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a b s t r a c t 

A nonlinear Markov chain is a discrete time stochastic process whose transitions depend on both the 

current state and the current distribution of the process. The nonlinear Markov chain over an infinite state 

space can be identified by a continuous mapping (the so-called nonlinear Markov operator) defined on a 

set of all probability distributions (which is a simplex). In the present paper, we consider a continuous 

analogue of the mentioned mapping acting on L 1 -spaces. Main aim of the current paper is to investigate 

projective surjectivity of quadratic stochastic operators (QSO) acting on the set of all probability measures. 

To prove the main result, we study the surjectivity of infinite dimensional nonlinear Markov operators 

and apply them to the projective surjectivity of the considered QSO. Furthermore, the obtained results 

are applied to the existence of the positive solution of some Hammerstein integral equations. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently nonlinear Markov chains became an interesting sub- 

ect in many areas of applied mathematics. These chains are dis- 

rete time stochastic processes whose transitions are governed 

y a stochastic hypermatrix P = (P i 1 , ... ,i m ,k ) i 1 , ... ,i m ,k ∈ E , (where E ⊂ N ) 

hich depends on both the current state and the current distribu- 

ion of the process [1] . Such processes were introduced by McK- 

an [2] and have been extensively studied in the context of the 

onlinear Chapman- Kolmogorov equation [3] as well as the non- 

inear Fokker-Planck equation [4,5] . On the other hand, we stress 

hat such types of chains are generated by tensors (hypermatrices), 

herefore, this topic is closely related to the geometric and alge- 

raic structures of tensors which have been systematically studied, 

nd have wide applications in applied sciences. One of the intrinsic 

eatures of tensors is the concept of tensor eigenvalues and eigen- 

ectors which turns out to be much more complex than that of the 

quare matrix case (see for example, [6–9] ). 
∗ Corresponding author. 
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Let us denote 

 

E = 

{ 

x = (x i ) i ∈ E ∈ R 

E : x i ≥ 0 , 
∑ 

i ∈ E 
x i = 1 

} 

. (1.1) 

By means of P one defines an operator V : S E → S E by 

V (x )) k = 

∑ 

i 1 ,i 2 , ... ,i m ∈ E 
P i 1 i 2 ... i m ,k x i 1 x i 2 . . . x i m , k ∈ E. (1.2) 

his operator is called an m -ordered polynomial stochastic operator 

in short m -ordered PSO). We note that such a PSO has a direct 

onnection with non-linear Markov operators which are intensively 

tudied by many scientists (see [1] for recent review). Therefore, it 

s crucial to study several properties of such operators [6,8,10,11] . 

ne of the important ones is its surjectivity. It turn out that when 

he set E is finite, in [12] we have established that the sturjectivity 

f V is equivalent to its orthogonal preserving property. 

We notice that if the order of the operator is 2 (i.e. m = 2 ), then

he nonlinear Markov operator V given by (1.2) is called a discrete 

uadratic stochastic operator (DQSO) which has many applications 

n population genetics [13] . Note that such kind of operators is 

raced back to Bernstein’s work [14] where they arose from the 

roblems of population genetics. We refer the reader to [3,15,16] as 

https://doi.org/10.1016/j.chaos.2021.111034
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(iii) V is surjective on B \ S . 
he exposition of the recent achievements and open problems in 

he theory of the quadratic stochastic operators (QSO) can be fur- 

her researched. In [17–21] the surjectivity of DQSO and its relation 

ith orthogonal preserving property of V have been investigated. 

On the other hand, there has been much interest in recent years 

n self-organizing search methods in the field of quadratic stochas- 

ic operators. Recently, in [22] it was started to consider QSO over 

ontinuum state spaces, namely, on the set of σ -additive measures 

efined on [0 , 1] (see also [23,24] ). In particular, points of the unit

nterval [0 , 1] serves to code (continuum valued) traits attributed 

o each individual from a considered population. The main aim of 

he present paper is further to investigate projective surjectivity of 

uch kind of continuum analogous of QSO. First, in Section 3 , we 

evise the results of [17] , and in Section 4 , we apply them to the

rojective surjectivity of QSO acting on the set of probability mea- 

ures. We notice that very particular cases of QSO have been stud- 

ed (see for example, [25–29,22,30] ). In the last Section 5 , a short

pplication of the main result to the existence of positive solutions 

onlinear Hammerstein integral equations is carried out. Certain 

ammerstein integral equations associated with finite dimensional 

QSO have been investigated in [31] . 

