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Currently, online organizational resources and assets are potential targets of several types of attack, the most common being
flooding attacks. We consider the Distributed Denial of Service (DDoS) as the most dangerous type of flooding attack that could
target those resources. *e DDoS attack consumes network available resources such as bandwidth, processing power, and
memory, thereby limiting or withholding accessibility to users. *e Flash Crowd (FC) is quite similar to the DDoS attack whereby
many legitimate users concurrently access a particular service, the number of which results in the denial of service. Researchers
have proposed many different models to eliminate the risk of DDoS attacks, but only few efforts have been made to differentiate it
from FC flooding as FC flooding also causes the denial of service and usually misleads the detection of the DDoS attacks. In this
paper, an adaptive agent-based model, known as an Adaptive Protection of Flooding Attacks (APFA) model, is proposed to
protect the Network Application Layer (NAL) against DDoS flooding attacks and FC flooding traffics. *e APFA model, with the
aid of an adaptive analyst agent, distinguishes between DDoS and FC abnormal traffics. It then separates DDoS botnet from
Demons and Zombies to apply suitable attack handling methodology. *ere are three parameters on which the agent relies,
normal traffic intensity, traffic attack behavior, and IP address history log, to decide on the operation of two traffic filters. We test
and evaluate the APFA model via a simulation system using CIDDS as a standard dataset. *e model successfully adapts to the
simulated attack scenarios’ changes and determines 303,024 request conditions for the tested 135,583 IP addresses. It achieves an
accuracy of 0.9964, a precision of 0.9962, and a sensitivity of 0.9996, and outperforms three tested similar models. In addition, the
APFA model contributes to identifying and handling the actual trigger of DDoS attack and differentiates it from FC flooding,
which is rarely implemented in one model.

1. Introduction

A Distributed Denial of Service attack (DDoS) is the most
common type of flooding attack, which floods computer
networks. Complex network environments consist of a

variety of servers, including web, Internet of *ings (IoT),
cloud, fog, etc., that are exposed to huge requests that slow
down networks and interrupt services [1]. *ese attacks
occur for different reasons such as financial, personal, po-
litical, ransom, and cyberwar at different security levels and

Hindawi
Security and Communication Networks
Volume 2021, Article ID 5542919, 17 pages
https://doi.org/10.1155/2021/5542919

mailto:salama@uthm.edu.my
https://orcid.org/0000-0001-5348-502X
https://orcid.org/0000-0001-9030-8102
https://orcid.org/0000-0002-8824-6069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5542919


cause various attack impacts [2]. Accordingly, DDoS attacks
affected nearly 2,500 organizations with 75,000 computer
systems and over 100 countries with four million computers
in 2010 and 2011 [3]. In the first quarter of 2016, a 602Gbps
DDoS attack was launched against the BBC website and
crashed the website for several hours [4]. Basically, before
the attack, the attackers (known as Demons) hack personal
computer users who access the web and take over these
computers. Subsequently, attackers exploit these computers
by planting harmful codes or other strategies to gain control
of the computers [5].*e number of these hacked computers
(known as Zombies) can reach into thousands. Such a
number of Zombies’ creates a “botnet,” which is a network of
private computers that has been planted with malicious
software and manipulated as a group without the owners’
knowledge, e.g., to send spam. *e severity of attacks de-
pends on the size and scale of a botnet. A bigger botnet is
usually associated with increasingly severe and catastrophic
attacks.

*ere are two main types of DDoS attacks. *e first type
targets the Network Application Layer (NAL) such as HTTP
flood, DNS flood, and FTP [6, 7]. In this type, the attacker
issues vindictive or noxious bundles/packets aimed at the
unfortunate casualty to cause disarray concerning the
convention or any application that keeps running on it (e.g.,
vulnerability or defencelessness attack) [5]. *e second type
targets the Network and Transport layers such as UDP flood,
TCP flood, and ICMP flood [8]. In all of these attacks, the
attacker targets to (i) exhaust system assets, transfer speed,
or the handling limit of switching to upset the network of an
authentic client and (ii) exhaust the servers’ assets such as
memory, CPU, I/O, transmission capacity, and HDD/da-
tabase transmission capacity to interfere with the admin-
istrations of legitimate clients. *is study focuses on attacks
targeting the Hypertext Transfer Protocol (HTTP) of the
NAL.

A kind of abnormal network traffic is the Flash Crowd
(FC) that causes a refusal of administration for an Internet
administration’s real clients [9]. *e FC closely resembles
the DDoS attack, whereby enormous legitimate clients si-
multaneously access a specific processing asset (e.g., a
website). For instance, important news created worldwide,
the distribution of the Olympic timetable, or organizations
like Apple, Sony, and Samsung initiating a novel item brings
about an unexpected flood in authentic traffic [10]. *ese
outcomes of the ill-timed and undue conveyance of reactions
by the web administration require prompt action. As DDoS
attacks and FC traffic contrast in only a couple of metrics,
distinguishing them is a major hurdle [11]. Researchers have
suggested and actualized various cybersecurity models to
defend network systems and applications from DDoS and
FC attacks. However, the harmful streams disguised in
authentic traffic are a scourge for these security prototypes.
Many of these models cannot distinguish between real and
pernicious streams with respect to negatives generations and
false-positives.

An agent is a programming component or an integration
of programming and equipment entities that can be exe-
cuted in parallel in its clients’ interest. It includes numerous

helpful functions, such as learning capability, cooperation,
responsiveness, and effectiveness [3]. *e agent is deployed
in this area either in the attacker or defense teams [12, 13].
For instance, in Kotenko et al. [14], an agent or agents are
employed with an assailant system to produce and control a
vast number of deceitful DDoS botnet traffic. *e agent is
used to oversee or handle versatile decision-making forms in
the protection against DDoS attacks. *e enormous hurdle
in creating and strengthening the defense components of
DDoS is to distinguish between the DDoS attack and an FC,
in which a real action may oftentimes show up as malev-
olent. Cybersecurity research that focuses on distinguishing
between DDoS and FC attacks has progressed over the years.
Various artificial intelligence methods, such as fuzzy logic,
genetic algorithm, K-Nearest Neighbor (K-NN) calculation,
Bayesian networks, neural networks, software agent tech-
nology, and Support Vector Machines (SVM), are discussed
in the literature.

We are inspired to design an agent-based defense model
that has the ability to protect against DDoS and FC targeting
the NAL. We consolidate the agent with the protective or
defensive archetype. We assume that it is important to
develop an effective method that detects DDoS attacks and
expunge malicious traffics at the application layer level
before they cause harm to the web servers and applications.
We propose an Adaptive Protection of Flooding Attacks
(APFA) model to protect the NAL against DDoS and FC.
Four modules form the APFA model: (i) Abnormal Traffic
Detection Module (ATDM), (ii) DDoS Attack Detection
Module (DADM), (iii) Adaptive Traffic Control Module
(ATCM), and (iv) Kalman and Bloom Filters Module
(KBFM). *e ATCM represents our main contribution,
which integrates an adaptive agent with the belief-desire-
intention (BDI) architecture to identify, classify, and control
traffics of network systems. *e test results of the APFA
model show that the adaptive agent does not just give an
upper hand by enhancing procedure value or capacity but
coordinates the process of the innovative modules and
improves the overall performance of the simulated network
system.

