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Abstract. Rolling element bearing is an important component in various machinery. Faulty on 

bearing cause severe equipment damage that lead to high maintenance cost. The development of 

deep learning has been paid a considerable amount of attention to fault diagnosis on rolling 

element bearing. Traditional machine learning such as Artificial Neural Network and Support 

Vector Machine have problems of lacking expression capacity, existing the curse of 

dimensionality, require manual feature extraction and require an additional feature selection. 

Deep learning model has the ability to effectively mine the high dimensional features and 

accurately recognize the health condition. In consequence, deep learning model has turned into 

an innovative and promising research in bearing fault diagnosis field. Thus, this paper tends to 

proposed Deep Sparse Autoencoder (DSAE) with Teager Kaiser Energy Operator (TKEO) to 

diagnose the bearing condition. DSAE is one of deep learning model which uses the architecture 

of neural network. During the analysis, the hyperparameter of DSAE model was optimized by 

Ant Lion Optimization. The analysis results show that the proposed TKEO-DSAE achieved 

99.5% accuracy of the fault diagnosis. The comparative study between proposed model and ANN 

proved that deep learning model outperform traditional machine learning model on bearing fault 

diagnosis.  

 

Keywords: bearing; fault diagnosis; teager kaiser energy operator; deep sparse autoencoder; ant 
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1.  Introduction 

Rolling element bearing (REB) is broadly used in domestic and industrial applications. The bearing 

provides a physical support to a component and allows that components to rotate with less friction. 

Working condition of this component depends on the smooth and quiet running of the bearings. Bearing 

is extensively used in industry field such as induction machines [1] wind turbines [2], helicopters [3], 

and automotive [4]. Bearing is considered as a critical component in a majority of machines due to 

exposure on extreme conditions (dirty conditions, high temperature, overstress) continuously. Extreme 

conditions cause the generation of fault on bearing components such as outer race, inner race and rolling 

element. Therefore, Fault diagnosis is introduced in providing an effective maintenance strategy to 

diagnose the fault growth in bearing component. Various monitoring method have been introduced for 

bearing fault diagnosis such as vibration analysis, acoustic analysis, thermal analysis and motor current 

analysis. However, vibration analysis has been proven to be an effective monitoring method for bearing 

fault diagnosis [5- 8].  

Presently, the integration of machine learning on bearing fault diagnosis has been paid a lot of 

attention by researchers as machine learning could produce more accurate outcomes with a consistent 

result. Artificial neural network (ANN) and Support Vector Machine (SVM) are among the popular 
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machine learning model which widely used on bearing fault diagnosis. However, this machine learning 

needs a manual feature extraction from the bearing vibration signal. The extracted features require a 

selection process in order to choose the best feature that reflect the bearing conditions. The process of 

feature extraction and feature selection is time-intensive. In 2006, Hinton and Salakhutdinov develop a 

modification version of the neural network by increasing the number of hidden layer [9] which later 

called as deep learning. Deep learning model capable of extracting high dimensional feature without the 

needs of a human assistant. Convolutional Neural Network (CNN), Deep Belief Network (DBN), and 

Deep Sparse Autoencoder (DSAE) are the examples of deep learning model which is widely used in 

many applications  [10- 12]. Among the deep learning model, DSAE model has the capability to be 

trained based on unsupervised manner [13]. The DSAE model is the integration of multiple neural 

network architecture. The DSAE aims to produce the output that contains similar characteristics to its 

input. DSAE is trained with the same mathematical model as feedforward neural network that utilized 

gradient descent algorithms for the back-propagation process.  

Due to the complexity of the bearing signal, a lot of consideration is required to acquire the important 

feature from the bearing signal. This is due to the prediction performance of deep learning model is 

influenced by the quality of the signal. It is known that during data acquisition from the sensor, the 

captures signal contains the signal of interest and noise. Noise is a type of disturbance that bury the 

useful important feature in the signal. Therefore, a suitable signal processing method is required to filter 

the noise so that useful feature can be extracted from the signal. There is a lot of signal processing 

method utilized in bearing fault diagnosis field such as wavelet transform, empirical mode 

decomposition, variational mode decomposition, etc. In this study, the Teager Kaiser Energy Operator 

(TKEO) is used instead of another signal processing method due to its ability to pre-process the signal 

by filtering the low-frequency background signals [14]. TKEO has been paid less attention toward 

bearing fault diagnosis.  