. Discrete quadratic stochastic operators 

In this section we give basic notations and some known results 

rom the theory of discrete quadratic stochastic operators. 

Let E be a subset of N such that | E| ≥ 2 and S E is a set given by

1.1) . We notice that there is only two case for cardinality of E. So,

n special cases we write S or S d−1 instead of S E when E is either 

nfinite or | E| = d, respectively. In what follows, by e i we denote

he standard basis in S E , i.e. e i = (δik ) k ∈ E ( i ∈ E), where δi j is the

ronecker delta. 

Let V be a mapping on S E defined by 

V (x )) k = 

∑ 

i, j∈ E 
P i j,k x i x j , ∀ k ∈ E, (2.1) 

ere P i j,k are hereditary coefficients which satisfy 

 i j,k ≥ 0 , P i j,k = P ji,k , 
∑ 

k ∈ E 
P i j,k = 1 , ∀ i, j, k ∈ E (2.2) 

ne can see that V maps S E into itself and V is called Discrete

uadratic Stochastic Operator (DQSO) [32] . 

By support of x = (x i ) i ∈ E ∈ S E we mean a set supp(x ) =
 

i ∈ E : x i � = 0 } . Recall that two vectors x , y ∈ S E are called orthog- 

nal (denoted by x ⊥ y ) if supp(x ) ∩ supp(y ) = ∅ . If x , y ∈ S E , then

ne can see that x ⊥ y if and only if x · y = 0 . Here, x · y = 

∑ 

i ∈ E x i y i .

efinition 2.1. A DQSO V given by (2.1) is called orthogonality pre- 

erving DQSO (OP DQSO) if for any x , y ∈ S with x ⊥ y one has

 (x ) ⊥ V (y ) . 

Recall [32,33] that a DQSO V : S E → S E is called Volterra if 

 i j,k = 0 if k / ∈ { i, j} , ∀ i, j, k ∈ E. (2.3) 

emark 2.2. In [33] it was given an alternative definition Volterra 

perator in terms of extremal elements of S E . 

One can check [32,33] that a DQSO V is Volterra if and only if

ne has 

V (x )) k = x k 

( 

1 + 

∑ 

i ∈ E 
a ki x i 

) 

, ∀ k ∈ E, 

here a ki = 2 P ik,k − 1 for all i, k ∈ E. One can see that a ki = −a ik .

his representation leads us to the following definition. 
2 
efinition 2.3. A DQSO V : S E → S E is called π-Volterra if there is

 permutation π of E such that V has the following form 

V (x )) k = x π(k ) 

( 

1 + 

∑ 

i ∈ E 
a π(k ) i x i 

) 

, ∀ k ∈ E, 

here a π(k ) i = 2 P iπ(k ) ,k − 1 , a π(k ) i = −a iπ(k ) for any i, k ∈ E. 

In [34,24] it has been proved the following result. 

heorem 2.4. Let | E| = d and V be a DQSO on S d−1 . Then the fol-

owing statements are equivalent: 

i) V is orthogonality preserving; 

ii) V is surjective; 

ii) V is π-Volterra QSO. 

We emphasize that there is a big difference between finite and 

nfinite dimensional settings. It is known [17] that in the infinite 

imensional setting, some implication of Theorem 2.4 fails. 

heorem 2.5. [25] Let V be infinite dimensional DQSO such that 

 (e i ) = e π(i ) for some permutation π of N . Then the following state-

ents are equivalent: 

i) V is surjective; 

ii) V is orthogonality preserving; 

ii) V is π−Volterra QSO. 

heorem 2.6. [25] Let V be a surjective and OP infinite dimensional 

QSO. Then V is a π-Volterra for some permutation π : N → N . 

. Surjectivity of DQSO 

In this section, we are going to provide a sufficient condition 

or the surjectivity of infinite dimensional DQSOs. 