We organize this paper into six sections having the first
section as an introduction to the research work. In Section 2,
we review the related work. Section 3 presents the research
methods and materials. Section 4 illustrates the main
components of the APFA model. Section 4 describes the
simulation environment and testing platforms. In Section 6,
we discuss the results and review the contributions and
limitations of this work. Finally, Section 7 presents the
conclusion and highlights a key point for future work.

2. Related Work

Several well-established studies have focused on the defense
against DDoS attacks and control FC traffics that targeted
the NAL. In this section, we review the details of the most
effective and related well-established works that have been
presented and discussed in the literature.

Shiaeles et al. [15] accomplished a DDoS attack recog-
nition with enhanced time constraints using a
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nonasymptotic fuzzy evaluator. *e evaluator is imple-
mented on average packet inter-arrival durations. *e
complication is divided into two units: recognition of the
actual DDoS attack and identification of the IP addresses of
the victims. *e former task is accomplished by employing
stringent, real-time boundaries for DDoS attack discovery.
*e latter goal is achieved using comparatively lenient
constraints, which identify the IP addresses of the victims
promptly, thereby starting embedded anti-attack functions
on the affected hosts employing the arriving time of the
packet as the primary statistic of DDoS attack detection.

Kaur et al. [16] use the “survival of the fittest” principle in
which whenmany clients try to get scarce assets; the stronger
clients overcome the weaker ones. Consequently, to replace
clients with low fitness, a chain of repetitions or successive
approximations is implemented using a fitness or suitability
function. In this instance, GAs could be used with infor-
mation captured from inbound streams of packets and in
selecting optimum metrics to detect and distinguish attacks
from normal packets. Katkar et al. [17] recommend using a
network intrusion detection system model that uses sig-
natures to identify DDoS attacks on HTTP servers by using
shared handling and a naive Bayesian classifier. *ey use
observational outcomes to validate the efficiency of the
model. *e naive Bayes classifies attacks that are slow and
have 97.82% precision, and regular behavior is detected with
a precision of 96.46%.

Barrionuevo et al. [18] propose an approach and an
analysis of its practicability on three known attacks of service
denial: Fraggle, Land, and Smurf. *ey solve the execution
problem using the HPC techniques in the GPU to quicken
the procedure and produce the outcomes. *ey evaluate the
approach via several indices. *e proposed approach ach-
ieves 40% to 70% accuracy and 60% to 83% sensitivity. *e
F-measure, which is employed to estimate the framework’s
execution, is 0.5 to 0.83. Sreeram and Vuppala [19] propose a
Bio-Inspired Anomaly-based application layer DDoS attack
(App-DDOS Attack) to defend against DDoS attack by using
the CIDDS dataset. Furthermore, the proposed model aims
to achieve fast and early detection. As shown in the results,
the proposed model achieves an excellent result in defending
against DDoS attacks with 99.64% accuracy. However, the
proposed model lacks the ability to deal with the legitimate
traffics that stream with pernicious DDoS traffics, but it has
the ability to detect only limited types of flooding attacks.

A multilevel DDoS mitigation framework (MLDMF) is
recommended for all levels of the IoT systems architecture
[20] that is built upon the edge-, fog-, and cloud-computing
levels. IoT gateways are utilized at the edge-computing level
to manage and secure IoT nodes based on the SDN. An IoT
management control unit (IMCU) is employed at the fog-
computing level, which consists of SDN controllers and
software to detect and neutralize DDoS attacks. On the other
hand, the cloud-computing level analyzes the network
traffics using big data and AI to protect against DDoS attacks
by establishing an intelligent attack identification and
mitigation structure. *e simulation outcomes of the three
computing level architecture of the IoT show that the edge-
computing level’s quick response capability, fog-computing

level’s state recognition feature, cloud-computing level’s
computing capability, and SDN’s network programmability
could solve the DDoS problem in IoT.

Verma and Ranga [21] present the measurable exami-
nation of the marked stream-dependent CIDDS dataset
utilizing K-NN grouping and K-Means bundling calcula-
tion. Some noticeable assessment parameters are utilized to
assess IDS, including accuracy, recognition rate, and false-
positive rate. In another work of Verma and Ranga [22], they
lead an itemized investigation of the CIDDS dataset and
report the discoveries. *ey utilize a wide scope of familiar
AI procedures to examine the multifaceted nature of the
dataset. *e assessment measurements that they use include
recognition rate, precision, false-positive rate, kappa in-
sights, and root mean squared deviation to appraise
implemented AI approaches.

Mohamed et al. [23] come up with an identification
framework of HTTP DDoS attacks in a Cloud domain that
depends on Information-*eoretic Entropy and Random
Forest collection learning calculation. *ey utilize a time-
sensitive sliding window calculation to appraise the measure
of randomness of the network header attributes of the
approaching system traffic. At the point when the evaluated
entropy surpasses its typical range, the preprocessing and the
characterization exercises are activated. To evaluate the
suggested methodology, they carry out different tests on the
CIDDS-001 open dataset. *e recommended methodology
accomplishes acceptable outcomes with a precision of
99.54% and FPR of 0.46%. Moreover, the framework has
been proposed to protect the cloud environment against
DDoS attacks. However, the proposed framework is inef-
ficient in handling FC, and it can only detect limited types of
flooding attacks.

An agent-based methodology and programming con-
dition (which is based on the OMNeT++ INET framework)
is designed by Kotenko et al. [24] to model shared protection
techniques for installation on the web to neutralize network
attacks. *is method is characterized by various agent
groups that collaborate to neutralize malicious traffics and as
a protection mechanism against attacks. Similarly, Juneja
et al. [25] suggest a multi-agent architecture to identify,
protect, and track the origin of a DDoS attack. While this
approach is able to locate the source of a DDoS attack, a
number of agents are needed to produce the best results.

Kesavamoorthy and Soundar [26] develop a technique,
which uses a self-contained multi-agent system for detecting
and protecting against DDoS attacks. In this technique,
agents use particle swarm enhancement/optimization to
attain an excellent correspondence or interaction. DDoS
attacks are recognized when many connected agents are
deployed to communicate new attacks to the coordinator
agent. *e cloud-based system protects against many types
of DDoS attacks with an accuracy of 98%. Amulti-agent-based
distribution system identifies and prevents DDoS attacks
within the ISP boundaries and is presented in the work of
Singh et al. [27]. *e agents and their coordinating partners
implement the task of preventing the attacks in all ISPs.
*ese agents work together by checking the incoming
traffics on the edge router and using an entropy threshold-
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based technique to detect the existence of DDoS attacks. If
an attack occurs, the coordinator agent communicates this
information with the neighboring ISPs to create a distrib-
uted protection environment. *e authors adopt certain
metrics to assess the performance of the defense system.
However, the system’s efficiency is evaluated against the
system’s performance in the absence of suitable metrics.

