic
Stochastic Operator (in short QSO) by

(Vi) (A) :/Xfxp(u, v, Adp@)duw), Y eSKX), YAe F.
(4.5)

One can check that V: S(X) — S(X). Moreover, we always mean
that equivalent transition kernels define the same QSO on S(X).

Remark 4.6. Let (X, F,A) be as before. If the transition kernel is
defined by

P(x,y.A) =/Aq(x,y, 2)dA(2)

(where g: X xX xX — Ry is a F® F® F -measurable, nonneg-
ative function with q(x,y,z) =q(y,x,z) for any x,y,z< X, and
Jx a(x,y,2)dA(z) =1 for every (x,y) € X x X), then the correspond-
ing QSO is called kernel QSO [27,28]. One can see QSO given by
(4.4) is more general than kernel QSO.

Definition 4.7. A QSO V given by (4.5) is called projective surjection
if it is surjective on M(X, B) for some B € P(X).

Now we are going to find QSO’s which are projective surjection.
For a given QSO V we associate DQSO (this DQSO depends on a
partition {By}i>1) Vs :S— S by

(Vs(X) = D PFxix),
i,j>1

Vi =1, (4.6)



E. Mukhamedov, O. Khakimov and A.E. Embong

where
1
P3, = //Pu,u,B di(uw)di(v), Yk > 1.
k= TBIAGB,) Jo, Jo, ( dA (W)dA (V)
(4.7)
Lemma 4.8. Let B = {By};.1 € P(X). Then for every X € S it holds

Vik>1.
{Bi}i=1 be a partition of X and x € S. Then for any

Vi) (Be) = (Vs(X))y,

Proof. Let B =
k > 1 we have

(V) (By) = / / P(u, v, By)dpt (u)dpt (v)
//Pmumﬁwﬂ@
B; JB;

XXJ

Z A(B)A(B))
Z ]kxx]

i,j>1
= (V(X))x-

O

Proposition 4.9. Let V be a QSO given by (4.5) and B e P(X). If
P(u,v,-) € M(X, B) for every (u,v) € X% then V(M(X, B)) c M(X, B).

Proof. Let B = {B;};-; be partition of X. Assume that P(u,v,) €
M(X, B) for every (u,v) e X2. Then for arbitrary (u, v) € X2 we ob-
tain

A(Ar)
A(Br)
For any x € S we define y € S as follows y, = (Vz(X))y, k > 1. The
due to Lemma 4.8 we get

V) B =y, Yk=1.

Let us establish that Vug =pu§. Take an arbitrary measurable
A e F and denote A, =AnNB, for every k> 1. Keeping in mind
(4.8) one gets

VB (A) = / / P(u, v, A)dpu (w)dpuE (v)

P(u7 v, Ak) = P(u7 v, Bk)7 VAI{ C Bks Vk > 1. (48)

XiXj
kanw) //Pwvmmuwﬁm
- XiX; A(AY)
B 112: )L(B"))”(Bf) k=1 )‘(Bk) i/j P(U, v Bk)d)"(u)d)”(v)
)‘(Ak)
Z )‘(Bk

= iy (A),
which yields Vu% = uf. The arbitrariness of xeS
V(M(X, B)) c M(X, B). The proof is complete. O

implies

Remark 4.10. We point out that a QSO is given by (4.5) with
P(u,v,-) € M(X, B) for every (u,v) € X%, has been considered in
[28], and its domain is M(X, B).

Now we are going to find sufficiency conditions for the projec-
tive surjectivity of QSO given by (4.5).

Theorem 4.11. Let (X, 7, A) be a measurable space with a o -finite
measure A and B = {By}y=1 € P(X). Assume that the transition kernel
P of QSO V satisfies the followings conditions:

(i) P(u,v,-) € M(X, B), for all (u,v) € X2;

(i) there exists a sequence {jn}n=1 C N such that

A(BcNBn) | A(BcNBm)
24 (Bn) 2 (Bm)

P(U,U,Bk)z ,V(U,U)EBanBjm, Vk e N.

(4.9)
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Then V is projective surjection.

Proof. Assume that all conditions of the theorem hold. From the
condition (i), according to Proposition 4.9 we have vV : M(X, B) —
M(X, B).

Now, let us show that V(M(X, B)) = M(X, B). For any triple
(n,m, k) e N3 from (4.9) after simple calculations, we get

1, if n=m=k;
ik =P =17, if n=k#m
0, if k¢ {n,m}.

