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Ransomware is a malware that represents a serious threat to a user’s information privacy. By investigating how 
ransomware works, we may be able to recognise its atomic behaviour. In return, we will be able to detect the 
ransomware at an earlier stage with better accuracy. In this paper, we propose Control Flow Graph (CFG) as 
an extracting opcode behaviour technique, combined with 4-gram (sequence of 4 “words”) to extract opcode 
sequence to be incorporated into Trojan Ransomware detection method using K-Nearest Neighbors (K-NN) 
algorithm. The opcode CFG 4-gram can fully represent the detailed behavioural characteristics of Trojan Ran-
somware. The proposed ransomware detection method considers the closest distance to a previously identified 
ransomware pattern. Experimental results show that the proposed technique using K-NN, obtains the best ac-
curacy of 98.86% for 1-gram opcode and using 1-NN classifier.
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1. Introduction
Ransomware usually encrypts files on a victim’s com-
puter and demands payment before offering to un-
lock them back. Ransomware attacks have recently 
been on the rise, causing millions of dollars’ worth of 
losses all over the world. This phenomenon happens 
because the existing detection methods are slow and 
less accuracy. Therefore, it is significant to increase 
the accuracy of these malware detection methods. 
K-NN is a technique for prediction and classification 
[1]. The classification is based on the nearest neigh-
bour class to the training dataset of feature space, 
where K shows the number of neighbours that deter-
mines the number of classes. Every decision is made 
by considering the similarity of the majority of neigh-
bours in the training process [16]. This work uses op-
code N-gram features [21] for the extraction process. 
In general, a program is run by executing an opcode 
sequence (operational code in machine language), 
then the opcode can be used to describe the program’s 
behaviour. Opcode distribution on malware files is 
significantly different from normal files [4]. One ap-
proach is to extract opcode sequences based on con-
trol flow graphs of opcode sequences in the malware 
files [19]. Extraction of training datasets using opcode 
N-gram feature extraction and taking into account 
the control flow of opcode sequences [26] on malware 
files including normal files, can increase accuracy in 
detecting malware malicious behaviour that distin-
guishes it from normal files. The training process in 
this work uses the malware files and normal files. The 
static feature extraction consists of byte N-gram fea-
tures, opcode N-gram features, portable executables, 
string features, and function features.
Hashemi et al. [10] took two previous works as ref-
erences. The first one is the work by Ding et al. [8], 
which reports an accuracy rate of 92% for malware 
detection using CFG-KNN algorithm. In that study, 
the authors used opcode graphics extracted from exe-
cutable files. The second one is the work by Chakkar-
avarthy et al. [25] who used the control flow graph of 
malware samples to generate an execution tree to get 
the execution path. Hence, in their research, Hashemi 
et al. [10] concluded to combine all possible opcode 
pathways and use the N-gram method to extract be-
havioural features. By using the K-NN classification 
algorithm, the malware detection achieved the high-
est accuracy of 98.80%. 

The rest of this paper is arranged as follows. Section 
2 presents some related works, while section 3 gives 
research methodology, followed by Section 4 that dis-
cusses the evaluation on the performance. Then, Sec-
tion 5 presents the results of the experiments. Lastly, 
Section 6 concludes the work.

