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ABSTRACT Software-DefinedNetworking (SDN) is a new type of technology that embraces high flexibility
and adaptability. The applications in SDN have the ability to manage and control networks while ensuring
load balancing, access control, and routing. These are considered the most significant benefits of SDN.
However, SDN can be influenced by several types of conflicting flows which may lead to deterioration
in network performance in terms of efficiency and optimisation. Besides, SDN conflicts occur due to
the impact and adjustment of certain features such as priority and action. Moreover, applying machine
learning algorithms in the identification and classification of conflicting flows has limitations. As a result,
this paper presents several machine learning algorithms that include Decision Tree (DT), Support Vector
Machine (SVM), Extremely Fast Decision Tree (EFDT) and Hybrid (DT-SVM) for detecting and classifying
conflicting flows in SDNs. The EFDT and hybrid DT-SVM algorithms were designed and deployed based on
DT and SVMalgorithms to achieve improved performance. Using a range flows from 1000 to 100000with an
increment of 10000 flows per step in two network topologies namely, Fat Tree and Simple Tree Topologies,
that were created using the Mininet simulator and connected to the Ryu controller, the performance of the
proposed algorithms was evaluated for efficiency and effectiveness across a variety of evaluation metrics.
The experimental results of the detection of conflict flows show that the DT and SVM algorithms achieve
accuracies of 99.27% and 98.53% respectively while the EFDT and hybrid DT-SVM algorithms achieve
respective accuracies of 99.49% and 99.27%. In addition, the proposed EFDT algorithm achieves 95.73%
accuracy on the task of classification between conflict flow types. The proposed EFDT and hybrid DT-SVM
algorithms show a high capability of SDN applications to offer fast detection and classification of conflict
flows.

INDEX TERMS Software-defined network, conflict flows detection, flow classification, machine learning
algorithms.

I. INTRODUCTION
The conventional architecture of a network is not fully adapt-
able to the requirements of using the current network appli-
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cations and advanced data centre environments. Therefore,
Software-Defined Network (SDN) was proposed to allow
cloud and network administrators as well as engineers to of
keep up with the ever-changing business requirements over
a centralized control console [1]. The SDN also includes
a variety of network technologies designed to make the
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network scalable and robust enough to accommodate storage
infrastructures and virtualized servers in a modern data cen-
tre. Furthermore, the SDN technique is originally intended
for managing, constructing, and designing networks. This is
to provide direct network programmability and independence
of the primary infrastructure of network services and appli-
cations by separating the network control and forwarding
planes. In general, the SDN is cost-effective, manageable,
dynamic, and adaptable which makes it appropriate for the
dynamic nature of high-bandwidth modern applications [2].
SDN presents a virtualised execution framework which sep-
arates the network control functions from the underlying net-
work forwarding traffic [3]. In addition to the incorporation
of various network devices in SDN (e.g., routers, switches,
and access points) which allows for the implementation of
various network control functions, the SDN controller allows
complicated network configuration. In essence, the main goal
of the SDN is to give users more control over their control
configuration while still ensuring network efficiency require-
ments [4].

The reliability of a traditional network is known to be
harmed by various types of conflicts to which SDN is not
immune. Intelligible Conflicts and Interpretative Conflicts
are the two major forms of conflict categories according to
their laws and effects. Flow conflict manifest in different
forms, such as the case of designing the SDN. Changes in
the flow rule policy or flow entry result in different forms
of conflict appearing in the controller and flow table. On the
other hand, the techniques for detecting and classifying flow
conflicts in SDN models are highly imperative. For example,
Machine Learning (ML) algorithms have proved their effi-
ciency and effectiveness in detecting and classifying two or
more subjects [5], [6], with application in several domains
such as identification of spam emails [7], images classi-
fication in the medical domain [8], [9], voice pathology
detection [10]–[12], and language identification [13], [14].
In these methods, the implemented ML algorithms played
the main role. The main purpose of using these algorithms
is to train and build a system that is efficiently capable
of classifying subjects with high detection accuracy. How-
ever, ML algorithms are still suffering from low detection
accuracy in SDN models. Besides, these algorithms have
received minimal attention with respect to the detection
and classification of the flow conflicts in SDN compared
to other domains. In other words, no work represents the
detection and classification of flow conflict types using
ML algorithms

This paper discusses the use of Decision Tree (DT),
Support Vector Machine (SVM), Extremely Fast Decision
Tree (EFDT), and Hybrid (DT-SVM) machine learning algo-
rithms for detecting and classifying flow conflicts in SDNs.
To improve the performance of the flow conflict detection
system, the EFDT and hybrid DT-SVM algorithms were
designed and deployed based on DT and SVM algorithms.
A variety of evaluation metrics are used to assess the perfor-
mance of the proposed algorithms in terms of efficiency and

effectiveness. The following are the key contributions of this
paper:

• Proposed Extremely Fast Decision Tree (EFDT)
and hybrid Decision Tree-Support Vector Machine
(DT-SVM) for flow conflict detection in SDN.