Lin et al. [28] suggest two versatile sampling calculations
to gather security-associated information using agent tech-
nology. *e agent has adaptive mechanisms to enhance ac-
quisition productivity, guarantee to gather precision, and
reduce the measure of gathered information. *e aim of these
mechanisms is to limit the impact of information capturing on
the regular activities of a network. *e outcomes demonstrate
the benefits of the versatile security-associated information
gatherer with respect to the productivity and flexibility of
adaptive agents.

Generally, we can ascribe a DDoS attack as a scalable
network security issue. While researchers have developed
many detection and defensive mechanisms against DDoS
attacks, success has been limited in implementing the
mechanisms across a range of computing networks. *e use
of the artificial intelligence approach is limited to identifying
whether clients’ requests are valid or malicious based on the
requests’ attributes. However, the above discussions clearly
enlighten the software agent’s suitability as a technology that
could be used in our proposed model to make the system
more flexible and adaptable in dealing with the various cases
of DDoS and FC targeting network traffics.

3. Materials and Methods

*is section discusses the research materials and methods of
this work, starting with a review of the adaptive agent ar-
chitecture and mechanisms related to this work, followed by
a description of the CIDDS testing dataset and its attributes.
Subsequently, we explain the threats model design and the
evaluation methods.

3.1. Adaptive Agent. An agent is a mix of equipment or
programming elements that is responsive, for the benefit of
its clients, in an autonomous manner. It has numerous
helpful attributes like adaptivity, autonomy, connectivity,
learning, reactivity, and proactivity. An adaptive agent
provides applicability in vast domains, for example, portable
processing, data recovery and processing, smart commu-
nication, media communications, and electronic commerce
[29]. *ese agents interact in a multi-agent framework and
are directed in different manners to serve particular clients
or perform specific tasks. *e qualities that spurred the
utilization of the agent technology in this work include its
self-governance, adaptation to failures, dynamic setup, au-
tonomous decisions, situatedness, and scalability [25]. *e
agent may now and again endeavor to adjust to be more
adept to its new or dynamic condition or to manage new or
evolving objectives [30]. Contemplations of agent alteration
or acclimatization incorporate what calculation can be
utilized to alter the agent behavior? What is the utmost

measure of progress anticipated in the agent framework?
How is the framework going to stop development from
going beyond control? And how to recognize andmanage an
alteration whose impact is not ideal? Versatile identification
is the learning capacity to recognize any alteration in chance
markings or configurations in an environment or system to
be more adept to its condition [31]. Figure 1 demonstrates
the deployment of adaptive mechanisms in agents based on
the agent’s dynamics and the related system.

*e motivation behind the adaptation behavior can be a
response to changes, evaluation of situations, or dealing with
uncertainty. Adaptive procedures can be time-differing
when receptive or responsive to a disturbance with a con-
tinuous interior shift of the choice procedure through re-
peated choice, successive choice, or audited rules [29, 32].
*e reactive or responsive adaptive type is considered the
most effective in this domain because it portrays the limit of
the protection prototype (e.g., time) to respond against the
DDoS attack. For instance, Cheng et al. [33] propose a DDoS
attack recognition model that utilizes responsive adaptation
in an agent to recognize and control attack streams. *e
agent utilizes the responsive adaptation to screen the con-
duct of approaching streams of information and afterward
control the traffic movement.

3.2. 7e Testing Dataset and Parameters. Coburg Intrusion
Detection Data Sets (CIDDS) is a marked stream-dependent
dataset [6, 34]. It is created essentially for the assessment of
IDS and IPS. *e dataset comprises OpenStack and External
Servers traffics. We ignore Attack ID and Attack Descrip-
tion’s features in this study because they just offer extra
insights into the executed attacks without significantly
contributing to the analysis. We collect about 153,026 oc-
currences from the outer servers and 172,839 occurrences
from the OpenStack Server information for examination.
*e dataset classes’ occurrences are labeled or marked as
expected, assailant, unfortunate casualty, suspicious, and
obscure classes. Table 1 gives a representation of CIDDS
dataset features.

Basically, the CIDDS dataset is chosen because it is the
most recent dataset, produced in 2017; available online for
free; and can simulate real-time processing due to its du-
ration attribute. It also has the attributes of both DDoS
attack and FC flooding traffics and the other existing datasets
such as KDD, DARPA, and CAIDA, which lack the above
attributes. Many methods have been used in defending
against DDoS and FC. Each one of them used specific pa-
rameters that are suitable for the simulated systems. Table 2
presents the used parameters in building the simulated study
of this work.

3.3.7e7reatsModel Design. *is study is mostly involved
with three sorts of flooding attacks or attacks, in which each
is more clandestine than the previous one. (i) *e assailants
put forth countless HTTP solicitations to expand the
framework asset and make the framework useless for the
legitimate-client, which we refer to as the DDoS targeting
application layer [2]. (ii)*e assailants assume responsibility
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for some PCmachines through the web, leaving these PCs in
a defenseless and helpless situation [5]. *e assailants at that
point begin misusing the shortcomings of these PCs by
planting noxious codes or other hacking procedures to deal

with the machines; they are called “Zombies.” It is very
simple to accomplish and certainly difficult to detect because
the irregular traffic is utilized into a gathering of targets and
behaves increasingly like an authentic visiting. (iii) A kind of
system traffic is FC that could initiate a stop of adminis-
tration for an Internet administration’s legitimate-clients.
*e FC is closely similar to the DDoS attack, in which a
specific figure of traffic requests legitimate service. For ex-
ample, a site is accessed by a huge number of legitimate-
clients at the same time. Breaking news produced far and
wide, for example, the distribution of the Olympic calendar
or organizations like Apple, Samsung, and so on, launching
another product brings about an unexpected flood in a
legitimate-increase in legitimate-traffics [11]. All those types
of DDoS attacks are generated from the CIDDS dataset
because it has the required attributes and attack scenarios.

3.4. EvaluationMetrics. In this analytical study, our system’s
performance is evaluated using eminent metrics, such as
accuracy, precision, and sensitivity.*ose measurements are
assessed from the components of the confusion matrix.
True-Positive (TP), True-Negative (TN), False-Positive (FP),
and False-Negative (FN) are the components of a confusion
matrix, where TN is the number of actual nonoccurrences of
an attack. TP is the number of actual occurrences of an
attack. FP is the number of inaccurately identified attack
occurrences. *us, FN is the number of inaccurately iden-
tified nonoccurrences as attack cases. Accuracy or exactness
is characterized as the proportion of all effectively delegated
occurrences (TP, TN) to every one of the cases (TP, TN, FP,
and FN). Precision or preciseness (positive predictive
quality) is the proportion of TP to a sum of TP and FP.