2. Related Work
Chittooparambil et al. [6] analysed the classification 
of existing ransomware along with their detection 
and prevention methods. They classified the ran-
somware families from the year 1989 to 2017 and 
discovered that there is not much difference in their 
patterns. The main objective of their research was to 
understand the operation of ransomware in Micro-
soft Windows operating systems through investigat-
ing the five stages of ransomware operation. In their 
experiments, the researchers focused on three differ-
ent families of ransomware (Scareware, Lockscreen 
and Crypto-Ransomware), and the five-stages of op-
eration of the ransomware; Installation, Communi-
cation, File Search, Encryption, and Extortion. Their 
conclusion, from the evaluation of the existing meth-
ods was that there is no attempt to detect or stop the 
ransomware in the initial two stages.
Agrawal et al. [2] adapted the deep learning methods 
to be used for detecting ransomware from emula-
tion sequences. The researchers presented special-
ised recurrent neural networks for capturing local 
event patterns in ransomware sequences using the 
concept of attention mechanism. The researchers 
demonstrated the performance of enhanced Long 
Short-Term Memory (LSTM) models on a sequence 
dataset derived by emulating ransomware executable 
targeting the Windows environment. The research-
ers performed a detailed analysis of ransomware exe-
cutables in order to identify structural properties that 
can be exploited by machine learning systems. They 
recognised the presence of slight repeating patterns 
within long sequences of ransomware potentially cor-
responding to repeated encryption operations. Then 
the researchers presented a novel recurrent neural 
network component for exploiting the repeating pat-
terns by incorporating attention mechanisms on the 
inputs of a sequence learning module. 
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The researchers also introduced an enhanced neural 
cell to incorporate attention in learning from ransom-
ware sequences, called Attended Recent Inputs (ARI) 
and subsequently used it to modify the LSTM, named 
as ARI-LSTM. The researchers conducted an exper-
iment using a dataset of unique file sequences con-
sisting of ransomware and benign executables for the 
Windows operating system captured from client com-
puters to train their model. Their empirical results 
showed that ARI-LSTM performs significantly better 
than LSTM for the task of ransomware detection. The 
researchers have shown that incorporating attention 
at the inputs of a sequence can be used to solve prob-
lems sensitive to relations within recent inputs.
Classifying ransomware into 10 classes which are la-
beled using avclass tool was carried out by Ouerdi et 
al. [20]. In their study, the researchers used multi-lay-
er perceptron artificial neural networks (MLP-
ANNs).  The objective of the work was to investigate 
whether the neural networks are an effective means 
for the classification of the different types of ransom-
wares. The researchers implemented the MLP-ANN 
in a Java programming environment and focused on 
exploiting the Malware‘O’Matic  (MoM) platform and 
online databases in order to get real examples of ran-
somwares that encrypt disk. 
The experimental results showed that the classifi-
cation by the MLP-ANNs did not lead to a satisfying 
result. They concluded that it may be due to one of 
two reasons: either the choice of artificial neuron net-
works for ransomware classification was not really a 
good choice or the misclassification of the ransom-
ware was the irrelevance of the strings contained in 
ransomware files. They stated that the classification 
was totally based on the extraction of the common 
strings between ransomwares of each class. The re-
searchers suggested that future works should be car-
ried out on a classification algorithm by K-means in 
order to find the relevant clusters.
Meanwhile, Craciun et al. [7] investigated the devel-
opment of  ransomware programs and how they were 
released in certain market segments throughout the 
deep web via RaaS, exploits or spam. The research-
ers also highlighted some mistakes that were made, 
which allowed recovering the encrypted data, along 
with the ransomware authors preference for specific 
encryption types, how they got to distribute the silent 
agreement between ransomwares, coin -Miners, bot-

nets and some edge cases of encryption, which may 
prove to be exploitable in the short-coming future.
A study by Kabakus [11] discussed a static analysis 
to detect malware in an Android ecosystem. The re-
searcher proposed a novel Android malware detec-
tion approach based on static analysis techniques and 
attempts to prove the effectiveness of the novel static 
analysis features’ in terms of detecting malware in 
an Android ecosystem. Each feature used by the pro-
posed approach is evaluated by using different types 
of machine learning techniques in order to highlight 
its impact on detecting malware and inform the dig-
ital investigators. The researcher used three publicly 
available dataset; Android Genome Project, Debrin, 
and F-Droid datasets. Meanwhile, for comparison the 
researcher used several machine learning algorithms 
including: KNN1-KNN5, Bayes Net, Naïve Bayes, 
Logistic Regression, SMO-polykernel, J48, Random 
Forest 100, Random Forest 1000, Random Tree, Bag-
ging and AdaBoost. The experimental result shows 
that the proposed approach outperforms the above 
machine learning algorithms and it is very effective in 
terms of detecting Android malware. The accuracy of 
the proposed static analysis approach was calculated 
to be as high as 0.987 for 10,865 mobile applications. 
The researcher suggests enhancing the proposed ap-
proach by considering the source code analysis to in-
terpret real intensions of API calls. 
From the previous works on malware recognition/
identification, the authors of this paper have sum-
marised that investigating ransomware features in 
their low-level presentation, (i.e.: the opcode), may 
provide a better accuracy. In addition, the use of con-
trol flow graph analysis and N-gram feature extraction 
method has shown its superiority. Thus, this work con-
tinues the investigation on finding the best patterns of 
ransomware features in opcode level and will continue 
to use the combination of the control flow graph anal-
ysis and N-gram feature extraction in an attempt to 
come out with a better ransomware detection system. 