• Application of DT, SVM, EFDT, and DT-SVM ML
algorithms in the detection and classification of conflict
flows.

• The use of different number of flows with the algorithms
each time to identify and classify conflict flows.

• The use of accuracy, precision, F1-score, recall, and
execution time assessment metrics to assess the perfor-
mance of the proposed algorithms.

• To the best of our knowledge, the is first attempt at using
machine learning algorithms to identify and classify
conflict flows.

The rest of this paper is organized as follow; Section II
addresses similar works of ML algorithms used in the SDN
domain. The suggested methods are presented in Section III.
The experimental results and discussion are detailed in
Section IV. Finally, Section V brings the paper to a conclusion
while highlighting future direction.

II. BACKGROUND AND RELATED WORK
A. SDN BACKGROUND
The SDN has many advantages such as centralised moni-
toring that helps in reducing manual communication with
the hardware for enhanced network efficiency. Additionally,
separating the control plane and data plane leads to simpler
hardware and increases the chances of having more exper-
tise among hardware vendors, as the devices do not rely on
commercial software [15]. The infrastructure, control (SDN
controller), and application layers are the three basic com-
ponents of SDN architecture. Numerous networking devices,
such as switches and routers, make up the infrastructure layer.
The control layer is the core of the SDN model where the
centralised SDN controller software is hosted. The applica-
tion layer embodies the implementation of typical workings
of the network or functions [16]. Fig. 1 presents the SDN
architecture where the OpenFlow is considered the first SDN
standards. Essentially, it presents the connection protocol in
SDN environments. It is obvious that the OpenFlow separates
the infrastructure layer from the control layer. This is highly
beneficial, where developers can modify and develop the
application layer to meet their needs. Thus, the application
layer can appropriately be adapted to the changing business
requirements [17].

In addition, OpenFlow is a protocol used to facilitate
the connection between network switches and server with
respect to received and sent packets. It allows sharing of the
same physical infrastructure with numerous logical networks.
Besides, the network virtualisation layer includes a collection
of controllers formanaging a large number of switches. In this
case, one switch can belong to numerous virtual networks,
controllable through one or more collection of controllers.
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FIGURE 1. The SDN architecture [20].

However, such a design is susceptible to flow conflicts [18].
Nowadays, depending on the destination, data transmission
is redirected. While this approach provides an efficient appli-
cation of narrowest routing protocols, it does not provide
fine-grained network traffic control. Nevertheless, there are
several suggestions for future internet designs which need
network data plane to perform routing and forwarding at the
level of single connections or their aggregate (e.g., network
services or network virtualisation) [19].

B. ML ALGORITHMS IN SDN
Machine learning (ML) algorithms have opened up several
significant opportunities in the implementation of SDNmod-
els; particularly in security applications. These algorithms
have widely been used to elevate the performance of SDN
models. Here, we will look at the most up-to-date models
for traffic classification, flow detection and classification,
security, and traffic management, all of which used different
machine learning algorithms. Table 1 includes a summary of
similar machine learning algorithms used in SDN models.
In [21], a flow-aware elephant flow detection is implemented
in SDN. To effectively accomplish a reliable elephant flow
identification, the proposed approach utilised two classifi-
cation models simultaneously; One on the SDN switches
(i.e., switch-side classifier) and the second on the controller
(i.e., controller-side classifier). In addition, this strategy facil-
itates the exchange of elephant flow identification activities
between the controller and switches. Thus, several mouse
flows are screened in the switches, thereby eliminating the
need for the controller to carry out vast quantities of clas-
sification demands and signalling notifications. Experimen-
tal results show that, in terms of running time, precision,

TABLE 1. Summary of related work.

F-measure, and recall, the proposed methodology outper-
forms contemporary approaches.