This paper aims to solve bearing fault diagnosis using Teager Kaiser Energy Operator (TKEO) and 

deep sparse autoencoder (DSAE). The DSAE model is optimized via Ant Lion Optimization. The 

performance of (DSAE) model is compared with Artificial Neural Network (ANN). 

 

2.  Teager Kaiser Energy Operator Theory 

The Teager–Kaiser energy operator was introduced by Teager and Kaiser to measure the energy of a 

time domain signal that was generated by the mechanical process [15]. This method is proposed for 

AM-FM demodulation and to estimate the envelope of the amplitude of AM signals [16]. The TKEO 

process on continuous time signals x(t) is defined in the following Equation (1); 
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Meanwhile, the Equation (2) defined the discrete model of TKEO; 
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Several studies used TKEO for signal processing. For example, Rodriguez extracted important 

feature from the Amplitude Modulated (AM) signal using TKEO. The result shows that features 

extracted after the signal has been processed by TKEO outperform the diagnosis results of the extracted 

features from the raw time vibration signal [17]. Meanwhile, Kwak et al. used TKEO in their research 

to enhance the signal peak induced by the defect located on bearing component [14]. Tran et al. used to 

TKEO to reveal the fault pattern from the reciprocating compressor valves signals [18]. 
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3.  Deep Sparse Autoencoder  

The autoencoders aim to produce the output that contains similar characteristics to its input. Sparse 

autoencoder used the architecture of neural network which is suitable for the dimensional reduction of 

the features. The hidden layer representation of sparse autoencoder network is  illustrated in the 

following Equation (3); 

 

 )()( 111 bxwfxh +=  (3) 

 

where f(z) is the nonlinear activation function to maps the input. Generally, the logistic sigmoid function 
zezf −+= 1/1)(  is used as activation function which maps the input from zero to one. The network 

output maps the hidden representation ℎ back to a reconstruction 𝑥̃ ∈ 𝑅𝑛 is illustrated in Equation (4); 
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In general, autoencoder is used for feature dimensional reduction and do not contain any sparsity 

term on its model. The hidden node number of autoencoder should be less than the input size. By adding 

the sparsity term on the autoencoder cost function, the network of autoencoder can be more versatile 

since the hidden node number can be any number either lower, equal or higher than input node. 

Therefore, the cost function of sparse autoencoder is developed based on three terms which are defined 

in Equation (5); 
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The integration of multiple sparse autoencoders is called deep sparse autoencoder (DSAE).  

 

4.  Ant Lion Optimization 

The Ant Lion Optimization (ALO) is the optimization algorithms in finding the unknown parameters 

based on the objective function and fitness values. The ALO algorithms are proposed by mimicking the 

nature of Antlion hunting mechanism. This algorithm was proposed by Mirjalili in 2015 [19]. The 

antlion hunting mechanism is based on four following process; digging the trap, hide underneath the 

bottom cone and attack the prey once the prey falls into the trap. Finally, the antlion pulled the prey 

under the soil and consumed. The leftovers are thrown outside the trap and the antlions prepare the trap 

for the next hunt. The details regarding the algorithms may refer to Mirjalili works [19]. 

The ALO algorithms were used to optimized six hyperparameters of DSAE such as weight 

regularization, sparsity regularization and sparsity proportion that are associated with each sparse 

autoencoder. In this study, two components of sparse autoencoder are used to construct the DSAE 

network. Manual selection of six DSAE hyperparameter is time-intensive. The overall step of bearing 

fault diagnosis is shown in the following Figure 1. 

 



International Colloquium on Computational & Experimental Mechanics (ICCEM 2020)
IOP Conf. Series: Materials Science and Engineering 1062  (2021) 012002

IOP Publishing
doi:10.1088/1757-899X/1062/1/012002

4

 

 

Figure 1. Bearing fault diagnosis of Proposed Method 

 
5.  Experimental setup 

In this section, the details about experimentation from Case Western Reserve University is discussed. 

