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Abstract. Ultrasonic irradiation approach has become one of the most popular methods applied 

in chemical processing including lignocellulosic biomass pretreatment and industrial cleansing. 

The phenomenon of ultrasonic cavitation can be indeed delineated via the Rayleigh-Plesset 

equation (RPE), which governs the transient radius of the bubble. Nonetheless, the time 

marching in the numerical solutions for RPE is highly unstable, which cannot be assured using 

von Neumann analysis. High sensitivity of RPE to time step may lead to extremely long 

computational time. The lack of numerical investigation into the time stepping issue of RPE has 

hindered in-depth simulation of ultrasonic cavitation. Therefore, the purpose of this paper is to 

investigate the stability criterion of time stepping for RPE in different time progression schemes, 

namely Euler explicit, 2nd order Taylor’s method, 4th order Runge-Kutta, Runge-Kutta Fehlberg 

and Cash-Karp Runge-Kutta method. A simple modified adaptive time step method and α 

independence study has been introduced in this paper for fast, stable and accurate computation 

of RPE. Compared with the traditional constant time marching method, the new model is able to 

improve the computational cost significantly without affecting the time marching stability and 

resolution of the results. Among the investigated method, Runge-Kutta family solvers have 

higher computational accuracy, with the cost of higher critical α value. The model is also applied 

to compute the pressure and temperature hike during bubble collapse due to different sonication 

power. The simulation results show that the ultrasonic irradiation with higher sonication power 

could produce a higher energy to break the lignocellulose wall. 
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1. Introduction 

Ultrasonic irradiation has been widely applied in the field of green energy and environment such as 

disruption of lignocellulose in lipid extraction [1,2] and degradation of sludge [3,4]. This can be due to 

its high efficiency and environmental benign treatment properties [1,2,5,6]. Experimental optimisations 

of ultrasonic pretreatment have been reported in many works [7–12]. Indeed, the core of ultrasonic 

pretreatment lies the cavitation process [4,13,14], while the physics of cavitation is governed by 

Rayleigh-Plesset Equation (RPE). RPE was proposed and developed by Rayleigh [15] and Plesset 

[16,17] to mathematically represent the growth of bubble radius arisen by the acoustic cavitation. 

The formation of RPE follows several important assumptions [18,19]: (a) both the geometry and 

geometrical deformation of bubble exists in spherical shape; (b) the growing or collapse speed of the 

bubble is less than the speed of sound (i.e. the size of the bubble is less than the acoustic wavelength); 

(c) the fluid is Newtonian and homogenous; and (d) body forces such as gravitational and centrifugal 

force are ignored. If there is discrepancy between the actual physical condition and assumed condition 

will negate RPE, further specific mathematical treatment is required [20]. 

In RPE, the bubble radius is a function of the time. Although RPE resembles hyperbolic equation, it 

does not have any boundary value and therefore can be regarded as initial value problem or ordinary 

differential equation. In other words, the von Neumann analysis [21] which correlates the size of domain 

with the time step, is no longer applicable for RPE. The mathematical singularity at infinitely small 

value of radius will lead to highly fluctuating numerical results [22]. Adaptive time-step technique in 

solving RPE was firstly put forward by Alehossien and Qin [22] using Euler and Runge-Kutta (RK) 

method, and their model is able to deal with the sharp rate of change of radius during bubble collapse 

and rebound. Adaptive time-stepping RK is then applied by Tian et al. [23], Chakma and Moholkar [24] 

and Sajjadi et al. [13] in their works to study the effects of different parameters to ultrasonic pretreatment 

efficiency. Merouani and co-workers [25–27] computed the bubble radius and other related parameters 

via constant time-step RK method yet without further specifying the value of time step. The similar 

limitation goes to the work of Tey et al. [28]. These results on history of bubble growth is different with 

the works of [13,22–24]. It is also noteworthy that the radius of bubble drops smoothly according to the 

work of Fourest et al. [18], Narendranath [29] and Ghahramani et al. [30], which is in contradictory with 

the “bouncing” radius pattern as obtained by [22–25,27]. 