The study conducted in [22] was intended to demonstrate
in principle the integration of machine learning with SDN
applications for detecting network traffic. It was demon-
strated that traffic classification using machine learning algo-
rithms improves performance in the context of SDN. This
was largely achievable due to the potential of this structure
to gather knowledge. This approach proved highly success-
ful and showed that these high-performing, intelligent-based
communication principles can boost or even replace tradi-
tional network controls in the near future. In [23], the influ-
ence of various OpenFlow time windows on the output pre-
diction of various classification algorithms was discussed.
On OpenFlow flow datasets generated in both virtual and
physical SDN environments, a total of 150 prototypes were
built and tested. The results of the analysis showed that the
OpenFlow traffic time interval chosen has a major impact
on detection performance with wider time windows result-
ing in lower detector output. Moreover, by adding cor-
rect time-windows to OpenFlow traffic, the authors showed
that good precision in detecting unidentified threats can be
achieved.

Furthermore, [24] suggested an intelligent solution to
screening and classification (ESCA). The authors proposed
a modern differentiated scheduling method that indepen-
dently and progressively establishes routes for elephant and
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mouse flows. ESCA significantly reduces processing over-
head and efficiently classifies specimens using a new super-
vised classification algorithm of data flow similarities by
measuring the delivery time of elephant flows and filter-
ing out duplicate specimens. With a focus on low-cost
ESCA, a DiffSch feature-aware flow schedules solution that
distinguishes between elephant and mouse flow schedules
was proposed. According to the general theory, ESCA out-
performs related frameworks. Comprehensive experimen-
tal results demonstrate the capability of ESCA to produce
accurate identification with far less collected samples with
a short detector period, and that certain DiffSch schedule
method model outperformed related proposals significantly.
In [25], the authors proposed CyberPulse which is a new
powerful preventive measurement method that underpins a
classifier based on machine learning to mitigate LFA in
SDN. By classifying network traffic using deep learning
methods, CyberPulse which is incorporated in the Flood-
light controller as an enhanced subsystem as opposed to
existing techniques on produced practical networks using
Mininet conducts network monitoring with impressive pre-
cision, false positive rate, and efficiency when evaluated.
According to the results, CyberPulse could identify suspi-
cious flowswith high accuracy and thus, easilymitigate them.
In addition, [26] discussed issues related to flowmanagement
caused by network connectivity. A supervised learning pro-
totype was proposed to reduce the SDN controller’s reaction
time for large complex architectures; thereby allowing the
controller to forecast node mobility and connection failure
risk. An alternate path preference structure is alternatively
introduced to ensure efficient traffic balancing while min-
imising the workload of the control plane. In the commonly
utilised network simulator-ns-3, the result of the proposed
algorithm, SDN based Wireless Mesh Network (SD-WMN)
model, was verified. Experimental findings demonstrate that
the designed SD-WMN model with link-failure proactive
traffic management obtained data transmission improvement.
The author of [27] developed a system for detecting and
deploying DDoS threats in SDN-focused virtual networks.
The suggested framework includes not only the control func-
tion dependent on the OpenFlow interface statement (i.e.,
PACKET IN statement) for a non-timely reply, but also a
multi-dimensional information-based flow feature extraction
method. In addition, creating an efficient nationwide network
flow table component behaviour focused on the OpenFlow
table function and the flow table entrance stability feature.
Evaluation of all feedbacks to the flow table was done by
SVM which efficiently decreases the time for initial attack
detection and classification identification by evaluating the
test outcomes with a smaller false alarm rate. References [28]
proposed SDN-HomeGateway (SDN-HGW), which expands
the regulation for improved end-to-end network security
of the network connection (i.e., a housing automation sys-
tem). Through the classification of data flows in a smarter
housing system, the suggested SDN-HGW gains decen-
tralised device knowledge. There are many current traffic

identification approaches for coded data packets. Encoded
data classification model known as DataNets is built on
several deep learning models to solve these problems using
an open data library of around 200,000 sets used for deep
learning. The experimental findings indicate that the built
DataNets can be used in upcoming smarter housing network-
ing to allow distributed framework SDN-HGW.