Let E be a subset of N . We denote 

 

+ 
1 = 

{ 

x = (x i ) i ∈ E ∈ R 

E : x i ≥ 0 , ∀ i ∈ E and 

∑ 

j∈ E 
x j ≤ 1 

} 

. 

e can extend each DQSO V from S E to B 

+ 
1 

by the same formula

2.1) . Then the following crucial result is true. 

emma 3.1. Let V be a DQSO on B 

+ 
1 

. Then one has 

 (S E ) ⊂ S E , V (B 

+ 
1 \ S E ) ⊂ B 

+ 
1 \ S E . 

roof. For a given r ≥ 0 we denote S E r := rS E . Then it is obvious

hat 

 

+ 
1 = 

⋃ 

r∈ [0 , 1] 

S E r . 

ake any r ∈ [0 , 1] and an arbitrary x ∈ S E r . One can check that

V (x )) k ≥ 0 for all k ≥ 1 . Furthermore, using (2.2) we get 
 

k ∈ E 
(V (x )) k = 

∑ 

k ∈ E 

∑ 

i, j∈ E 
P i j,k x i x j = 

∑ 

i, j∈ E 
x i x j = r 2 . 

rom this we find V (x ) ∈ S E 
r 2 

. Hence, 

 (S E ) ⊂ S E and V (B 

+ 
1 \ S E ) ⊂ B 

+ 
1 \ S E , 

hich completes the proof. �

heorem 3.2. Let V be a DQSO on B 

+ 
1 

. Then the following statements 

re equivalent: 

i) V is surjective on B 

+ 
1 

; 

ii) V is surjective on S E ; 
+ E 

1 
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(3) 0 < λ(B ) < ∞ for every k ≥ 1 . 
roof. Thanks to Lemma 3.1 the implication (i ) ⇒ (ii ) is obvious. 

(ii ) ⇒ (iii ) . Assume that V is surjective on S E . Let r ∈ (0 , 1) ,

hen we define an operator T r : S 
E 
r → S E as follows T r (x ) = r −1 x for

ll x ∈ S E r . We notice that T r is a bijection. Then keeping in mind

 (rS E ) = r 2 V (S E ) and r 2 S E = S E 
r 2 

, one gets 

 (S E r ) = V (rT r (S E r )) = V (rS E ) = S E r 2 . 

rom the arbitrariness of r and V (0 ) = 0 , we find 

 

( ⋃ 

r∈ [0 , 1) 

S E r 

)
= 

⋃ 

r∈ [0 , 1) 

S E r , 

hich means V (B 

+ 
1 

\ S E ) = B 

+ 
1 

\ S E . 
(iii ) ⇒ (i ) . One can see that V (S E r ) ⊂ S E 

r 2 
for any r ∈ [0 , 1) . Due

o the surjectivity of V on 

⋃ 

r∈ [0 , 1) S 
E 
r , we conclude 

 (S E r ) = S E r 2 , ∀ r ∈ [0 , 1) . 

hen, for any r > 0 , one has 

 (S E ) = V (r −1 S E r ) = r −2 V (S E r ) = r −2 S E r 2 = S E . 

he last one together with V (B 

+ 
1 

\ S E ) = B 

+ 
1 

\ S E implies that

 (B 

+ 
1 
) = B 

+ 
1 

. This completes the proof. �

emark 3.3. Thanks to Theorem 3.2 , to establish the surjectivity of 

QSO V on B 

+ 
1 

it is enough to consider it only on S E . 

Let us recall the Cauchy Product which has the following form: 

 

∞ ∑ 

i =1 

x i 

) m 

= 

∑ 

i 1 , ... ,i m ∈ N 
x i 1 · · · x i m , ∀ m ∈ N , (3.1) 

here 
∑ ∞ 

i =1 x i < ∞ . 

heorem 3.4. Let V be a surjective DQSO on S. Then there exists a 

equence { j k } k ≥1 ⊂ N such that P j k j k ,k = 1 for all k ∈ N . 

roof. Let us denote 

 k = 

{
j ∈ N : P j j,k = 1 

}
irst of all, we show that surjectivity of V implies I k � = ∅ for any

 ∈ N . Thanks to the surjectivity of V , for every k ∈ N there is an

 

(k ) ∈ S such that 

 (x 

(k ) ) = e k . (3.2) 

ow, we consider two cases. 

Case 1: Let 
∣∣supp(x (k ) ) 

∣∣ = 1 . Then one can find a number j k ∈ N 

uch that supp(x (k ) ) = { j k } and 

V (x 

(k ) )) k = P j k j k ,k x 
2 
j k 

= 1 , 

hich yields that P j k j k ,k = 1 . Hence, we get j k ∈ I k . 