The result of the growth and collapse of bubble is indeed inconclusive. Moreover, there is a lack of 

discussion in stability criterion of the time progression model. Therefore, the focus of the work is to 

investigate the time-marching stability of discretised RPE in different time-stepping schemes. In order 

to stabilise the time marching of discretised RPE, a modified adaptive time stepping method is 

introduced in this paper. The method is easy to implement, and able to significantly save computational 

cost as compared to previous available solvers. Time progression models being tested under the new 

method includes Euler explicit, 2nd Taylor’s method, 4th order Runge-Kutta, Runge-Kutta Fehlberg and 

Cash-Karp Runge-Kutta method will be applied. Instantaneous bubble radius, bubble growth/collapse 

speed, pressure hike and temperature hike due to different ultrasonic power are computed and compared.  

 

2. Rayleigh-Plesset Equation 

Referring to the schematics of single air bubble which is surrounded by the fluid volume, its cylindrical 

coordinate momentum equation [31] in one-dimensional r-component vector can be expressed as: 
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where ur, ρ and τw is the speed of growth of bubble, density of the gas inside the bubble and the wall 

shear stress on the surface of the bubble.  

For irrotational flow ur can be related with velocity potential ϕ as in Equation (2). Equation (2) is 

then combined with Equation (1) to form Equation (3). 
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To ensure the conservation of the mass, Continuity principle as in Equation (4) can be applied to 

form an operator which relates the velocity potential with the radius of the bubble R. The equation which 

links velocity potential and the bubble radius can be formulated as shown in Equation (6), by combining 

Equation (5) and Equation (2). 
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Integration on Equation (6) with respect to component r will yield Equation (7). When r = R, 

Equation (7) will become Equation (8). 
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The derivative of Equation (3) is then changed from r to R before an integration is executed. The 

integration by substitution can be applied to integrate the second term of the left-hand side of Eq. (3), 

with its answer as shown in Equation (9). Equation (3) will then evolve into Equation (10). With this 

mathematical treatment Equation (8) will be applicable for incorporation into Equation (10) to form 

Equation (11). 
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, ,

1

2 2
q

q r q
r r r r r r

q
dr qdq

r r r r
  

  
        

       
        

        
       

        
                 (9) 

2

1

2

P

t r

 



   
   

  
           (10) 

2 2

2

3

2

R R P
R

t t 

   
  

  
           (11) 

With inclusion of surface tension term and viscosity term as in Equation (12) and (13) respectively, 

Equation (11) can be modified to form Equation (14) as Rayleigh-Plesset equation. 
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where η, σs, µ, R0, Pi and Pe is the ratio between specific heat capacities (CP/CV), surface tension, dynamic 

viscosity, initial bubble radius, internal bubble pressure and external bubble pressure respectively. The 

internal pressure is composed of the vapor pressure Pv and gas pressure Pg. P∞ represents the pressure 

fluctuation due to ultrasonic irradiation. 

 

3. Stable RPE Modelling via Modified Adaptive Time-Stepping Method 

RPE as in Equation (14) can be re-written as in Equation (15), which is indeed an ordinary differential 

equation. 
3
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The applied value for surface tension, dynamic viscosity, initial bubble, vapor pressure and gas 

pressure is 7×10-2 N/m, 0.001015 Pa.s, 2×10-6 m, 10000 Pa and 400 Pa respectively. The initial growth 
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speed v is 0 m/s while η is assumed as 1.4. The pressure fluctuation P∞ is indeed resulted by ultrasonic 

irradiation, correlated with the power W of the ultrasonic transducer via Equation (16) and (17): 

 101325 sin 2
amp

P P ft

                   (16) 