Although, machine learning traffic flow classification
methods are commonly used, SDN rules are still detected
based on the flow categories produced; thus, [29] presented a
platform that exacerbates this difficulty. Supervised learning
methods was used for various forms of traffic depending
on pre modelling techniques. Unsupervised learning was
also used to cluster varying traffic flows before, finally,
a flow grouping classifier that defines flows that are normally
observed together in an identical time period upon identifying
the flows. For classification problems, C4.5 decision tree
classifiers with functions for each flow, like cross arrival time,
packet size, packet number, and flow tuple, are used. In [30],
two machine learning algorithms, SVM and K-means, were
evaluated for network traffic identification. It was stated that
it is possible to obtain an average precision of around 95 per-
cent. Meanwhile, through design adjustment and data pre-
processing, the efficiency of the machine could be further
improved. Thus, configuration and feature choice of the SVM
model was carried out for traffic classification. Findings
demonstrate that the radial base kernel function based SVM
model resulted in the highest precision and are most effective
in numerical terms.

In sum, the findings from all the studies that used machine
learning algorithms in the SDN models can be summarised
as follow:
• Supervised learning methods are widely employed.
Although, KNN, SVM, DTs and Bayesian approaches
have higher research interest and are featured in most
solutions, there is very little literature on logistic regres-
sion usage in reported SDN models.

• Most of the supervised learning algorithms obtain a rel-
atively high average accuracy of over 90% in detection
performance across the evaluation metrics.

• In SDN applications, most studies have used SVM and
DT algorithms.

• Nomachine learning implementation exist for the detec-
tion and classification of flow conflicts.

• There are various types of datasets been used. While
some studies used datasets from internet sources such
as Kaggle, others used flow generation method to create
the dataset for machine learning algorithms.

• There are no studies showing the key features of flow
entries in SDN (e.g., priority and action features) for all
forms of dataset used in the current machine learning
solutions.

• Precision, recall, and f1-measure are themost commonly
used evaluation metrics for validating ML algorithms in
most studies. On the other hand, the use of accuracy and
execution time remain negligible.
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FIGURE 2. The proposed model for the detection and classification of
conflict flows.

III. MATERIALS AND METHODS
The proposed model in this study has two main phases;
detection and classification phases. Fig. 2 shows the proposed
model for the detection and classification of conflict flows.
The first phase is the detection between conflict flows and
normal flows.

In this phase, the generated flow is checked by the algo-
rithms implemented in the controller plane to observe the
behaviour of flows. There are features in the flows which
are significant in differentiating between normal and conflict
flows such as Mac address, IP address and action. Accord-
ingly, the outcome of these feature checking algorithms iden-
tifies whether the flows are normal or conflicting. The normal
flows pass directly to ‘‘OpenFlow’’ while the conflict flows
are forwarded to the next phase for onward classification into
which types of conflict occurs in conflict flows.

There are four algorithms proposed for the detection of
the conflict flows in ‘‘OpenFlow’’. These algorithms are DT,
SVM, EFDT and Hybrid (DT-SVM). The EFDT and hybrid
algorithms were developed and implemented from the DT
and SVM to improve their performance in terms of accuracy
and running time.

The DT and SVM algorithms have been selected because
they have shown high performance in previous research in
different applications of SDN [31]–[34]. Fig. 3 shows the
pseudo code for algorithms used in the detection of conflict
flows. Furthermore, the steps involved in the detection phase
can be summarised as follow:

1) Implement and run algorithms.
2) The algorithms check the features of flows.
3) The algorithms identify the normal flows and conflict

flows.
4) Normal flows are passed as normal to OpenFlow.

FIGURE 3. The pseudo code for conflict flows detection.

5) The conflict flows are passed to the classification algo-
rithm.

The second phase of the proposed model is the classi-
fication of conflict flows. In this phase, the conflict flows
identified in the detection phase are checked by an algo-
rithm implemented in the controller plane to determine the
behaviour of flows. The three features of conflict flows are
priority, IP address, and action. Upon completion of the
checking process, the conflict types are classified into seven
types which are redundancy, shadowing, overlapping, cor-
relation A, correlation B, generalisation, and imbrication.
Fig. 4 shows the pseudo code for the EFDT algorithm in
classifying conflict flows. Moreover, the steps involved in the
classification phase can be summarised as follows:

1) Implement and run the EFDT classifier algorithm.
2) The algorithm begins detection of flows.
3) The algorithm checks the priority and IP address fea-

tures of the flows.
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FIGURE 4. The pseudo code for classification conflict flows detection.

4) The algorithm classifies the conflict types according to
the features in step 3.