Case 2: Let | supp(x (k ) ) | > 1 and A := supp(x (k ) ) . By (3.2) one

nds 

V (x 

(k ) )) k = 

∑ 

i, j∈ A 
P i j,k x i x j = 1 . (3.3) 

ow suppose that there are ī , j̄ ∈ A such that P 
ī ̄j ,k 

< 1 . Then 

V (x 

(k ) )) k = 

∑ 

i, j∈ A 
P i j,k x i x j 

≤
∑ 

{ i, j}⊂A \{ ̄i , ̄j } 
x i x j + P ī ̄j ,k x ī x j̄ 

< 

∑ 

i, j∈ A 
x i x j . 

he last inequality together with (3.1) implies 

V (x 

(k ) )) < 1 , 
k 

3 
hich contradicts to (3.2) . So, we conclude that 

 i j,k = 1 , ∀ i, j ∈ A. 

n particular, we have P ii,k = 1 for any i ∈ A which mans that A ⊂ I k .

ence, we immediately get I k � = ∅ for any k ≥ 1 . 

Consequently, we infer that I k � = ∅ for every k ≥ 1 . Now, we can

efine a sequence { j k } k ≥1 by j k = inf I k . Due to the construction of

 k , one gets P j k j k ,k = 1 for all k ∈ N . This completes the proof. �

Next result gives a sufficient condition for the surjectivity of 

QSO. 

heorem 3.5. Let V be a DQSO on S. Assume that there exists a se-

uence { j n } n ≥1 ⊂ N such that 

 j n j m ,k = 0 , ∀ k / ∈ { n, m } . (3.4) 

hen V is surjective. 

roof. Let I := { j n } n ≥1 be a subset of N for which (3.4) is satisfied.

et us define a new cubic matrix ˜ P = ( ̃  P i j,k ) i, j,k ≥1 by 

˜ 
 i j,k = 

{
P α(i ) α( j) ,k , k ∈ { i, j} , 
0 , otherwise , 

here α(k ) = j k for all k ≥ 1 . We consider a DQSO 

˜ V is given by 

 ̃

 V (x )) k = 

∑ 

i, j≥1 

˜ P i j,k x i x j , ∀ x ∈ S. 

ue to the construction of ˜ P one concludes that ˜ V is a Volterra 

QSO. Then, thanks to Theorem 2.5 , the operator ˜ V is a surjection 

n S. 

Let us denote S I = { x ∈ S : supp(x ) ⊂ I} . Then it is obvious that

perator T : S → S I given by T (x ) k = x α(k ) is a bijection. Further-

ore, we have ˜ V = V ◦ T . Keeping in mind that ˜ V is surjective and

 is bijection, we infer that V = 

˜ V ◦ T −1 is surjective, which com- 

letes the proof. �

We stress that unfortunately, we are not able to prove that 

3.4) is necessary for the surjectivity of V . However, all construced 

xamples show it is true. So, we may formulate the following con- 

ecture. 

onjecture 3.6. Let V be a surjective DQSO on S. Then there exists a 

equence { j n } n ≥1 ⊂ N such that (3.4) holds. 

. Quadratic stochastic operators on L 1 and associated DQSO 

In this section, we consider QSO on L 1 and construct associ- 

ted DQSO. Let (X, F , λ) be a measurable space with a σ -finite 

easure λ. By L 1 (X, F , λ) we define an usual L 1 space. We no-

ice that L 1 can be identified with the set of all measures (signed 

nes) absolutely continuous w.r.t. λ. Namely, for every non nega- 

ive f ∈ L 1 (X, F , λ) we can define a measure μ f by 

f (A ) = 

∫ 
A 

f dλ, ∀ A ∈ �. 

herefore, in what follows, we may identify measures with func- 

ions and visa versa. 

By S(X ) we denote the set of all probability measures on X

hich are absolutely continuous w.r.t. λ. 

Recall that a collection of measurable sets B = { B k } k ≥1 is called

 partition of X (w.r.t. λ) if it satisfies 

1) X = 

⋃ 

k ≥1 

B k ; 

2) B i ∩ B j = ∅ for all i � = j; 
k 
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We denote by P(X ) the set of all partitions of X . Since λ is σ - 

nite, we infer that P(X ) � = ∅ . 
Let us take B = { B k } k ≥1 ∈ P(X ) . For any x ∈ � 1 we define a mea-

ure μB 
x on F as follows: 

B 
x (A ) = 

∞ ∑ 

k =1 

x k 
λ(B k ) 

λ(A ∩ B k ) , ∀ A ∈ F . (4.1) 

We notice that μB 
x is not probability measure when ‖ x ‖ � 1 � = 1 .

 natural question arises: for what kind of x ∈ � 1 is it true μB 
x ∈

(X ) ? 