M
od

els
Static

Dynamic

Sequential decision
making process

Flexible plan

Relaxed
constraints

Repeated processes

Sequential decision
making process

Revised and new
decision-rules

Decision stochastic
programming

Flexibility in
sequence pattern

Optional execution

Proactive
adjustments

Time-windows

Recursive model

Dynamic
programming

Simulation-based
optimization

Control-based
optimization

Figure 1: *e models of adaptive agent.

Table 1: *e CIDDS dataset attributes [34].

No. Feature name Feature description
1 Src IP IP address of the source node
2 Src port Port of the source node
3 Dest IP IP address of the destination node
4 Dest port Port of the destination node
5 Proto Protocol
6 Data are first seen Start time flow is first seen
7 Duration Flow period
8 Bytes Conveyed bytes
9 Packets Conveyed packets
10 Flags TCP flags
11 Attack description Additional information about the attack
12 Attack type Type of attack
13 Attack ID Unique attack ID
14 Class Category or label of the instance

Table 2: *e testing parameters.

No. Abbreviation Parameters Value
1 Window size *e size of dataset segmentation 7
2 Period *e duration of the dataset 7
3 SSM Special sequence matrix 130
4 MCP Model-checking period 24
5 MST Model similarity threshold Dynamic
6 P0 Normal traffic intensity —
7 P1 Current traffic intensity —
8 P2 Traffic behavior —
9 P3 IP history log —
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Sensitivity is the proportion of TP to a sum of TP and FN.
Accuracy is calculated using

Accuracy �
TP + TN

TP + FP + TN + FN
. (1)

While precision is calculated using

Precision �
TP

TP + FP
. (2)

and, sensitivity is calculated using

Sensitivity �
TP

TP + FN
. (3)

4. The Adaptive Protection of Flooding
Attacks Model

*is work proposes the Adaptive Protection of Flooding
Attacks (APFA) model, an engineered or structural ex-
pansion to protect web applications and servers against
DDoS and FC attacks. It is targeted at huge-scale online
organizations, including nonbusiness entryway websites.
*e APFA consists of four accompanying units or modules:
Abnormal Traffic Detection Module (ATDM), DDoS Attack
Detection Module (DADM), Adaptive Traffic Control
Module (ATCM), and the Kalman Bloom Filters Module
(KBFM), as shown in Figure 2. *e role of each module is
described in the following subsections. *e base work of the
model is the AL-DDoS model, which is taken from [35, 36].
*erefore, some of the model’s basic parts are not detailed in
this paper.

4.1. 7e Abnormal Traffic Detection Module. *e Abnormal
Traffic Detection Module (ATDM) is the first part of the
APFA model. *is module’s major aim is to monitor and
analyze the traffic to detect sudden changes in HTTP GET
requests. It does not take any action if no anomalies are
detected in the traffic. If it detects abnormal traffic from the
incoming HTTP traffic, an “attention” signal is sent to the
next module, which is the DADM, for further analyses, as
shown in Figure 2. Several steps are taken before sending an
attention signal starting with the measurement of the in-
coming traffic. *is can be done in many different ways, but
the APFA model measures traffic intensity by using an Auto
Regression (AR) mechanism [35]. In regression, previous
values affect future values. *erefore, the AR mechanism
uses previously observed traffic to predict the change of
traffic intensity in the future. Initially, the HTTP GET traffic
stream is monitored. A time-series y1, y2, . . . , yt􏼈 􏼉 is formed
by the traffic intensity, which is studied in constant time
intervals. *e traffic intensity is calculated by the total
number of packages received in a time interval [36]. If major
changes are detected, it can potentially be a DDoS attack.*e
AR predicts the current traffic intensity by using

yt � 􏽘

p

k�1
a

k
t xt−k + et. (4)

*e variable yt predicts xt, which is the observed value
at time t. *e variable ak

t is a “constant model parameter,”
which means that it remains constant with time, and et is the
observed error [36]. Secondly, at a certain time t, the dif-
ference between the observed xt and the predicted yt gives
the residual error xt [35].

dt � yt − xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (5)

From the residual error at time t, a standard deviation,
σ2d, is calculated:

σ2d �
􏽐

t
i�t−p dt − avg d

t
t−p􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

p

(6)

Subsequently, a threshold is calculated as in equation (7),
which determines abnormal traffic. If dt is greater than kσ2d,
then, abnormal traffic is detected, and an attention signal is
sent to the DDoS attack detection module. Otherwise, no
abnormal traffic is detected, and the ATDM sends a “dis-
miss” signal to DADM, which inactivates itself, as shown in
Figure 2. *e constant k adjusts the sensitivity of the
threshold and is set to a specific value.

dt > kσ2d. (7)

4.2. 7e DDOS Attack Detection Module. *e DDOS Attack
Detection Module (DADM) is the second part of the APFA
model. It uses a trading strategy for dependably deciding a
packet’s source on the web. *is strategy is well-known in
many DDoS protection models to distinguish the legitimate
origins of attacking packets existing in a network server [37]. It
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Figure 2: *e APFA model.
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contains an adaptable stream-dependent labeling plan that uses
the attendant switch’s load to alter stamps or labels [24]. Based
on this strategy, the DADM uses Special Sequence Matrix
(SSM), which denotes zero as a normal request and one as an
anomaly request to give notable attributes for origin tracing the
IP bundles to furnish better tracing ability [19]. Appraisals of
embedded overload avoidance instruments enable this module
to provide an appropriate trace-back outcome, notwith-
standing when there is a substantial burden on the server.
Aside from tracking DDoS attacking packets, DADM assists in
enhancing the filtering or sifting of attacking traffic.