3. Research Methodology
All processes in this work only use one physical de-
vice that enables IDA Pro and Python language pro-
gramming. 
Figure 1 shows the design of the research activities.
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3.1. Dataset Representation
Dataset in this research consists of 3,000 normal files 
and 3,000 ransomware files in Windows PE (Portable 
Executable) format. Normal files are collected from the 
System32 folders on Windows 7, Windows 8, Windows 
10, while malware files consist of Trojan Ransomware 
taken from the VX Heaven Virus Collection Database.

3.1.1. Representation of Normal File
The normal file dataset in this study comes from the 
Windows executable file of Windows 8 operating sys-
tem. Normal files are taken from the System32 folder 
with the .exe file format. The normal representation 
on this file is the same as the malware dataset that 
will be displayed in assembly language presentation. 
Control Flow Graph will be displayed to find out how 
normal files work. Every program is run by executing 
a sequence of instructions (opcode) [23].
Figure 2 shows an assembly view of a normal file in 
opcode sequence [24] of the execution when the pro-
gram runs. It is part of the executable control of the 
program before running the main program using 
the call instructions. The path of the opcode [14] se-
quence from the normal file is straightforward, where 
it uses 4 instructions, which contain 1 call instruction 
and 1 jump instruction.

Figure 1
Research Activities

Figure 2
Assembly View in Normal Files

   .text:0000000140007C50

   .text:0000000140007C50    sub      rsp, 28h

   .text:0000000140007C54    call      sub_140007BE0

   .text:0000000140007C59    add     rsp, 28h

   .text:0000000140007C5D  jmp  shortsub_140007C68

   .text:0000000140007C5F     db       0CCh

3.1.2. Representation of Ransomware File
The ransomware data are taken from the Vx Heaven 
Virus database. 
Similar to the normal file, the malicious code mal-
ware dataset is represented in assembly language 
and Control Flow Graph before the analysis process 
is carried out [5]. In the disassemble results of the 
malware dataset file in Figure 3 we are able to see 
the executable part of the ransomware files. It can 
also be seen in Figure 3 that the executable part of 
the ransomware is different from the normal file. 
The following is an explanation of the ransomware 
executable assembly view section. Call, is an in-
struction that a function uses to call a certain sub-
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Figure 2 shows an assembly view of a normal file 
in opcode sequence [24] of the execution when 
the program runs. It is part of the executable 
control of the program before running the main 
program using the call instructions. The path of 
the opcode [14] sequence from the normal file is 
straightforward, where it uses 4 instructions, 
which contain 1 call instruction and 1 jump 
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   .text:0000000140007C50 
   .text:0000000140007C50    sub      rsp, 28h 
   .text:0000000140007C54    call      sub_140007BE0 
   .text:0000000140007C59    add     rsp, 28h 
   .text:0000000140007C5D  jmp  shortsub_140007C68 
   .text:0000000140007C5F     db       0CCh 

.text:004010CC                public start 

.text:004010CC     start   proc near 

.text:004010CC 

.text:004010CC    StartupInfo = ptr44h 

.text:004010CC 

.text:004010CC     push  ebp 

.text:004010CD     mov   ebp, esp 

.text:004010CF      sub     esp, 44h 

.text:004010D3      call     ds : GetCommandLineA        

.text:004010FE      cmp    byte ptr [esi], 

.text:00401109      cmp     byte ptr [esi], 0 
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Assembly View in Ransomware Files

routine. A subroutine consists of a set of instruc-
tions that has a specific task and a function that has 
a specific task [9].