A. DECISION TREE (DT) ALGORITHM
Decision Tree is a machine learning algorithm that is imple-
mented to handle regression and classification problems.
However, it is more often utilised for classification tasks.
It is a tree-structured algorithm where the characteristics of
a database are described through internal nodes and branches
that represent the decision rules while the outcome is indi-
cated by each leaf node. Decision nodes are used to make
decisions and thus, have several branches. The outcome of
these decisions are Leaf nodes with no additional branches.
Fig. 5 shows the diagram that illustrates the general structure
of the DT algorithm. It is also possible to describe decision
trees as a mix of mathematical and analytical methods to
help identify, categorise and generalise a given data set. Data
comes in the form of records as shown in the following
equation:

(x,Y ) = (x1, x2, x3 . . . . xn,Y ) (1)

The conditional factor Y is the reference parameter that
learning attempts to describe or categorise. The vector x is
made up of the characteristics x1, x2, x3 etc. that are used

FIGURE 5. The diagram of DT algorithm.

for learning. Additionally, the implementation steps of DT
algorithm can be summarised as follow:

• Implement decision tree components in the controller
plane.

• Setup the learner function.
• Prepare and import all generated flows from OpenFlow
switch for all flow sizes.

• Train the algorithm with 70% of generated flows.
• Test the performance of the algorithm by predicting the
response for remaining 30% of generated flows.

• Evaluate the confusion matrix for the DT algorithm and
calculate running time.

B. SUPPORT VECTOR MACHINE (SVM) ALGORITHM
The Support Vector Machine (SVM) is a binary supervised
classifier employed in Machine Learning. The aim of the
SVM algorithm is to build near perfect lines or decision
boundaries to divide an n-dimensional area into categories so
that specific data points can be easily placed in the appro-
priate category in the future. A hyper-plane is a term used
to describe the best decision boundary. SVM selects unique
points/vectors that aid in the construction of the hyperplane.
Help vectors are a term used to describe these extreme situa-
tions. In the classification method, two distinct classes use a
decision boundary or hyper-plane, as shown in Fig. 6.

A learning database of n points is as in the following
formula

(x1, y1) . . . .(xn, yn) (2)

where yn can either be 1 or −1; showing which category the
xi belongs to. Every xi is a valid p− dimensional vector. The
segment to which xi corresponds as indicated by either 1 or
−1 is yn. Each hyperplane can be defined as a collection of
nodes that satisfy xi.

wT x − b = 0 (3)
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FIGURE 6. The two distinct groups for SVM algorithm.

The standard vector to the hyperplane is w. This is also
identical to the normal state of Hesse except that w is not
actually a unit vector. Component b/(||w||) specifies the offset
of the hyperplane from its source across the standard vectorw.
In Equation 4, every point on or above that boundary belongs
to a single class, marked 1. While in Equation 5, all points
on and below that boundary marked with −1 is of the other
class.

wT x − b = 1 (4)

wT x − b = −1 (5)

The range between the two hyper-planes is geometrically
2/(||w||). It is important to reduce the ||w|| in order to increase
the gap between the planes. The distance from a point to a
plane is calculated using the distance. To prevent sets of data
from falling into the margin, it also imposes the following
constraints as in Equation 6 or 7 for each i.

wT xi−b ≥ 1, yi = 1 (6)

Or

wT xi − b < 1, yi = −1 (7)

Based on these constraints, each information pointed
should on the right location of the line. This can be rewritten
as the following equation.:

yi(wT xi − b) ≥ 1, for all 1 ≤ i ≤ n (8)

Furthermore, the implementation steps of the SVM algo-
rithm can be summarised as follows:
• Implement support vector components in the Ryu con-
troller.

• Setup the learner of the linear module.
• Apply hard margin function.
• Prepare and import all generated flows from OpenFlow
switch for all flow sizes.

• Train the SVM classifier with 70% of generated flows.
• Test the performance of the classifier by predicting the
response for the remaining 30% of generated flows.

• Evaluate the confusion matrix for the SVM algorithm
and calculate running time.