At the point when attention signals are sent from the
ATDM, the DADM starts tracing the source of each IP
address that sends the anomaly traffic. It then measures the
mean occurrences of the associated Real-time Frequency
Vector (RFV) of the traffic. *e RFV holds the variation
range of daily traffic for a particular server. In enormous
traffics, the mean occurrence of the RFVs can be seen as the
likelihood of every needed website page. Indeed, it is es-
sential to find the value of RFV for significant traffic to
deliver the progress of traffic occurrences. For the traffic
model, M1, we register RFVs possibilities:

p vi( 􏼁 �
􏽐

|V|
i�1 Sij

􏽐
|V|
i�1 Sij 􏽐

|V|
j�1 Sij

. (8)

For a subsequent traffic model, M2, we can determine
their support values using equation (9),

P vi⟶ vj|vi􏼐 􏼑 �
Sij

􏽐
|V|
i�1 Sij

. (9)

*e certainty of the M1 according to M2 is obtained
using equation (10). *is indicates the likelihood of the
upcoming traffic models, M1, M2, . . . from vi⟶ vj:

P vi⟶ vj􏼐 􏼑 �
Sij

􏽐
|V|
i�1 Sij 􏽐

|V|
j�1 Sij

. (10)

*e DADM contrasts the present prototype and the
prototypes of typical traffic in the traffic model set if the
present model’s likelihood is more than an assumed
threshold. *is unusual traffic is seen as a DDoS attack
model, or if the likelihood of the present prototype is lesser
than an assumed threshold, this irregular traffic is viewed as
a normal model [19]. In the training phase, the agent sets
some of its beliefs with thresholds. *ese thresholds are used
to reason and estimate the incoming traffic types between
normal, abnormal, FC. or DDoS. as explained in Section 4.3.
In addition, to distinguish the attack traffic from the typical
or normal traffic for every peculiarity or anomaly traffic, the
estimations of entropy on every model (M1, M2, . . .) are
determined to portray the appropriation of the approaching
origins and the targeted URLs. For the purpose of the in-
vestigation, S is the RFV of source IP addresses; T is the URLs
of needed website pages, numeral one as the “HTTP re-
quests,” numeral two as the “normal.” According to the
meanings of each DDoS attacks and FC, the entropy En (S)

or En (T) is determined by equation (11):

En(S)2

En(T)2
>

En(S)1

En(S)1
>

En(S)1

En(S)3
>

En(S)4

En(S)4
. (11)

Hypothetically, as appearing in equation (11), normal
traffic, for the most part, has the smallest proportion of
entropy quality and hence, differentiates the normal traffic
from the DDoS attacks. At this point, the traffic is not in-
vestigated to check for the possibility of FC.

4.3. 7e Adaptive Traffic Control Module. *is work con-
tributes an agent-based Adaptive Traffic Control Module
(ATCM), which has a Belief-Desire-Intention (BDI) agent
architecture. With the BDI architecture, the adaptive agent
facilitates the task selection decisions based on mapping
desires with states of beliefs. *ese beliefs help the agent
make decisions on the course of actions required to complete
the tasks. *e tasks involve monitoring the behavior of the
incoming traffics data and controlling the flow of the traffic.
*e ATCM agent has a reactive component with which it
adapts the traffic through implementing three functions:
anomaly traffic identification ati function, anomaly traffic
diagnosis atd function, and anomaly traffic handling ath

function. *ese functions process according to the values of
preexisting parameters or beliefs, including traffic attack
behavior, normal traffic intensity, and history log of IP
address. *e belief constituents include information about
traffics in the normal case as well as in the abnormal case.
Desires, also referred to as goals, are reflective of what the
agents intend to achieve. *e agent can create desires or
goals explicitly or generate them during runtime. However,
in the ATCM agent, the desires are predetermined by the
corresponding tasks, which are explained in the following
paragraphs. Lastly, intentions are interwoven with plans,
which are sequences of actions structured toward achieving
the goals if there is a means of achieving them. *e BDI
architecture of the ATCM agent reasoning cycle is as follows:

Step 1: observe the network traffic conditions and
update beliefs
Step 2: deliberate some defense desires to pursue based
on the updated beliefs

(i) Determine the available defense alternative desires
(ii) Filter out unrelated or unachievable desires

Step 3: generate intentions of carrying out tasks to
satisfy the selected desires
Step 4: execute actions to complete the corresponding
task

In addition, with these components of BDI, the agents
goals are differentiated from plans. *ere may be several
plans prepared for achieving a goal so that if one plan fails,
the agent considers other plans according to the reasoning
cycle. In a case wherein there are multiple plans to achieve
the goal, there is a cost-based selection function so that a less
time-consuming plan is selected. Figure 3 shows the ar-
chitecture of the proposed ATCM and the related adaptive
functions.
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Let the beliefs set, B, represent the network traffic pa-
rameters, which are: normal intensity, b0; traffic intensity, b1;
traffic behavior, b2; and IP history log, b3. *e agent’s beliefs
trigger the desires set, D, to react based on the traffic
conditions. *ree functions: ati, atd, and ath, filter the
desires, D, and translate the D to intentions, I. *e I include
the options of filters, i0; block, i1; and lock, i2 traffic actions.
*ey are defined as follows:

(i) i0 temporarily filters the traffic signals by random
dropping of network requests. i0 is invoked when
FC is detected

(ii) i1 temporarily blocks the DDoS zombie network
requests. i1 is triggered when DDoS zombie IP
addresses are detected

(iii) i2 permanently locks the DDoS demon network
requests. i2 is invoked when DDoS demon IP ad-
dresses are detected

Based on Figure 3, when the anomaly traffic with the
source IP address reaches the agent of the DADM, the

ATCM agent controls the incoming traffic according to the
three predefined intentions. In the first step of an agent cycle,
the ati function checks the current traffic intensity with the
b1. In case the current traffic intensity is more than b1, it
means there is an attack traffic state. In case the current
traffic intensity is less than b1, it means a normal traffic state,
and the traffic is allowed to pass to the web service. Sub-
sequently, in the second step of the agent cycle, and after it
determines that the incoming traffic is a potential attack,
then the second function, which is the atd and based on b2
classifies the type of traffic into DDoS or FC according to
equation (12).

r �
n 􏽐 xy( 􏼁 − 􏽐 x( 􏼁 􏽐 y( 􏼁

�����

n􏽐 x2
􏽱

− 􏽐 x( 􏼁
2

���������������

n 􏽐 y
2

􏼐 􏼑 − 􏽐 y( 􏼁
2

􏽱 . (12)

At this point, any traffic that cannot be confirmed to be
DDoS is labeled as FC. In the case of FC, the agent invokes
the execution of random Kalman filter, rkf function, i.e., in
the KBFM to block some of the traffic in a random manner
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Figure 3: *e architecture of the ATCM Agent.
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temporarily. In the case of DDoS, the exclusive decision is
sent to the agent’s last function, which is ath for further
analysis. *e ath based on b3, separates the DDoS traffic into
Demons and Zombies. *en, the Demons’ IP addresses are
sent to the specific bloom filter for the sbf function to block
the Demons permanently. Finally, the Demons’ IP addresses
are saved in the buffer IP address for future processing.
Consequently, the Zombies’ IP addresses are sent to the
specific Kalman filter for the skf function to block the
Zombies temporarily. All the filter functions are described in
the KBFM.

4.4. Kalman and Bloom Filter Module. *e Kalman and
Bloom Filter Module (KBFM) comprise Kalman and Bloom
filters. *ese filters are sequentially associated with network
traffics. In the following segments, we clarify the significance
and utilization of these filters.