Figure 4
Control Flow Graph in executable file
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Figure 3 we are able to see the executable part of 
the ransomware files. It can also be seen in Figure 
3 that the executable part of the ransomware is 
different from the normal file. The following is an 
explanation of the ransomware executable 
assembly view section. Call, is an instruction that 
a function uses to call a certain subroutine. A 
subroutine consists of a set of instructions that has 
a specific task and a function that has a specific 
task [9]. 

3.2 Control Flow Graph 

Control Flow Graph (CFG) is a graph that 
represents the flow of the program in the form of 
graph node(s) [15]. The executable part of the 
disassemble process from normal files and 
malware files that have been done previously can 
be represented in CFG. Figure 4 exhibits the CFG 
view of the normal executable file and malware 
file of the disassemble process. 
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The CFG executable of normal file and ransomware 
file in Figure 4 are very different. CFG in a normal file 
has only one execution path with 1 jump, while a 
ransomware file has many execution paths with 
many jumps using opcode jump type instruction if a 
condition is satisfied. The executable part is carried 
out when the program is executed.  

  The result of detection process in Figure 4 shows that 

CFG executable ransomware has many jump 
instructions. The number of jumps is created at 
the beginning of the execution technique 
(Engineering Confusion) to avoid detection. An 
analysis is needed to set the opcode behaviour. 
Analysing CFG from the ransomware executable 
will help to find the execution path in a different 
opcode sequence from the disassemble file. A 
sequence of opcode malware in disassemble 
process is achieved when an extracted path, has 
only one execution of the opcode sequence and 
when the program is executed, another opcode 
sequence is found in a different opcode 
sequence. By analysing the CFG, the executable 
malware will be able to find the execution path 
in a different opcode sequence. The purpose of 
this CFG analysis is to find all execution paths 
that can possibly be executed. 

3.3 Feature Extraction 

Having done the CFG analysis, every opcode 
sequence found in the execution path will be 
extracted to the form of sequence of opcode 
instructions [15]. In this work, every execution 
path that had been obtained from the 
disassemble file is saved in a file with .asm 
format, and then opcode strings will be selected 
using Python language. Opcode sequence 
extraction is an input file that contains all the 
execution paths that have disassembled the 
executable malware or normal files obtained 
from the CFG analysis process.  
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Figure 5
N-gram Extraction Process

language processing and document classification be-
cause it is good at capturing substring statistics and 
implicit data features. Liangboonprakong et al. [15] 
used N-gram in malware detection to analyse the 
opcode sequence to describe the behaviour of mal-
ware. The feature extraction in Figure 5 shows that 
the N-gram extraction process is an important part, 
which affects all phases of classification-based detec-
tion method that includes feature extraction, feature 
selection, and classification. This work uses N = 1, 
N = 2, N = 3, and N = 4 for the extraction process in 
N-gram opcode. The N-gram opcode extraction will 
be sorted by highest to lowest occurrence frequency.

3.4. Feature Selection
The feature selection process is carried out to select 
the best representatives of features from the extract-
ed features [12]. For every extraction process from  
N = 1 to N = 4, the top 10 opcodes will be chosen with 
the most frequent appearances to be used in the train-
ing classification process. Each executable file is rep-
resented as a vector. The 10 highest frequency opcode 
patterns in the extraction process in every executable 
file are converted to vectors. Every opcode sequence 
is converted into a number according to the opcode 
instruction parameter. The opcode instruction pa-
rameter was previously used as a parameter for the 
opcode sequence extraction process.