C. EXTREMELY FAST DECISION TREE (EFDT)
The Extremely Fast Decision Tree (EFDT) is a novel learn-
ing algorithm which when implemented with the Hoeffding
Anytime Tree SEA Generator, is systematically more effec-
tive than the conventional decision tree algorithm. On sev-
eral traditional benchmark tasks, the EFDT outperforms the
Hoeffding Tree implementation of Very Fast Decision Tree
(VFDT) in terms of prequential accuracy. Domingos andHul-
ten implemented Hoeffding Tree; one of the first algorithms
for progressively constructing a decision tree in their highly
lauded research [35]. Hoeffding Tree checks whether the
difference between the average information improvements
of the highest two parameters is going to provide a great
meaning in almost any given potential break.
Hoeffding Bound: If n is independent random variables

r1. . . rn, with a wide variety R and mean ř, the Hoeffding
bound declares in conjunction with probability 1 −δ the real
mean is at the very minimum ř −ε [36].

ε =

√
R2ln( 1

δ
)

2n
(9)

The Hoeffding Tree uses this deterministic guarantee to
determine if the calculated variation of information changes
is between the Xa and Xb attributes with the maximum
data gains, respective, around each node. Thus, 1Ğ (Xa) –
1Ğ (Xb), is positive and non-zero. Unless, for the tolerance
stated, δ, it has1Ğ> ε, then it confidently declares thatXa is
the more advantageous division. It is worth noting that it aims
to determine the best selection segment. The probabilities are
monitored in the manner described before that Xa is superior
to Xb. However, the probability that Xa is superior to any
other Xc feature is not regulated. If the selection of attributes
increases, it becomes more likely that every other category
will be better. In such situation, there is no recourse to modify
the tree. Furthermore, the implementation steps of the SVM
algorithm can be summarised as follows:
• Setup the SEA Generator into DT components.
• Implement the Hoeffding Tree in the classifier.
• Setup and modify the Hoeffding Tree estimator to check
action and IP address rules for the generated flows.

• Setup new variables to control the loop for checking
action and IP address rules.

• Prepare and import all generated flows from OpenFlow
switch for all flow sizes.

• Train the EFDT algorithm with 70% of generated flows.
• Test the performance of the algorithm by predicting the
response for the remaining 30% of generated flows.

• Evaluate the confusion matrix for the EFDT algorithm
and calculate running time.

D. HYBRID (DT-SVM) ALGORITHM
The learner of two algorithms was designed and imple-
mented as one learner to enhance the precision and exe-
cution time. The hybrid algorithm has been purposefully
implemented from two algorithms, decision tree classifier
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FIGURE 7. The conflict flow types.

and super vector classifier, to enhance the performance of the
two algorithms. One-vs-the-rest (OvR), also known as one-
vs-all, multiclass strategy is utilised. This consists of fitting
one classifier per class. Notable merits of this method are
its interpretability as well as fast computation (only n-class
classifiers are required). While each class is identified by
one classifier, it is imperative to obtain information of the
class by examining the related classifier. This is the most
widely used multiclass classification technique and is a ratio-
nal choice by default. Furthermore, the implementation steps
for the hybrid DT-SVM algorithm can be summarised as
follows:

• Implement the DT classifier object together with the
SVM classifier.

• Implement the OvR classifier.
• Setup and modify the OvR classifier for DT and SVM
classifiers for action and IP address rules.

• Integrate DT and SVM classifiers.
• Setup and implement voting classifier to combine the
prediction of DT and SVM classifiers.

• Prepare and import all generated flows from OpenFlow
switch for all flow sizes.

• Train the hybrid DT-SVM algorithm with 70% of gen-
erated flows.

• Test the performance of the algorithm by predicting the
response for the remaining 30% of generated flows.

• Evaluate the confusion matrix for the hybrid DT-SVM
algorithm and calculate running time.

FIGURE 8. Fat tree topology.

IV. EXPERIMENT RESULTS AND DISCUSSION
We have considered SDN dataset from our past studies in
this analysis [37] for normal and conflict flows. There are
seven types of conflict flows namely redundancy, shadowing,
overlapping, correlation A, correlation B, generalisation, and
imbrication. Fig. 7 shows the conflict flow types used in this
study.

The pre-processing model is introduced and implemented
to prepare flows collected from the OpenFlow switch for
the detection process. The flows were extracted to present
the important features (action, protocol, mac address, and IP
address) which are chosen for training the algorithms. The
type of conflict can be specified and classified according to
priority, action, protocol and IP source address of the flow
rule. Flows will be deemed conflicting flow entries as per the
flow rule in the open flow switch. SDN can be influenced
by conflict in various situations which ultimately affects the
efficiency and optimisation of the network in the form of
redundancy, overlap and correlation conflict. Moreover, it can
also affect the security of the entire network; leading to
shadowing generalisation and imbrication conflict [38].