The data were collected with 48kHz from the experimental set up as shown in Figure 2. Every single 

fault is artificially made on each bearing components such as an outer raceway, inner raceway and 

rolling element. In this study, the fault diagnosis focus on the 1800rpm speed conditions and 0.007-inch 

fault size. Based on the data selection, we believed that if the proposed model could diagnose the 0.007-

inch fault effectively, then there is no a problem for the proposed model to diagnose 0.014-inch and 

0.021-inch fault size.  The selected vibration signal is then processed by Teager Keiser Energy Operator 

(TKEO). The 2D-images of TKEO signal is resized to 28x28 image patches. In addition, the statistical 

feature from the filtered signal by TKEO is extracted for further analysis. 
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Figure 2. Experimental Rig for bearing fault simulation 

 
There are four types of signal that represent bearing conditions as illustrated in table 1 which are 

normal, outer race fault, rolling element fault and inner race fault. The vibration signals are segmented 

to one rotation based on equation 6 and the segmented process is illustrated in Figure 3. The segmented 

signals are sampled as shown in Table 1 which means the signal is cut into 100 samples on each bearing 

conditions. The 100 samples are divided into a training dataset and testing dataset. Each segmented 

vibration signal is processed via TKEO as shown in Figure 4-7. These images from Figure 4-7 are used 

as input to our proposed method. The proposed model is based on image classification. These image 

patches are used as an input to DSAE model and ANN model for bearing fault classification analysis. 

Instead of TKEO images, the statistical features from the filtered signal has been extracted for a 

comparative study between the proposed method and ANN model with statistical features. There are 

nine statistical features that were extracted from the filtered signal such as amplitude, mean, variances, 

standard deviation, RMS, kurtosis, skewness, crest factor and clearance factor. 

 

 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑒𝑐𝑜𝑛𝑑

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑚𝑜𝑡𝑜𝑟 (𝑅𝑃𝑀)/60
 (6) 

 

 

Figure 3. The segmented signal of one rotation 

 

Table 1. Data distribution 

Bearing Conditions Training Data Testing Data 

Normal 50 50 

Outer race fault 50 50 

Rolling element fault 50 50 

Inner race fault 50 50 
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Figure 4. Rolling Element Fault Figure 5. Normal state 

  

Figure 6. Inner Race Fault Figure 7. Outer Race Fault 

 

The performance accuracy of DSAE training and supervised fine-tuning stages is affected by many 

hyperparameters. The hyperparameters of DSAE classifier are the number of the hidden nodes, number 

of layers, maximum iteration (epoch), sparsity proportion etc. In general, there is no standard method to 

determine the optimal hyperparameters of DSAE model. As mentioned earlier, three important 

hyperparameters of DSAE is optimized by ALO algorithms. The range of three hyperparameters that 

were optimized using ALO is tabulated in Table 2. In addition, the rest hyperparameter of DSAE model 

is tabulated in Table 2. 

 

Table 2. Setting of parameters for DSAE 

Sparse Autoencoder 1 

Hidden node number: 300 

Epoch: 300 

L2 Weight Regularization: (0-0.004) 

Sparsity Regularization: (0-4) 

Sparsity Proportion: (0-1) 

Encoder and Decoder Transfer function: Logistic Sigmoid 

Sparse Autoencoder 2 

Hidden node number: 150 

Epoch: 300 

L2 Weight Regularization: (0-0.004) 

Sparsity Regularization: (0-4) 

Sparsity Proportion: (0-1) 

Encoder and Decoder Transfer function: Logistic Sigmoid 
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Softmax Layer 
Loss function: Cross-entropy 

Epoch: 300 

 

The comparative study between DSAE and ANN model is conducted. ANN is a traditional machine 

learning model which has been broadly used in bearing fault diagnosis. The ANN model is trained using 

two different datasets such as statistical features and image features. The prediction of ANN for both 

features are presented in the next section. The parameter setting regarding ANN model is illustrated in 

Table 3. 

 

Table 3. The setting of the ANN hyperparameter 

Feed Forward Neural Network 

Activation function 

hidden layer 
Logistic Sigmoid 

Number of Hidden 

Neuron 
10-50 

Loss function Cross-entropy  

 

6.  Results and Discussion 

In this section, the experimental results of TKEO-DSAE, TKEO-ANN, ANN with statistical features 

are presented. Matlab R2017a installed on a conventional computer with a 2.4GHZ CPU and 8GB 

memory is used to conduct the experiments. In order to compare the machine learning model, Receiver 

Operating Characteristics (ROC) curve is used to make the comparison more meaningful. ROC based 

on the measurement of specificity and sensitivity of all cut off point. The y-axis of ROC curves 

represents a true positive rate (TPR) while x-axis of ROC curves represents a false positive rate (FPR). 