3.5. K-Nearest Neighbors Classifier
K-Nearest Neighbors (K-NN) algorithm is a kind of 
supervised learning [13] used to detect unknown files 
and classify them according to pre-existing classes 
[18]. The K-NN is one of many classification algo-
rithms used to set the unknown objects based on the 
majority of objects that have the same attributes and 
closest distance [22]. 
Determining the distance between two objects can 
be achieved using the Euclidean Distance d(xi, yi), 
where  xi  is Latitude and yi  is Longitude as explained 
in Equation (1).

. (1)

Steps in K-NN algorithm are as follows [22].
1 Initialise the parameter of K (number of closest 

neighbours)
2 Sort objects that have the smallest distance.
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3 Collect the Y category (Nearest Neighbor Classifi-
cation).

4 Using the Nearest Neighbor category, the value of 
the calculated query instance can be predicted. 

This work chooses the number of K=1 to K=10 to in-
vestigate the number of K with the best accuracy.

4. Performance Evaluation
The authors of this paper use Confusion Matrix to 
measure the performance of the detection method, 
by referring to the work in [17]. A detection system’s 
performance is evaluated by three categories, name-
ly Accuracy, Precision, and Recall. The parameters 
required to measure them are true positive (TP), true 
negative (TN), false positive (FP), and false negative 
(FN). The Accuracy measures the level of accuracy of 
the method in detecting malware from all datasets as 
in Equation (2).

. (2)

Precision is the ratio of the number of malware de-
tected correctly to the total number of datasets de-
tected as malware. The Precision measures all the 
true positive and false positive. Precision formula is 
represented in Equation (3).

. (3)

The next performance measurement is Recall, which 
explains the ratio of the number of malware detected 
correctly (TP) to the total number of malware data-
sets tested, which are (TP) and (FN). 
The formula to measure the Recall is expressed in 
Equation (4).

. (4)

5. Experimental Results 
5.1. Feature Extraction Results
N-gram extraction feature is used to extract opcode 
sequences with N = 1 to N = 4. As we expected, the op-
code N-gram extraction of malware files and normal 

files for each different N produces a different vocabu-
lary. Figure 6 shows the different length of vocabulary 
results in opcode N-gram extraction of malware files 
and normal files.

Figure 6
N-gram Extraction

Figure 6 shows the opcode N-gram extracted fea-
tures of the executable malware files and normal files. 
1-gram extraction produces 22 normal files and 14 
malware files, while 2-gram extraction produces 57 
normal files and 38 malware files. 
Meanwhile, 3-gram extraction produces 80 normal 
files and 56 malware files, and 4-gram extraction pro-
duces 88 normal files and 77 malware files. It is ob-
served that 4-gram extraction produces the highest 
opcode features in the extraction process. 

5.2. Classification Results
The experiments on the classification use a dataset 
that consists of 3000 malware files and 3000 normal 
files as shown in Table 1.
During the testing stage, K-NN algorithm detects new 
objects that have been recognised previously during 
the training stage. In the experimental scenario, clas-
sification/detection results during the training stage 
and testing stage will be compared. This scenario 

Table 1 
Number of training and testing data for each experiment

Experiment 1 Experiment 2 Experiment 3

4500 training data 3000 training data 1500 training data

1500  testing  data 3000 testing  data 4500 testing data
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K
N=1 N=2 N=3 N=4 

Prec Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 98 98.86 100 96 98.2 100 95 97.33 100 92 96

2 100 97 98.4 100 96 97.93 69 100 78.8 100 93 96.2

3 100 97 98.46 100 96 98.26 100 94 96.93 100 93 96.33

4 100 97 98.33 100 97 98.53 100 93 96.66 100 93 96.66

5 100 97 98.53 100 96 98.26 100 94 96.73 100 92 96

Table 3  
Confusion Matrix of Experiment 2 results (in %)

K
N=1 N=2 N=3 N=4

Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 96 98.06 100 95 97.42 69 98 76.48 100 91 95.33