Furthermore, there are two topologies used in this study,
namely; Fat Tree Topology and Simple Tree Topology. The
Ryu controller is used in this experiment to create a link to
an OpenFlow switch version 1.3 to enable both topologies to
analyze data. These two topologies were created in mininet
and then connected to the Ryu controller to automatically
generate the traffic. Fig. 8 and Fig. 9 show the architecture
of Fat Tree and Simple Tree topologies respectively. Besides,
the Fat Tree topology contains 7 switches and 8 hosts while
the Simple Tree topology contains 3 switches and 4 hosts.
The Ryu controller is associated to all switches and hosts in
these topologies. Topo.py, a Python application that connects
switches and hosts in these topologies, is programmed and
deployed over a python programming language. Regarding
the production of flows, traffic generation is performed to
produce flows in the range of 1000-100000 flows (i.e., it starts
at 1000 flows and finished at 100000 flows) at intervals
of 10000 flows increment.

Every host starts with 10 iperf servers, each of which lis-
tens to different ports such as 8089, 8082, and 8081. A simple
switch is needed in the flow entry production steps. The L4
Match applicationwas created chosen as the basis framework.
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FIGURE 9. Simple tree topology.

The src/dst ip, src/dst port, and protocols have been utilized
to build different flows. The controller receives each packet
and then creates a new flow in the switch. Generally, after the
topologies were created by running the Topo app, the number
of flows are selected after which the Ryu manager app starts
running to generate normal flows. After the given number of
flows are generated, the conflicts rules are implemented in
the Ryu controller by running the conflicts flow app. When
all generation of normal and conflict flows were completed,
the flowstat app is performed to collect and save all flows
generated in a CSV file. Fig. 10 shows the flowchart used to
produce and generate the flows.

Both tests were carried out on a PC running Ubuntu 18.04,
with an Intel Core-i5 CPU and 12 GB of RAMwithin Python
2.7 programming language environment. We utilized a vari-
ety of assessment measures that include accuracy, precision,
f1-score, recall, and execution time to evaluate the perfor-
mance of the proposed algorithms during the identification
and classification of conflict flows in terms of efficiency and
effectiveness. These evaluation measurements are computed
as shown in Equations (10-14).

Accuracy =
TP+ TN

(TP+ TN + FN + FP)
(10)

Precision =
TP

TP+ FP
(11)

F1− score = 2×
(precision× recall)
(precision+ recall)

(12)

Recall =
TP

TP+ FN
(13)

Execution Time (T ) = TstartTfinish (14)

• The number of conflicts flows correctly classified are
referred to as true positives (TPs).

• The number of correctly categorised normal flows are
known as true negatives (TNs).

• The number of natural flows that are incorrectly labelled
as conflict flows are known as false positives (FP).

• The number of conflict flow instances that are incor-
rectly categorised as normal flows are known as false
negatives (FN).

The output of the suggested implementations reveals a vari-
ety of experimental findings. When the number of flows
was 1000, the DT, SVM, and hybrid DT-SVM algorithms

FIGURE 10. Flowchart of flow generation.

achieved the highest detection results with respect to accu-
racy precision, f1-score, and recall. The highest detection
accuracies for DT, SVM, and hybrid DT-SVM algorithms
are respectively 99.27%, 98.53%, and 99.27%. In addition,
the highest detection results for the EFDT algorithm were
achieved when the number of flows was 100000; yielding a
maximum detection accuracy of 99.49%. It is worthy of note
that the EFDT algorithm yielded the highest possible value
of 100% for precision, f1-score, and recall respectively. Fur-
thermore, the lowest execution time for all algorithms (i.e.,
DT, SVM, hybrid DT-SVM, and EFDT) was 0.00021 sec-
onds at 20000 flows. It is obvious now that the EFDT algo-
rithm produced the best results compared to the results of
DT, SVM, and hybrid DT-SVM algorithms. However, when
the number of flows was 10000, the minimum detection
accuracies for DT, SVM, and hybrid DT-SVM algorithms
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TABLE 2. Detection results by using all algorithms.
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TABLE 3. Classification results by using EFDT algorithm.

FIGURE 11. Comparison of execution time between EFDT and other methods.

were 72.60%, 64.60%, and 72.60%, respectively while the
minimum detection accuracy for the EFDT algorithm was
94.01% at 1000 flows. Moreover, the longest execution time
was more than 7 seconds for all algorithms when the number
of flows were 1000 and 10000. Table 2 shows the detection
results for DT, SVM, hybrid DT-SVM, and EFDT algorithms,
respectively.