Recall that S = { x ∈ � 1 : x i ≥ 0 , ∀ i ≥ 1 and ‖ x ‖ � 1 = 1 } . Then

he following result holds. 

emma 4.1. Let μB 
x be a measure given by (4.1) . Then μB 

x ∈ S(X ) iff

 ∈ S. 

roof. Let us assume that μB 
x ∈ S(X ) . We have μB 

x (B k ) = x k for ev-

ry k ∈ N . It yields that 0 ≤ x k ≤ 1 for every k ∈ N . On the other

and, we obtain 

 = μB 
x (X ) = μB 

x 

( ⋃ 

k ≥1 

B k 

)
= 

∑ 

k ≥1 

x k , 

hich implies that x ∈ S. 

Now we suppose that x ∈ S. Then μB 
x (X ) = 

∑ 

k ≥1 x k = 1 . This

eans that μB 
x is a probability measure on X . Moreover, it is obvi- 

us that the measure given by (4.1) is absolutely continuous w.r.t. 

. Hence, we infer that μx ∈ S(X ) . �

emark 4.2. For a given partition B of X , thanks to 

emma 4.1 there exists a one-to-one correspondence between 

and M(X, B) := { μB 
x ∈ S(X ) : x ∈ � 1 } . In other words, every

∈ M(X, B) is uniquely defined by the values μ(B k ) , k ≥ 1 . 

roposition 4.3. Let B ∈ P(X ) . Then M(X, B) is a convex and closed

et w.r.t. strong convergence. Moreover, M(X, B) is not compact w.r.t. 

eak convergence. 

roof. One can see that T : S → M(X, B) given by T x = μB 
x is a bi-

ection. Then any sequence on M(X, B) is defined by a sequence 

 x (n ) } n ≥1 ⊂ S. It is obvious that if x (n ) 
‖ ·‖ � 1 −→ x then lim 

n →∞ 

μB 
x (n ) (A ) =

B 
x (A ) for all A ∈ F . 

Let us pick a sequence { μB 
x (n ) } n ≥1 ⊂ M(X, B) . Assume that 

(A ) = lim 

n →∞ 

μB 
x (n ) (A ) for every A ∈ F . Then we have μ ∈ S(X ) . On

he other hand, we obtain 

(B k ) = lim 

n →∞ 

x (n ) 
k 

, ∀ k ≥ 1 . 

he last one together with μ(X ) = 1 implies that x (n ) converges on 

w.r.t. � 1 -norm. Hence, we conclude that T is a homeomorphism. 

hen due to closedness and convexity of S we infer that M(X, B) 

as the same topological properties. We notice that S is not com- 

act w.r.t. � 1 -norm. Consequently, M(X, B) is not a compact w.r.t. 

he weak convergence. �

emma 4.4. Let ˜ S (X ) = 

{
μ f ∈ S(X ) : f is a simple function on L 1 

}
. 

hen 

˜ 
 (X ) = 

⋃ 

B∈P(X ) 

M(X, B) . (4.2) 

roof. It is clear that 
⋃ 

B∈P(X ) 

M(X, B) ⊂ ˜ S (X ) . Indeed, for any μB 
x we 

efine a simple function 

f μB 
x 
(u ) = 

x k 
λ(B k ) 

, ∀ u ∈ B k , ∀ k ≥ 1 , 

hich satisfies 

B 
x (A ) = 

∫ 
f μB 

x 
dλ, ∀ A ∈ F . 
A 

4 
Now, we take an arbitrary μ f ∈ 

˜ S (X ) . Then for any i ≥ 1 we 

ave a measurable set A i = { u ∈ X : f (u ) = y i } . One may assume 

hat λ(A i ) > 0 for every i ≥ 1 . We notice that if λ(A i ) < ∞ for

ach i ∈ N then A = { A i } i ≥1 is a partition of X and μ f = μA 
x , where

 = (μ f (A 1 ) , μ f (A 2 ) , . . . ) ∈ S. 