2 100 96 97.88 100 96 97.77 100 93 96.62 100 91 95.73

3 100 96 97.62 100 96 97.8 100 92 96.88 100 91 95.39

4 100 97 98.53 100 95 97.26 100 93 96.33 100 91 95.48

5 100 95 97.57 100 94 96.75 100 93 96.48 100 91 95.28

6 100 96 97.75 100 95 97.06 99 92 95.77 100 91 95.48

7 100 96 97.91 100 94 97.26 100 92 95.95 100 91 95.35

8 100 96 98.02 100 95 97.28 100 91 95.57 100 90 95

9 100 95 97.53 100 94 96.8 100 92 96.02 100 89 94.44

Table 2  
Confusion Matrix of Experiment 1 results (in %)

is done to investigate the performance of the K-NN 
algorithm when the number of data in the training 
stage is either greater than, equal to, or less than the 
number of data in the testing stage. As shown in Table 
1, the scenario carries out three experiments. In Ex-
periment 1, the proportion of training data and test-
ing data is 75% and 25%. In Experiment 2, a 50/50 
distribution of training dataset and testing dataset 
was used. Lastly, in Experiment 3, the proportion of 
training data and testing data was 25% and 75%, re-
spectively.
Table 2 shows that overall results of the Precision of 
K-NN algorithm in detecting malware reached 100%, 
except for (K = 2 and N = 3). In the case of (K = 2 and  
N = 3) the Precision is 69%, because some normal 
files were identified as malwares.

The highest Recall value of 98% was achieved for 
(K=1, N=3, whereas the highest Accuracy of 98.53% 
was achieved for (K=4, N=1). 
Among the files detected as malware, a normal file 
was also detected as malware file. Nevertheless, the 
Recall value was still 100%, which means that all mal-
ware files were detected correctly as malware files.  In 
other words, the algorithm recognises a malware as 
true malicious software.  Results of Recall ≠ 100% in-
dicate that there are malware files detected as normal 
files. The highest accuracy of 98.86% was achieved for 
(K = 1, N = 1). 
In Table 3, the scenario where the number of data 
in the training stage is less than the number in the 
testing stage, the K-NN algorithm reached 100%  
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Table 4 
Confusion Matrix of Experiment 3 results (in %)

K
N=1 N=2 N=3 N=4

Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 97 98.6 75 99 83.8 69 99 77.7 100 92 96.96

2 91 98 94.16 100 97 98.6 100 94 96.8 100 92 96.16

3 100 97 98.53 100 96 98.1 100 94 97 100 91 95.76

4 100 97 98.63 100 96 98 100 94 97.23 100 91 95.26

5 100 97 98.56 100 95 97.46 100 93 97.5 100 92 95.93

6 100 98 98.83 100 95 97.7 100 94 97.1 100 91 95.66

7 100 96 97.76 100 96 98 100 92 96.1 100 91 95.39

8 100 97 98.46 100 96 97.96 100 93 96.6 100 91 95.66

9 100 97 98.43 100 95 97.43 100 94 96.93 100 91 95.36

Precision, except for the cases of (K = 1, N = 3) and 
(K = 6, N = 3), which were 69% and 99%, respectively. 
These results indicate that from all the data detected 
as malware files, there were also normal files. In terms 
of Recall values, the results showed that the K-NN al-
gorithm can detect malware files because the number 
of malware files detected as normal files were the least 
among all detections, as conducted in Experiment 2. 
While referring to Table 4, it can be seen that the aver-
age of the best Precision in Experiment 3 is for N = 4, 
which reached 100%. This shows that in Experiment 
3, the K-NN algorithm with N = 4 detected no normal 
files as malware files during the testing stage.
The highest average of Recall value was for N = 1, 
while the lowest average Recall result was for N = 
4. Considering also the Recall values, the K-NN al-
gorithm achieved its highest accuracy of 98.83% in 
the experiment where N = 1 and the number of K = 
6. Figure 7 presents the accuracy scores for the three 
experiments. The opcode resulted from 1-gram fea-
ture extraction has the highest level of accuracy in 
detecting malware using the K-NN algorithm. Fig-
ure 7 also shows that the K-NN algorithm’s Accuracy 
can reach more than 98%, even though the number 
of training data is smaller than the number of testing 
data. The highest accuracy in opcode N-gram is when 
N = 1 extraction feature. The K-NN algorithm can de-
tect malware with high accuracy using the opcode 
N-gram where N = 1 extraction feature, compared to 