4.4.1. Kalman Filter. *e Kalman filter includes expressions
that permit assessing the procedure state via productive and
recursive computation such that the average of the squared
error is limited [38]. In our suggested prototype, the Kalman
filter is controlled by the agent.*e agent sends signals to the
Kalman filter for actuation or shut-off depending on the
prearranged metrics and measure of approaching traffics by
invoking one of the two functions. *e first function is the
random Kalman filter, rkf, function that performs imper-
manent blocks to random IP addresses. *e second function
is the specific Kalman filter, skf, function that performs
impermanent blocks to the Zombies’ IP addresses.

4.4.2. Bloom Filter. In 1970, Burton Howard Bloom created
a filter named after him, called the Bloom filter, which can be
described as a probabilistic data structure that is space-
efficient. *is filter can be utilized to test and decide whether
a component is a member of a set. *ere is a plausibility of
false-positive matches but not false-negatives. Eventually, a
query can return as just “certainly not in set” or “potentially
in set” in which components can be included to the set but
not expelled when all things are considered as continuous
events. *e likelihood of false-positives becomes bigger
when the number of components in the set increases [39]. In
our suggested prototype, the bloom filter is controlled by the
agent. It signals the bloom filter for initiation or shut-off
depending on the predetermined metrics and measure of
approaching traffics by invoking specific bloom filter, sbf

function. *is function performs permanent locking of the
Demons’ IP addresses.

5. Simulation Environment

*is segment discusses the implementation of the simulator,
the tests performed, and the execution measurements that
are utilized in evaluating the APFA model. *e simulator
includes implementing the AL-DDoS model of Zhou et al.
[36] as a base model. It also includes attack visualization and
analysis modules to monitor the performance of the attack

traffics and the protection models. *e simulation illustrates
the impact of the DDoS and FC on the application layer with
and without the AL-DDoS and APFA models.

5.1. Simulator Description. We build the simulation process
design based on the attributes of the CIDDS dataset, and the
AL-DDoS and APFA models. We use the CIDDS dataset to
generate a large number of HTTP requests, including
normal and abnormal HTTP requests. We divide the dataset
into four weeks and model it with predetermined settings,
which we describe in the following section. We design the
APFA model in an almost similar design to the AL-DDoS
model, except that we add the ATCM agent and some related
changes.

Figure 4 shows the complete simulator design, which
starts with a connection of the dataset to the simulator and
dividing the data into training and testing sets. Traffic data
from the training set is fed to the ATDM to determine the
simulator thresholds by monitoring and analyzing the in-
coming traffics during the training phase (Steps 1–4 as
shown by the ellipses). *ese thresholds are also received by
other modules and the ATCM to form the agent’s initial
beliefs. In the subsequent testing phase, the ATDM dis-
tinguishes between the normal and the abnormal traffic, and
passes the attention or dismiss the signal to the DADM. If an
attention signal is received, the DADM traces the source of
IP addresses that send the anomaly traffics (Step 5). Con-
sequently, it sends these IP addresses in the form of SSMs to
the ATCM agent for further analysis. While this study
contributes the ATCM agent as discussed in the previous
section, the BDI architecture of the ATCM agent controls
the execution of three plans (Step 6) [40].

*ese plans identify traffic conditions (Step 6.1), classify
the traffic type (Step 6.2), and control the traffic flow (Step
6.3). *ese could be selected sequentially or arbitrarily based
on the traffic conditions and changes in the agent’s beliefs.
Finally, the filtering operation that satisfies the analysis of the
traffic conditions is invoked (Step 7). Figure 5 shows the
sequence of the interactions between the four modules of the
APFA model of the simulator.

In this diagram, the rectangles show the modules, and
the squares represent the procedures of each module,
whereas the arrows show the direction of processing and the
interaction in a time frame as follows:

(i) User: exports the CIDDS dataset through a GUI
(ii) ATDM: monitors and analyzes the incoming traffics

to set thresholds

o sends attention signal to the DADM in the case
of abnormal traffics
o sends dismiss signal to the DADM in the case of
normal traffics

(iii) DADM: traces traffic sources in the case of ab-
normal traffic based on the received signal

o Attention: traces the source of abnormal traffics
and saves the IP addresses

Security and Communication Networks 9
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o Dismiss: stops the tracing process

(iv) ATCM: controls traffic flow in the case of abnormal
traffics by invoking

o ati: identifies traffic conditions
o atd: classifies the traffic type
o ath: controls the traffic flow

(v) KBFM: filters traffic flow in the case of abnormal
traffics by invoking

o rkf: temporarily filters the traffic according to
random IP addresses and specific thresholds
o skf: temporarily filters the traffic according to
specific IP addresses and specific thresholds
o sbf: permanently filters the traffic according to
specific IP addresses and specific thresholds

(vi) Results: displays the information of the data anal-
ysis, processing cycles, and the simulation results
through a GUI.

We specifically develop the simulator for this work by
using C#, which is available on Visual Studio 2013 and
Windows 7. For the implementation and testing of the
simulator, the hardware used includes a 2.40GHz Intel (R)
Core (TM) i7-5500U processor and 16GB RAM.

5.2. Dataset Setting. *e original Coburg Intrusion Detec-
tion Data Sets (CIDDS) is a flow-based benchmark data
segmented into five different groups of traffics, which are
(normal, suspicious, unknown, attacker, and victim). *e
CIDDS dataset is used in the simulation to generate a large
number of HTTP requests which include normal and ab-
normal HTTP requests. We neglect the Attack ID and
Description features because they just give extra information
about executed attacks [6]. *is dataset was also used in
similar recent studies, and the settings of the dataset in our
work follow the work of Sreeram and Vuppala [19] and
Mohamed et al. [23]. Figure 6 shows the CIDDS dataset
network environment.

*e performance of the IDS and IPS against flooding
types of attack is specifically evaluated using the CIDDS
dataset. Figure 7 shows the segmentation of the original
dataset into four weeks and seven days. *e week 1 folder
contains 9,412 IP addresses and sends 172,838 requests; the
week 2 folder consists of 8,357 IP addresses and sends
159,373 requests. *e week 3 folder holds 2,605 IP addresses
and sends 70,533 requests, and the week 4 folder contains
15,369 IP addresses and sends 303,024 requests. We compile
these weeks in a file and reorganize the data instances ac-
cordingly. We then segment the CIDDS dataset into 60%
training and 40% testing sets, as shown in Figure 7. Hence,
the training and testing ratio of the CIDDS dataset is seg-
mented according to the related work for which the com-
parison is made with them.