2 2 2

2 2 amp

P W P W c
I P

c A c A



 
                  (17) 

where W, f, ρ, c and A represents ultrasonic power, fluid’s density, speed of sound in the fluid and the 

area of ultrasonic emission respectively. Since the speed of sound in the fluid domain is assumed to be 

as 1450 m/s, and by setting A = 0.1 m2 and W = 100 W, therefore Pamp = 1450000 Pa. The simplest 

solution to Equation (15) is through Euler’s explicit and 2nd order Taylor’s method, which can be 

described as in Equation (18) and (19) respectively [32]: 
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where f = ∂v/∂t while f '  = ∂2v/∂t2. For a higher order estimation, 4th order Runge-Kutta (RK4), Runge-

Kutta Fehlberg (RKF) and Cash-Karp Runge-Kutta (CKRK) can be applied, which can be expressed as 

in Equations (20) – (22) respectively [33]: 
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in which all the formulas of coefficients k can be illustrated as in Table 1. 

Indeed, the time step in RPE is critical in determining the simulation performance. In most of the studies 

[8,13,23,24,26,30,34], the time independence study is needed if constant time-step method is applied, 

otherwise adaptive time-stepping method as outlined by Alehossien and Qin [22] is required. In order 

to handle the time-step-sensitive RPE, we introduce a modified adaptive time stepping method, which 

is simpler without adversely affecting the results’ accuracy. The adaptive time step can be simply 

defined as: 
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t t R t
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                 (23) 

where α is time index. α is a real number, which can be optimised for a stable and accurate simulation. 

Therefore, in this paper α independence study is introduced to replace the time independence study. 

Upon computation on the bubble radius, the pressure and temperature of the collapsing bubble [34] can 

be determined using Equation (24) and (25) respectively, 
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where T∞ is the ambient liquid temperature. 

 

4. Results and Discussion 

A sample of α independence study is conducted based on Euler explicit method as described in Equation 

(18). The growth and radius of bubble with respect to time is illustrated in Figure 1. The applied 

frequency of ultrasonic irradiation is 20 kHz while the total time simulated is 2×10-4 s. It can be clearly 

shown that the higher the value of α, the better the accuracy and resolution of the solution. Moreover, a 

higher value of α enables the better control on the expansion and bouncing of the bubble radius, without 

incurring the erroneous time delay which is apparent at low α. Upon α = 1.75, the solution can be 

considered converged. 
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Table 1. Formulas of coefficients k of Runge-Kutta family solvers as in Equations (20) – (22). 
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Figure 1. α independence study for RPE solution using Euler explicit method. 

 

Indeed, high value of α implies a smaller time step for every progression. The entailing cost of higher 

accuracy and resolution will be the number of iterations needed, as evinced in Tables 2. The number of 

iterations due to α is almost similar across all types of ODE solution. We found that there is always a 

critical value of α in which when the applied value of α is less than critical α value, the solution will be 

facing singularity issue and the results will be fallacious. 2nd order Taylor’s method has the lowest 

critical α value (1.45) while CKRK needs the largest critical α value (1.55) to enable stable computation. 

Within the similar α (taking 1.75 as the example), RK4, RKF and CKRK would give relatively better 

results compared with others, as shown in Figure 2. 

The newly proposed time-adaptive method could greatly reduce the computational cost because the 

time step has been tuned directly with the radius using an index. The reduction of computational cost 

can be calculated by comparing the number of iterations required when modified adaptive time stepping 

method is used with the number of iterations needed if the smallest time step is applied consistently 

throughout every iteration. The cost ratio β between these numbers of iterations can be defined as in 

Equation (26). The smaller the value of β, the larger the reduced computational cost. 

No. of iteration using modified adaptive time stepping method 

No. of iteration using constant time stepping method
               (26) 

The minimum time step required for is 4.8789×10-18 s, which implies that the number of iterations 

required for constant time stepping method is 4.1×1013. Such great amount of iterations would take the 

computer a very long time to reach a solution within a prescribed time and an extremely large memory 

to store the data. This is impeding an effective computation for a larger scale simulation. The cost ratio 

using different ODE solutions at respective α has been computed as in Table 3. In general, despite better 

accuracy of Runge-Kutta family solvers, they are computationally more expensive compared with Euler 

Explicit and 2nd order Taylor’s method. 
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Table 2. Number of iterations needed due to α using various ODE solutions. 