Figure 7
Accuracy of the proposed method

the opcode N-gram extraction feature, where N = 2, 
N = 3, and N = 4.
Figure 8 presents the Precision results. The highest 
Precision result is 100%. The Precision results are 
influenced by the number of false positive (FP) in-
stances. The highest value of FP is reached when a 
lot of normal files in the dataset are detected as mal-
ware files. The best Precision result is 100% and is 
obtained when no normal files are detected as mal-
ware files.
Figure 9 shows the plot of Recall score calculation 
results. The highest Recall score obtained is 100% 
with the condition that all malwares are detected. 
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Figure 8
Precision of the proposed method

Figure 9
Recal value of the proposed method

The best optimal detection score with the K-Nearest 
Neighbors algorithm is 98.86%.  From the experience 
during the experiments, Precision and Recall also af-
fect the results of Accuracy. 
Visual of the segregation of ransomware files and 
normal files using K-NN is shown in Figure 10. It can 
be seen that only a few red dots spread a high dis-
tance from the blue dots, while most of red dots are 
closer to the blue dots. It is caused by the fact that 
the opcode parameters used to recognise ransom-
ware/malware are similar as a normal file.

Figure 10
Visualization of ransomware and normal files using K-NN

  

Figure 8 presents the Precision results. The highest 
Precision result is 100%. The Precision results are 
influenced by the number of false positive (FP) 
instances. The highest value of FP is reached when 
a lot of normal files in the dataset are detected as 
malware files. The best Precision result is 100% and 
is obtained when no normal files are detected as 
malware files. 
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Figure 9 shows the plot of Recall score calculation 
results. The highest Recall score obtained is 100% 
with the condition that all malwares are detected. 
The best optimal detection score with the K-Nearest 
Neighbors algorithm is 98.86%.  From the 
experience during the experiments, Precision and 
Recall also affect the results of Accuracy.  
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Visual of the segregation of ransomware files 
and normal files using K-NN is shown in 
Figure 10. It can be seen that only a few red 
dots spread a high distance from the blue dots, 
while most of red dots are closer to the blue 
dots. It is caused by the fact that the opcode 
parameters used to recognise 
ransomware/malware are similar as a normal 
file. 

 

6. Discussion 

Table 5 shows the performance comparison 
between the proposed technique and similar 
techniques. 

 

Table 5.   

Comparison of CFG 4-gram with existing 
works on the detection accuracy 

Features Engineering Accuracy 

CFG 4-gram (Proposed) 98.86% 

CFG [4] 92.00% 

TXT1 [4] 88.30% 

TXT2 [4] 89.70% 

TF-IDF [26] 97.05% 

ELF [27] 91.00% 

 

Ding et al. [8] used CFG, TXT1, and TXT2 as 
features’ engineering technique and reported an 
accuracy detection of 92%, 88.30%, and 89.70%, 
respectively. They also revealed that the use of 
the TXT technique for extracting opcode 
sequence has a limitation, where the extracted 
opcode sequence does not represent real 
_ehavior of the Executable. Meanwhile, an 
experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and 
it performed better than the results obtained by 
Ahmed et al. [3], who used ELF as the features‘ 
engineering technique, with a detection 
accuracy of 91%. Results in Table 5 shows that 
the proposed technique, which uses CFG 4-
Gram, outperforms the other selected 
techniques. It achieves very good accuracy 
detection (i.e., 98.86%), because the _ehavior 
pattern extracted by the CFG 4-Gram technique 
can fully represent the behavioural 
characteristics of an Executable.   
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Figure 9 shows the plot of Recall score calculation 
results. The highest Recall score obtained is 100% 
with the condition that all malwares are detected. 
The best optimal detection score with the K-Nearest 
Neighbors algorithm is 98.86%.  From the 
experience during the experiments, Precision and 
Recall also affect the results of Accuracy.  
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and normal files using K-NN is shown in 
Figure 10. It can be seen that only a few red 
dots spread a high distance from the blue dots, 
while most of red dots are closer to the blue 
dots. It is caused by the fact that the opcode 
parameters used to recognise 
ransomware/malware are similar as a normal 
file. 