5.3. Simulation Setting. *e advantages of using the CIDDS
dataset in this study are that it is current and customizable.
*e simulation program is written with the C# programming

language in a virtual environment to regenerate customized
datasets that are used in this work. However, the original
CIDDS dataset does not include FC labels. Subsequently, we
set the ground truth of DDoS and FC traffics to train for the
thresholds and methods in the simulation based on the actual
data of the CIDDS dataset and statistical analysis of the data
using equations (4) and (5). *e analysis of the training phase
results shows the average frequency of incoming requests.*e
high request frequency signifies the possibility of DDoS or FC
traffic. Moreover, any traffic that cannot be confirmed to be
DDoS and have DDoS characteristics are labeled as FC.
Figure 8 shows an example of the statistical analysis, which
identifies an average frequency of 37000 requests from the
clock time of 4 : 20 to 19 : 20 on day 1 of week 1.

We set the simulation parameters during the training
phase for both AL-DDoS and APFA models. *e training
set almost represents 60%, and the testing set represents the
other 40% of the original dataset. It includes the Support,
Confidence, and Possibility results when the window pa-
rameter is set to be 130. Correspondingly, the support,
confidence, and possibility represent the values of the up
triangle, diagonal, and down triangle.

We perform different tests to choose an optimal value for
all the testing parameters. Figure 9 shows an example of the
CIDDS dataset that generates web traffic, with original der-
ivations and 2-step Kalman calibration. *e results show the
detection of noticeable deviation for the abnormal traffics.

*e default M traffic model here represents the traffics of
the three weeks, and it has been calculated as discussed before.
Table 3 shows the support, confidence, possibility, entropy,
and minimum and maximum values of the M model. *e
system is implemented based on these parameters, in which
the period is set to 7, and the SSM is fixed to be 130.

During the training phase, the agent architecture in-
cludes three cases, anomaly traffics, DDoS traffics, and FC
traffics, along with the agent’s reaction setting for the three
cases. *e conditions of the anomaly traffic are classified
based on the traffic behavior into irregular, t0; discrete, t2;
and continuous, t2, as shown in Table 4. *is classification
helps to identify the traffic types during the testing phase.

Based on Table 4 and as described in Section 4.3, the ati

has the elementary objective of identifying whether the
incoming traffic is normal or abnormal. In a scenario where
7.6428 is a threshold value for traffic intensity according to
the ATDM analysis, the current incoming traffic value is
updated in b1, then it is compared with b0. If the b1 value is
lesser than that of b0 (i.e., 7.6428), then the case is recognized
as regular traffic. If the b1’ value is higher than b0, then the
next stage of calling the atd is triggered to determine the
traffic condition. For FC traffic, with a traffic intensity of
7.6428, we follow the same steps as the first case. Abnormal
traffics are diagnosed by the atd according to b2. In this
scenario, based on the correlation coefficient, the traffic
behaves as a discrete flow, b2⟶ t1 and atd: b2⟶ i0. As a
result, the agent instructs the KBFM to invoke the rkf with
2745 capacity, temporarily filtering out 2745 IP addresses.
When the volume of the DDoS traffics, which are detected in
this stage, is 10838 IP addresses, each IP address sends a
random number of requests. *is traffic model is sent to the
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ATCM agent to identify, classify, and control the traffic
according to the agent functions. When incoming traffic is
10838 and has a continuous flow, b2⟶ t2, then, the atd:
b2⟶ i1∧ i2 is considered as a DDoS attack. *is case
implies invoking ath, which handles the Zombies, r1 and
Demons, and r2 requests, ath: r1⟶ i1∧ r2⟶ i2. *e
agent instructs the KBFM to invoke the skf in which ath:
r1⟶ skf and the sbf in which ath: r2⟶ sbf with the
corresponding SSM information, which temporarily locks
the r1 and permanently blocks the r2.

6. Results and Discussion

*e test results evaluate the performance of the APFA model.
*en, the performance of the model is compared with three
similar models of Sreeram and Vuppala [19], Mohamed et al.

[23], and Zhou et al. [36]. We perform two tests on the CIDDS
dataset to evaluate the APFA model in which the CIDDS
dataset generates normal and anomaly traffics.We perform the
first test for the AL-DDoS model, which only detects normal
and DDoS traffics. We conduct the second test for the APFA
model, which detects normal, DDoS, and FC traffics. *e data
of week 4 (after the modification, it becomes 40% of the dataset
as explained in Section 5.2) are used for testing themodel.*ey
contain a discrete and random series of incoming requests,
including DDoS and FC targeting the NAL. Table 5 shows the
daily frequency of the incoming requests of week 4.*e traffics
of week 4 are divided into seven days, starting with traffic day 1
with 38,919 requests and ending with day 7 with 33,228 re-
quests. We observe from the table that day 7 has visibly lower
requests than the daily average incoming requests, which are
43,289, and day 4 has visibly greater requests than the daily
average of incoming requests.
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Figure 8: *e average frequency of incoming requests of the
training phase.
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6.1. Results of the AL-DDoS Model. *e performance of the
AL-DDoS base model is calculated according to the window
size, period, and SSM parameters for every execution of
external traffic data. *e AL-DDoS model performance is
evaluated based on correctly classifying traffic instances into
normal, and DDoS attack traffics only. *e volume of attack
traffics detected by the AL-DDoS model is 26,8496 requests
triggered by 13,583 IP addresses. Subsequently, the results
show that the AL-DDoS model detects DDoS attacks and
blocks the IP addresses with an accuracy of 99.13%, precision
of 99.14%, and sensitivity of 99.99%. However, the AL-DDoS
model lacks handling FC and Zombies traffics and considers
all DDoS traffic as Demons.

6.2. Results of the APFAModel. *e results of the APFA also
present information about the number of anomaly requests of

the same week 4 from the dataset. *e data are first passed
through the ati function in the identify traffic conditions
phase of the ATCM agent. *e ati detects a total number of
34,528 requests as normal and 268,496 as abnormal according
to the traffic intensity parameters with a total cost of 15,369
cycles. *en, the attack requests are classified by the atd

function, in the classify traffic type phase, into 264,551 re-
quests as DDoS and 3,945 requests as FC, with a total cost of
13,583 cycles. *e ath function, in the control traffic flow
phase, controls the traffic according to the DDoS types of
175,624 Demons and 88,927 Zombies, with a total cost of
10,838 cycles. *en, the KBFM implements the required
blocking and locking of the requests. Table 6 shows the input,
processing, and output of each function in the ATCM agent.

Figure 10 shows the classification results of the daily attack
requests of week 4 by DDoS and FC. *e average daily DDoS

Table 4: Agent parameters setting.

Traffic conditions Traffic Behavior
Anomaly 13,583 t0
FC 2,745 t2
DDoS 10,838 t2

Table 5: *e average incoming requests in the testing phase.

Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Frequency 38,919 47,328 44,921 56,991 39,835 41,802 33,228
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Figure 9: A sample of web traffics from original derivations and 2-step Kalman.

Table 3: Values of the M traffic model.

Support Confidence Possibility Entropy Min Max
M 0.0000 0.0021 0.050 7.6428 0.00000 244,557.99
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requests are 37,793, which is almost 96% of the average daily
abnormal requests, while the average daily FC requests is 563,
which is almost 2% of the average daily abnormal requests.