If λ(A j ) = ∞ for some j ≥ 1 then one has y j = 0 (otherwise f

s not integrable). Hence, μ f (A j ) = 0 . So, without loss of generality

e may assume that y 1 = 0 , λ(A 1 ) = ∞ and y i > 0 , λ(A i ) < ∞ for

ny i > 1 . Pick any partition { B k } k ≥1 of X and define a new parti-

ion 

˜ B of X as follows: 

˜ 
 k = 

{
A 1 ∩ B k +1 

2 
, if k is odd , 

A k +2 
2 

, if k is even . 

hen μ f = μ ˜ B 
˜ y 

, where coordinates of ˜ y ∈ S are given by 

˜ 
 k = 

{
0 , if k is odd , 

μ f (A k +2 
2 

) , if k is even . 

he arbitrariness of μ f yields that ˜ S (X ) ⊂ ⋃ 

B∈P(X ) M(X, B) . The 

ast one together with 

⋃ 

B∈P(X ) M(X, B) ⊂ ˜ S (X ) implies (4.2) . �

Due to the density argument, from Lemma 4.4 we immediately 

nfer the following result. 

roposition 4.5. One has S(X ) = 

⋃ 

B∈P(X ) 

M(X, B) , here the closure in 

ense of weak convergence. 

.1. Projective surjectivity of QSO 

Let (X, F , λ) , as before, be a measurable space with a σ -finite 

easure λ. Now, we consider a measurable function P : X × X ×
 → [0 ; 1] which satisfies the following conditions: 

 (u, v , A ) = P (v , u, A ) , ∀ u, v ∈ X, ∀ A ∈ F, (4.3)

 (u, v , ·) ∈ S(X ) , ∀ u, v ∈ X. (4.4)

his function is called transition kernel , and defines a Quadratic 

tochastic Operator (in short QSO) by 

Vμ)(A ) = 

∫ 
X 

∫ 
X 

P (u, v , A ) d μ(u ) d μ(v ) , ∀ μ ∈ S(X ) , ∀ A ∈ F . 

(4.5) 

ne can check that V : S(X ) → S(X ) . Moreover, we always mean 

hat equivalent transition kernels define the same QSO on S(X ) . 

emark 4.6. Let (X, F , λ) be as before. If the transition kernel is 

efined by 

 (x, y, A ) = 

∫ 
A 

q (x, y, z) dλ(z) 

where q : X × X × X → R + is a F � F � F -measurable, nonneg-

tive function with q (x, y, z) = q (y, x, z) for any x, y, z ∈ X , and
 

X q (x, y, z) dλ(z) = 1 for every (x, y ) ∈ X × X), then the correspond-

ng QSO is called kernel QSO [27,28] . One can see QSO given by 

4.4) is more general than kernel QSO. 

efinition 4.7. A QSO V given by (4.5) is called projective surjection 

f it is surjective on M(X, B) for some B ∈ P(X ) . 

Now we are going to find QSO’s which are projective surjection. 

For a given QSO V we associate DQSO (this DQSO depends on a 

artition { B k } k ≥1 ) V B : S → S by 

 

V B (x ) ) k = 

∑ 

i, j≥1 

P B i j,k x i x j , ∀ k ≥ 1 , (4.6) 
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here 

 

B 
i j,k = 

1 

λ(B i ) λ(B j ) 

∫ 
B i 

∫ 
B j 

P (u, v , B k ) d λ(u ) d λ(v ) , ∀ k ≥ 1 . 

(4.7) 

emma 4.8. Let B = { B k } k ≥1 ∈ P(X ) . Then for every x ∈ S it holds 

VμB 
x )(B k ) = (V B (x )) k , ∀ k ≥ 1 . 

roof. Let B = { B k } k ≥1 be a partition of X and x ∈ S. Then for any

 ≥ 1 we have 

VμB 
x )(B k ) = 

∫ 
X 

∫ 
X 

P (u, v , B k ) d μ
B 
x (u ) d μB 

x (v ) 

= 

∑ 

i, j≥1 

x i x j 

λ(B i ) λ(B j ) 

∫ 
B i 

∫ 
B j 

P (u, v , B k ) d λ(u ) d λ(v ) 

= 

∑ 

i, j≥1 

P B i j,k x i x j 

= (V B (x )) k . 