 

6. Discussion 

Table 5 shows the performance comparison 
between the proposed technique and similar 
techniques. 

 

Table 5.   

Comparison of CFG 4-gram with existing 
works on the detection accuracy 

Features Engineering Accuracy 

CFG 4-gram (Proposed) 98.86% 

CFG [4] 92.00% 

TXT1 [4] 88.30% 

TXT2 [4] 89.70% 

TF-IDF [26] 97.05% 

ELF [27] 91.00% 

 

Ding et al. [8] used CFG, TXT1, and TXT2 as 
features’ engineering technique and reported an 
accuracy detection of 92%, 88.30%, and 89.70%, 
respectively. They also revealed that the use of 
the TXT technique for extracting opcode 
sequence has a limitation, where the extracted 
opcode sequence does not represent real 
_ehavior of the Executable. Meanwhile, an 
experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and 
it performed better than the results obtained by 
Ahmed et al. [3], who used ELF as the features‘ 
engineering technique, with a detection 
accuracy of 91%. Results in Table 5 shows that 
the proposed technique, which uses CFG 4-
Gram, outperforms the other selected 
techniques. It achieves very good accuracy 
detection (i.e., 98.86%), because the _ehavior 
pattern extracted by the CFG 4-Gram technique 
can fully represent the behavioural 
characteristics of an Executable.   

6. Discussion
Table 5 shows the performance comparison between 
the proposed technique and similar techniques.

Table 5 
Comparison of CFG 4-gram with existing works on the 
detection accuracy

Features Engineering Accuracy

CFG 4-gram (Proposed) 98.86%

CFG [4] 92.00%

TXT1 [4] 88.30%

TXT2 [4] 89.70%

TF-IDF [26] 97.05%

ELF [27] 91.00%

Ding et al. [8] used CFG, TXT1, and TXT2 as features’ 
engineering technique and reported an accuracy de-
tection of 92%, 88.30%, and 89.70%, respectively. 
They also revealed that the use of the TXT technique 
for extracting opcode sequence has a limitation, 
where the extracted opcode sequence does not rep-
resent real _ehavior of the Executable. Meanwhile, 
an experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and it 
performed better than the results obtained by Ahmed 
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et al. [3], who used ELF as the features‘ engineering 
technique, with a detection accuracy of 91%. Results 
in Table 5 shows that the proposed technique, which 
uses CFG 4-Gram, outperforms the other selected 
techniques. It achieves very good accuracy detection 
(i.e., 98.86%), because the _ehavior pattern extracted 
by the CFG 4-Gram technique can fully represent the 
behavioural characteristics of an Executable.  

7. Conclusion and Future Work
In this paper, using CFG 4-gram for feature engineer-
ing produces an efficient result in supporting the Tro-
jan Ransomware detection method through the K-NN 

algorithm. The highest score of 98.86% accuracy in 
ransomware detection is obtained during Experiment 
1 for the opcode 1-gram and using 1-NN classifier al-
gorithm. Comparing to other selected feature engi-
neering techniques, overall, the proposed technique 
outperforms them.
In the future, the authors plan to investigate more 
on relevant and significant ransomwares’ features 
through experiments on combination of several fea-
tures engineering techniques. The experiments will 
be conducted on various ransomware datasets to ob-
tain more accurate attack patterns to be used to dis-
tinguish ransomware packets from normal packets 
and also by considering a combination with different 
classifier algorithms.
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