Hence, by Theorem 3.5, the corresponding DQSO Vj is a sur-
jection. So, for any y € S one can find x € S such that Vz(x) =
Consequently, Lemma 4.8 implies that

V) (Br) = py (By).

From the last one, keeping in mind Vu% e M(X,B) thanks to
Remark 4.2 we infer

Vk e N.

ViLg = [y,

Finally, the arbitrariness of y € S yields V(M(X, B)) = M(X, B). This
completes the proof. O

Remark 4.12. We notice that the conclusion of the last theorem
will be true if (4.9) holds almost everywhere in Bj, x Bj,,

For any measurable set A c X we define
&= |(xy) e X\A)?: P(x.y.A) #0}.

Theorem 4.13. Let (X, F,\) be a measurable space with a o-finite
measure A and B = {By};.1 € P(X). Then there is only one QSO V
whose transition kernel satisfies the followings:

(i) P(u,v,-) e M(X,B), VY(u,v)eX?;
(ii) A(&p,) =0 for every k € N.

Moreover, V is projective surjection.

Proof. From (i) we have P(u,v,-) = ,uf(u v for any u, v € X. With-
out loss of generality we may replace the condition (ii) to

MUy (Be) =0 Y(u,v) e (X\By)? VkeN.
Then, for any (u, V) € By x By,
Mf(u’y) (Bn) + Mf(u,y) (Bm) =1

Keeping in mind x(u,v) =Xx(v,u), from the last one, we have
x(u,v) = e, + ley for every (u,v) € By x B. Hence,

A(ANBy)
2A(Bn)

A(ANBn)

P(u,v,A) = 2B

V(u,v) € By x By, YA€ F.

(4.10)

We notice that (4.10) implies (4.9) for the sequence {n}p..
Then Theorem 4.11 implies that V is projective surjection. The
proof is complete. O

Corollary 4.14. Let (X, 7, A) be a measurable space with a o -finite
measure A and B = {By};.1 € P(X). There is only one QSO V whose
transition kernel satisfies the followings:

(i) P(u,v,-) e M(X,B), Vu,veX;
(ii) A(&Ex) =0 for every A € F.

Moreover, V is projective surjection.
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5. Application

In this section we give a direct application of the projective sur-
jectivity of QSO to the existence of positive solutions of certain
nonlinear integral equations.

Let (X, F,A) be a measurable space with a o-finite measure
A. Let us consider the following nonlinear Hammerstein integral
equation:

/ / K(u, v, O)x(w)x(@)dA @) drv) = (), (51)
X JX

where K is some positive kernel and ¢ e L} is a given function.

We note that this type of equation appeared in several prob-
lems of astrophysics, mechanics, and biology. Here in the equation,
K:X3 >R and ¢ : X — R are given functions, and x: Q — R is
an unknown one. Generally speaking, in order to solve the nonlin-
ear Hammerstein integral Eq. (5.1) over some functions space, one
should impose on some constraints on K(-,-,-). There are several
works where the existence of solutions the above given equation
have been carried out by means of contraction methods (see [35-
38]). In this section, we are going to another approach for the ex-
istence of positive solutions of (5.1). In what follows, we consider
the Eq. (5.1) over L!-spaces.

Multiplying (5.1) by a function g from L* and integrating it, we
obtain

[ [ [ g0k oxwxmarwdrwiro= [ soeodno.
(52)

We stress that the arbitrariness of g implies that (5.2) and
(5.1) are equivalent.
Now, assume that there is a transition kernel P such that

[ [z oxuxmwamn
= [ [ fropu v amuson o

for all x € L' and g e L*°,
Then (5.2) is reduced to

/x ./x fxg(”” (u, v, dOx(Wx (V)i W)dA (V) = fxg(t)ga(t)dx(t).

Now, taking g = xa, A € F, we arrive at

Vi) (A) = g (A),
where, as before, ux(A) = [, x(u)dA(u). Assume that

/(pdk:l.
X

Hence, the integral Eq. (5.1) is reduced to

VIL = [Lg, (5.3)

where u € S(X).
Hence, the following result is true.

Theorem 5.1. Let (X, F,A) be a measurable space with a o-finite
measure A and B = {By};.1 € P(X). Assume that QSO V is a pro-
jective surjection on M(X, B). Then for any uy, € M(X, B) the Eq.
(5.3) has a solution in M(X, B).
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