�

roposition 4.9. Let V be a QSO given by (4.5) and B ∈ P(X ) . If

 (u, v , ·) ∈ M(X, B) for every (u, v ) ∈ X 2 then V(M(X, B)) ⊂ M(X, B) .

roof. Let B = { B k } k ≥1 be partition of X . Assume that P (u, v , ·) ∈
(X, B) for every (u, v ) ∈ X 2 . Then for arbitrary (u, v ) ∈ X 2 we ob-

ain 

 (u, v , A k ) = 

λ(A k ) 

λ(B k ) 
P (u, v , B k ) , ∀ A k ⊂ B k , ∀ k ≥ 1 . (4.8)

or any x ∈ S we define y ∈ S as follows y k = (V B (x )) k , k ≥ 1 . The

ue to Lemma 4.8 we get 

VμB 
x )(B k ) = y k , ∀ k ≥ 1 . 

et us establish that VμB 
x = μB 

y . Take an arbitrary measurable 

 ∈ F and denote A k = A ∩ B k for every k ≥ 1 . Keeping in mind

4.8) one gets 

VμB 
x )(A ) = 

∫ 
X 

∫ 
X 

P (u, v , A ) d μB 
x (u ) d μB 

x (v ) 

= 

∑ 

i, j≥1 

x i x j 

λ(B i ) λ(B j ) 

∑ 

k ≥1 

∫ 
B i 

∫ 
B j 

P (u, v , A k ) d λ(u ) d λ(v ) 

= 

∑ 

i, j≥1 

x i x j 

λ(B i ) λ(B j ) 

∑ 

k ≥1 

λ(A k ) 

λ(B k ) 

∫ 
B i 

∫ 
B j 

P (u, v , B k ) d λ(u ) d λ(

= 

∑ 

k ≥1 

λ(A k ) 

λ(B k ) 
y k 

= μB 
y (A ) , 

hich yields VμB 
x = μB 

y . The arbitrariness of x ∈ S implies 

(M(X, B)) ⊂ M(X, B) . The proof is complete. �

emark 4.10. We point out that a QSO is given by (4.5) with 

 (u, v , ·) ∈ M(X, B) for every (u, v ) ∈ X 2 , has been considered in

28] , and its domain is M(X, B) . 

Now we are going to find sufficiency conditions for the projec- 

ive surjectivity of QSO given by (4.5) . 

heorem 4.11. Let (X, F , λ) be a measurable space with a σ -finite 

easure λ and B = { B k } k ≥1 ∈ P(X ) . Assume that the transition kernel

 of QSO V satisfies the followings conditions: 

i) P (u, v , ·) ∈ M(X, B) , for all (u, v ) ∈ X 2 ; 

ii) there exists a sequence { j n } n ≥1 ⊂ N such that 

 (u, v , B k ) = 

λ(B k ∩ B n ) 

2 λ(B n ) 
+ 

λ(B k ∩ B m 

) 

2 λ(B m 

) 
, ∀ (u, v ) ∈ B j n × B j m , ∀ k ∈ N
(4.9) 

5 
Then V is projective surjection. 

roof. Assume that all conditions of the theorem hold. From the 

ondition (i), according to Proposition 4.9 we have V : M(X, B) → 

(X, B) . 

Now, let us show that V(M(X, B)) = M(X, B) . For any triple 

n, m, k ) ∈ N 

3 from (4.9) after simple calculations, we get 

 

B 
j n j m ,k 

= P B j m j n ,k 
= 

⎧ ⎨ 

⎩ 

1 , if n = m = k ;
1 
2 
, if n = k � = m ;

0 , if k / ∈ { n, m } . 
Hence, by Theorem 3.5 , the corresponding DQSO V B is a sur- 

ection. So, for any y ∈ S one can find x ∈ S such that V B (x ) = y .

onsequently, Lemma 4.8 implies that 

VμB 
x )(B k ) = μB 

y (B k ) , ∀ k ∈ N . 

rom the last one, keeping in mind VμB 
x ∈ M(X, B) thanks to 

emark 4.2 we infer 

μB 
x = μB 

y . 

inally, the arbitrariness of y ∈ S yields V(M(X, B)) = M(X, B) . This 

ompletes the proof. �

emark 4.12. We notice that the conclusion of the last theorem 

ill be true if (4.9) holds almost everywhere in B j n × B j m . 

For any measurable set A ⊂ X we define 

 A = 

{
(x, y ) ∈ (X \ A ) 2 : P (x, y, A ) � = 0 

}
. 

heorem 4.13. Let (X, F , λ) be a measurable space with a σ -finite 

easure λ and B = { B k } k ≥1 ∈ P(X ) . Then there is only one QSO V
hose transition kernel satisfies the followings: 

i) P (u, v , ·) ∈ M(X, B) , ∀ (u, v ) ∈ X 2 ; 

ii) λ(E B k ) = 0 for every k ∈ N . 