α 
Number of iterations 

Euler Explicit 2nd Order Taylor RK4 RKF CKRK 

1.45 Singularity 252736 Singularity Singularity Singularity 

1.50 450005 451316 Singularity Singularity Singularity 

1.55 768436 768235 698749 700782 Singularity 

1.60 1295965 1295837 1202724 1209013 1195939 

1.65 2193757 2193647 2067388 2083431 2050566 

1.70 3771650 3771467 3457126 3463737 3455329 

1.75 7334816 7334814 7331581 7332822 7331477 

1.80 15572244 15572242 15568449 15569983 15568393 

 

 
Figure 2. RPE solution due to different ODE methods at α = 1.75. 

 

Table 3. Cost ratio β using modified adaptive time-stepping method and constant time-stepping method 

β due to α using various ODE solutions. 

α 
β (10-8) 

Euler Explicit 2nd Order Taylor RK4 RKF CKRK 

1.45 NA 0.6318 NA NA NA 

1.50 1.1250 1.1283 NA NA NA 

1.55 1.9211 1.9206 1.7469 1.7520 NA 

1.60 3.2399 3.2396 3.0068 3.0225 2.9898 

1.65 5.4844 5.4841 5.1685 5.2086 5.1264 

1.70 9.4291 9.4287 8.6428 8.6593 8.6383 

1.75 18.3370 18.3370 18.3290 18.3321 18.3287 

1.80 38.9306 38.9306 38.9211 38.9250 38.9210 

Average 11.2096 9.8876 12.6358 12.6499 14.8009 

 

The model is then extended to compute the RPE solutions due to different sonication power (40W, 

60W, 80W and 100W), based on CKRK at α = 1.80. The results are illustrated in Figure 3. At time of 

about 0.77 × 10-4 s, 1.27 × 10-4 s and 1.77 × 10-4 s, abrupt fall and rise of the bubble radius can be 

observed, which contributes to the very high speed of bubble growth and collapse. Indeed, the bubble 

implosion occurs at these moments (hotspots), releasing a shockwave which dissipate great energy to 

break the lignocellulosic wall of biomass compound [1,14]. The temperature and pressure hike at these 

hotspots can be calculated using Equation (24) and (25), and the results are tabulated in Figure 4. The 

ambient temperature T∞ is assumed as 300K. Basically, ultrasonic irradiation with higher sonication 

power will release higher energy to the surrounding and therefore improve the efficiency of pretreatment 

[35], provided that there is no formation of dense cloud of cavitation bubbles [36]. 
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(a) 

 
(b) 

 
 

Figure 3. RPE solution of (a) radius of bubble and (b) speed of bubble growth/collapse due to various 

sonication power using CKRK at α = 1.80. 

 

(a) 

 

(b)

 
Figure 4. (a) Pressure emission and (b) temperature hike during the collapse of microbubbles due to 

various sonication power. 

 

5. Conclusion 

A simple modified adaptive time stepping method has been introduced in this paper for an efficient 

computation of time-step sensitive RPE. The model is able to handle the dramatic change of bubble 

radius in the hotspot while accelerating the computation speed during the steady growth of bubble. 

Amongst the investigated methods, Runge-Kutta family solvers are computationally more expensive 

(average β of 13.3622) due to its higher critical α value (1.5 – 1.55), yet with a better result accuracy 

and resolution. Using the modified adaptive time stepping method, the pressure and temperature hike is 

increased with sonication power. The proposed method is therefore enabling a more detailed 

investigation into the effect of various factors of ultrasonic irradiation for optimisation of biomass 

pretreatment. 
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