The improved performance resulted from the constituent
processes of the implemented EFDT algorithms. This include
the Hoeffding Bound that was used to improve detection
accuracy, the implemented modifications, and the setup of
Hoeffding Tree estimator to check the action and IP address
of flows to speedup detection time with improved detection
accuracy.

According to the detection results, the EFDT algorithm
has been selected for the classification phase to identify the
types of conflict flows. The EFDT algorithm was chosen
because it has the best performance in detecting conflict
flows. During the classification process, flows within a range
of 1000 to 100000 were chosen, with a 10000-flow mul-
tiplier. The performance of the proposed EFDT algorithm
in classifying types of conflict flows achieved the highest
results based on a different number of flows. The highest
accuracy and f1-score achieved by the EFDT algorithm are

respectively 95.73% and 96.64% with 10000 flows while the
best precision achieved was 97.61% with 1000 flows. How-
ever, the highest recall achieved was 100% when the flows
were 30000, 70000, 80000, and 90000 respectively. Also,
the lowest execution time taken for the classification using
EFDT algorithm was 0.3248 second. Additionally, the min-
imum classification accuracy was 90.16% when the flows
were 1000. Table 3 shows the classification results using the
proposed EFDT algorithm.

The classification algorithm shows the best result in
all conflict flows sizes across all evaluated metrics. The
improved performance resulted from the constituent pro-
cesses of the implemented EFDT algorithms. This include
the Hoeffding Bound that was used to improve detection
accuracy, the implemented modifications and the setup of
Hoeffding Tree estimator to check the action and IP address
of flows to speedup detection time with improved detec-
tion accuracy. A comparative analysis with two benchmarks
shows the validation of the proposed EFDT algorithm for the
detection and classification across all flow sizes data.

Furthermore, the suggested EFDT algorithm was com-
pared with other methods in [39] and [40] in terms of the time
taken for detection and classification of conflict flows. Ref-
erences [39] was implemented in the security policy analysis
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using the Brew module. The number of flows in this work is
selected between 10000 to 100000 flows. Fig. 11 (a) shows
the comparison of execution time between the proposed
EFDT algorithm and the Brew module. References [40]
has also presented a comprehensive framework called Flow
Guard in the OpenFlow networks in which the number of
flows selected ranged between 10000 to 40000 flows. The
proposed EFDT algorithm and the Flow Guard method are
also compared in terms of execution time in Fig. 11 (b).
The performance of the frameworks presented in both studies
were also evaluated on the detection and classification of con-
flict flows. The proposed EFDT algorithm outperformed its
comparative methods in terms of time taken for the detection
and classification of conflict flows.

V. CONCLUSION
This paper presents several machine learning algorithms for
detecting and classifying conflict flows in the SDN model.
The types of conflict are detected and classified based on the
flow rules’ priority, action, protocol, and IP source address.
The four algorithms that were utilized in this research
are Decision Tree (DT), Support Vector Machine (SVM),
Extremely Fast Decision Tree (EFDT), and the Hybrid
(DT-SVM); where the proposed EFDT and DT-SVM algo-
rithms were respectively developed based on DT and SVM
algorithms to enhance their performance with respect to effi-
ciency and effectiveness. Besides, there were two network
topologies designed, namely, Fat Tree Topology and Simple
Tree Topology. These network topologies were created using
the Mininet simulator and connected to the Ryu controller.
The number of flows selected ranged from 1000 flows to
100000 flows with an increment step of 10000 flows for
the dataset. The performance of the proposed algorithms
was evaluated using evaluation metrics that include accuracy,
precision, f1-score, recall, and execution time. Experiment
results show that the proposed EFDT algorithm achieved pro-
duced the best results compared to DT, SVM, and DT-SVM
algorithms with a detection accuracy of 99.49%. In the case
of classification between conflict flow types, the proposed
EFDT achieved 95.73% accuracy.

The proposed algorithm has been shown to have the capa-
bility of achieving promising results in the detection and
classification of conflict flows in SDN. To the best of our
knowledge, this work is the first attempt at using machine
learning algorithms to detect and classify conflict flows.
Future works will focus on examining other machine learning
algorithms for detecting and classifying conflict flows using
the same dataset.
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