Moreover, V is projective surjection. 

roof. From (i) we have P (u, v , ·) = μB 
x (u, v ) for any u, v ∈ X . With-

ut loss of generality we may replace the condition (ii) to 

B 
x (u, v ) (B k ) = 0 , ∀ (u, v ) ∈ (X \ B k ) 

2 , ∀ k ∈ N . 

hen, for any (u, v ) ∈ B n × B m 

B 
x (u, v ) (B n ) + μB 

x (u, v ) (B m 

) = 1 . 

eeping in mind x (u, v ) = x (v , u ) , from the last one, we have

 (u, v ) = 

1 
2 e n + 

1 
2 e m 

for every (u, v ) ∈ B n × B m 

. Hence, 

 (u, v , A ) = 

λ(A ∩ B n ) 

2 λ(B n ) 
+ 

λ(A ∩ B m 

) 

2 λ(B m 

) 
, ∀ (u, v ) ∈ B n × B m 

, ∀ A ∈ F

(4.10) 

We notice that (4.10) implies (4.9) for the sequence { n } n ≥1 . 

hen Theorem 4.11 implies that V is projective surjection. The 

roof is complete. �

orollary 4.14. Let (X, F , λ) be a measurable space with a σ -finite 

easure λ and B = { B k } k ≥1 ∈ P(X ) . There is only one QSO V whose

ransition kernel satisfies the followings: 

i) P (u, v , ·) ∈ M(X, B) , ∀ u, v ∈ X; 

ii) λ(E A ) = 0 for every A ∈ F . 
Moreover, V is projective surjection. 
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. Application 

In this section we give a direct application of the projective sur- 

ectivity of QSO to the existence of positive solutions of certain 

onlinear integral equations. 

Let (X, F , λ) be a measurable space with a σ -finite measure 

. Let us consider the following nonlinear Hammerstein integral 

quation: 
 

X 

∫ 
X 

K(u, v , t) x (u ) x (v ) d λ(u ) d λ(v ) = ϕ(t) , (5.1)

here K is some positive kernel and ϕ ∈ L 1 + is a given function. 

We note that this type of equation appeared in several prob- 

ems of astrophysics, mechanics, and biology. Here in the equation, 

 : X 3 → R and ϕ : X → R are given functions, and x : � → R is

n unknown one. Generally speaking, in order to solve the nonlin- 

ar Hammerstein integral Eq. (5.1) over some functions space, one 

hould impose on some constraints on K(·, ·, ·) . There are several 

orks where the existence of solutions the above given equation 

ave been carried out by means of contraction methods (see [35–

8] ). In this section, we are going to another approach for the ex- 

stence of positive solutions of (5.1) . In what follows, we consider 

he Eq. (5.1) over L 1 -spaces. 

Multiplying (5.1) by a function g from L ∞ and integrating it, we 

btain 

 

X 

∫ 
X 

∫ 
X 

g(t) K(u, v , t) x (u ) x (v ) dλ(u ) dλ(v ) dλ(t) = 

∫ 
X 

g(t) ϕ(t) dλ(t) . 

(5.2) 

We stress that the arbitrariness of g implies that (5.2) and 

5.1) are equivalent. 

Now, assume that there is a transition kernel P such that ∫ 
X 

∫ 
X 

∫ 
X 

g(t) K(u, v , t) x (u ) x (v ) dλ(u ) dλ(v ) dλ(t) 

= 

∫ 
X 

∫ 
X 

∫ 
X 

g(t) P (u, v , dt) x (u ) x (v ) dλ(u ) dλ(v ) 

or all x ∈ L 1 and g ∈ L ∞ . 

Then (5.2) is reduced to 
 

X 

∫ 
X 

∫ 
X 

g(t) P (u, v , dt) x (u ) x (v ) dλ(u ) dλ(v ) = 

∫ 
X 

g(t) ϕ(t) dλ(t) . 

ow, taking g = χA , A ∈ F , we arrive at 

Vμx )(A ) = μϕ (A ) , 

here, as before, μx (A ) = 

∫ 
A x (u ) dλ(u ) . Assume that 

 

X 

ϕdλ = 1 . 

ence, the integral Eq. (5.1) is reduced to 

μ = μϕ , (5.3) 

here μ ∈ S(X ) . 

Hence, the following result is true. 

heorem 5.1. Let (X, F , λ) be a measurable space with a σ -finite 

easure λ and B = { B k } k ≥1 ∈ P(X ) . Assume that QSO V is a pro-

ective surjection on M(X, B) . Then for any μϕ ∈ M(X, B) the Eq.

5.3) has a solution in M(X, B) . 
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