TPR denote as the sample ratio that is classified correctly while FPR denotes the sample ratio that is 

incorrectly classified. The performance of the model is higher if the located on the top and left edges of 

the plot.  

From figure 8, it is shown that DSAE model curve is located closer to the top and edge of the plot. 

Meanwhile, ANN with statistical features has higher performance compared to ANN model with image 

features since ANN with statistical features has steeper curve compare to ANN with image features. In 

order to present more accurate result regarding classification accuracy, the confusion matrix is tabulated 

in table 4-6. From Table 4 -6, it is clear that SSAE model outperforms ANN methods in term of overall 

classification accuracy using image patches of TKEO. TKEO-DSAE produced 99.5%. DSAE 

misclassify one rolling element fault image to normal bearing conditions. However, most of the image 

sample is correctly classified. Meanwhile, ANN produced 77.2% for image classification. The data used 

to train and test the ANN model is similar to DSAE dataset. From the confusion matrix in Table 5, ANN 

model misclassified 41 images which rolling element fault contribute to the highest misclassification 

rate. Images contain a large size of features which in this study, the size of features is 784. We believe 

that ANN unable to process the large size of features that make the ANN model unable to produce a 

satisfactory performance. 

Therefore, further study is conducted by extracting nine statistical features from the filtered signal. 

The analysis shows that ANN model produced 89.0% prediction accuracy of bearing fault classification. 

The details of the classification are tabulated in Table 6. The ANN model suffers from the same 

problems which rolling element fault contribute to the highest misclassification among the four classes 

of bearing conditions. Based on the result, DSAE model outperforms ANN model for bearing fault 

classification. 
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Figure 8. Comparison of ROC curve between three models 

 

Table 4. Confusion matrix of DSAE prediction 

Class 

Actual 

Normal 

Outer 

Race 

Fault 

Rolling 

element 

Fault 

Inner 

Race 

Fault 

Predicted 

Normal 50 0 1 0 

Outer Race 

Fault 
0 50 0 0 

Rolling 

element 

Fault 

0 0 49 0 

Inner Race 

Fault 
0 0 0 50 

Sensitivity (%) 100 100 98 100 

Accuracy (%) 99.5 

 

Table 5. Confusion matrix of ANN prediction 

Class 

Actual 

Normal 

Outer 

Race 

Fault 

Rolling 

element 

Fault 

Inner 

Race 

Fault 

Predicted 

Normal 47 0 10 0 

Outer Race 

Fault 
0 50 0 5 

Rolling 

element 

Fault 

3 0 25 13 
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Inner Race 

Fault 
0 0 15 32 

Sensitivity (%) 94 100 50 64 

Accuracy (%) 77.2 

 

Table 6. Confusion matrix of ANN prediction using statistical features 

Class 

Actual 

Normal 

Outer 

Race 

Fault 

Rolling 

element 

Fault 

Inner 

Race 

Fault 

Predicted 

Normal 40 0 8 0 

Outer Race 

Fault 
0 50 0 0 

Rolling 

element 

Fault 

10 0 39 1 

Inner Race 

Fault 
0 0 3 49 

Sensitivity (%) 80 100 78 98 

Accuracy (%) 89.0 

 

The performance of ALO is shown in the following Figure 9. The ALO model is used to 

optimize the 6 hyperparameters of the DSAE model. The result indicated ALO is able to search 

the optimal value of hyperparameters as shown in Fig. 9. The ALO require 20 iterations to reach 

the lowest percentage error of DSAE which is 99.5%. Based on the analysis, we found that 

ALO requires less parameter setting in order to perform the optimization process of DSAE 

model. 

 

 

Figure 9. Performance of ALO on DSAE 
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7.  Conclusion 

In this paper, the method of applying TKEO and stacked autoencoder DSAE to bearing fault diagnosis 

problem shows the excellent classification performance compared to TKEO and ANN. During the 

analysis, the DSAE is optimized using ALO for automated DSAE hyperparameter selection. The 

proposed model capable of achieving 99.5% prediction accuracy on bearing fault classification. In 

addition, this DSAE model has good capability to extract a feature from the image compare to ANN 

model. 
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