Figure 11 shows the number of Demons and Zombies
requests by the DDoS traffic. *e average daily requests of
Demons is 25,103, which is almost 66% of the DDoS re-
quests, while the average daily requests of Zombies is 12,703,
which is almost 44% of the DDoS requests.

In general, the results show that the APFA model is able
to detect and distinguish the DDoS and FC traffics. It then
recognizes Demon and Zombie requests of the DDoS traffic.
*e phase that is responsible for identifying the possibility of
abnormal traffic achieves the results of 99.11% accuracy,
99.14% precision, and 99.99% sensitivity. *e phase that is
responsible for classifying DDoS and FC traffics achieves the
results of 99.92% accuracy, 99.85% precision, and 99.96%
sensitivity. *e phase that is responsible for controlling
Demons and Zombies traffics achieves the results of 99.91%
accuracy, 99.89% precision, and 99.93% sensitivity. Ulti-
mately, the APFA model achieves an overall accuracy of
99.64%, precision of 99.62%, and sensitivity of 99.96%.
Table 7 shows the performance results of the APFA model.

Figure 12 shows the daily performance results of the
APFA model. As observed from the figure, the APFA
model’s performance improves day by day due to the sys-
tem’s ability to progress its adaptive behavior with time.

6.3.Analysis andDiscussion. In the deep view of the Internet
network, there are many components that participate in
making up the web application framework. *e HTTP re-
quests sent from web clients are processed by a web server
and forwarded to the application server based on many

configuration parameters like URL path prefix. *ese re-
quests are directed to one of the web applications hosted by
the application server. A DDoS attack is a malicious event
that targets web servers without the need for internal system
access. Consequently, the attack is not easily detected in its
early stage.*e attack entails the involvement of a huge army
of Zombies to cause conceivable damage to the network.
Critical attacks include concentrating a huge number of
nodes as a single target to inflict devastating damage to users
and completely overwhelm the network. Another type of
flooding traffics, which is FC, is depicted as network traffic
that is quite similar to DDoS traffic, but it comes from valid
users when a huge number of them access a particular
website simultaneously.

*e benchmarking works of Sreeram and Vuppala [19],
Mohamed et al. [23], and Zhou et al. [36] only deal with two
types of traffics, which are normal traffic and attack traffic.
*e AL-DDoS base model of Zhou et al. [25] only detects
anomaly traffic requests, determines the source of each IP
address, saves these IP addresses in a bloom filter, and locks

Table 6: *e results of the agent run cycle during week 4.

No. Run phase Cost Input req. Output

1 Identify normal/abnormal 15,369 303,024
Normal Abnormal

IP Req. IP Req.
1,786 34,528 13,583 268,496

2 Classify DDoS/FC 13,583 268,496
DDoS FC

IP Req. IP Req.
10,838 264,551 2,745 3,945

3 Control demons/zombies 10,838 264,551
Demons Zombies

IP Req. IP Req.
7,186 175,624 3,670 88,927
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Table 7: *e performance results of the APFA model.

Evaluation metrics
Run phase Accuracy % Precision % Sensitivity %
Identify normal/
abnormal 99.11 99.14 99.99

Classify DDoS/FC 99.92 99.85 99.96
Control demons/
zombies 99.91 99.89 99.93

Overall results 99.64 99.62 99.96
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all the anomaly traffic requests. However, among those IP
addresses, there are many cases of FC and Zombies’ requests
that belong to legitimate users yet are confined to permanent
lock. Subsequently, this work proposes an Adaptive Pro-
tection of Flooding Attacks (APFA) model that identifies
abnormal traffic requests and then further classifies the
abnormal traffic requests to DDoS and FC. It then further
classifies the DDoS to Demons and Zombies and applies
control procedures to temporarily block FC and Zombies’ IP
addresses and permanently lock Demons IP addresses.
Figure 13 shows the hierarchy of the APFA model control to
the NAL against flooding traffics.

Researchers have proposed, developed, and imple-
mented numerous techniques to safeguard the NAL against
DDoS and FC attacks. However, hidden malicious traffic
behind valid traffic and the FC continue to plague these
defense models. Many of these models are unable to

differentiate between valid and invalid malicious traffics
positively. In this paper, we proposed the APFA model, the
performance of which is evaluated by comparing it with
three benchmark models. *e three models are tested for
similar properties and in similar conditions, and there is no
bias to declare. *e comparison results are summarized in
Table 8, which show that the APFA model outperforms the
other three models.

Eventually, defense methods are continuously evolving
to improve and protect networks and computer infra-
structures. *e APFA model, like any other model, repre-
sents another attempt to provide variable effectiveness
against DDoS attacks and FC flooding. *ree sources of
limitations need to be highlighted according to the scope of
this work. Firstly, this work does not consider the processing
time in the evaluation in which the adaptation and decision-
making capabilities of the agent might slow down the
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Figure 12: *e results of the daily performance.

Traffic
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DDoS FC

Demon Zombie

Figure 13: *e hierarchical traffic control of the APFA model.

Table 8: *e performance comparison with the benchmark models.

Model Technique Dataset
Traffic type

Accuracy %
FC DDoS Zombies Demons

Sreeram and Vuppala [19] Bat algorithm CIDDS — ✓ — — 94.80
Mohamed et al. [23] Random forest CIDDS — ✓ — — 99.54
Zhou et al. [36] Statistical CIDDS ✓ ✓ — — 99.13
APFA model Adaptive agent and statistical CIDDS ✓ ✓ ✓ ✓ 99.64
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performance of the model compared with the other tested
models. Secondly, the model is only tested using the CIDDS
dataset, which could be another constraint on the evaluation.
Finally, the testing of the model does not cover the low-rate
cases of DDoS attacks that are difficult to discover with
existing solutions. Nevertheless, such DDoS attacks have no
harmful impact on real-world network systems.

7. Conclusion and Future Work

Progressively, there are assortments of administrations and
applications that utilize cyberspace, including web appli-
cations, cloud-computing applications, and Internet of
things applications. DDoS attack and FC flooding could be
a legitimate annoyance for the cybersecurity of network
systems. *e advancement of innovative communication
technology of the current computer applications has
brought along the danger of these sorts of threats. Sub-
sequently, various investigations have focused on these
threats to embed variable protection prototypes. *e
proposed mainstream models lack the ability to deal with
illegitimate DDoS traffics, which are accompanied by FC
traffics. *ey permanently lock all DDoS traffic and treat
legitimate traffic of FC and Zombies as Demons. Conse-
quently, this paper proposes an Adaptive Protection of
Flooding Attacks (APFA) model, which attempts to protect
the NAL against DDoS attack and FC flooding and solve the
problem of permanently locking the traffics of legitimate
users. *e APFA model consists of the Abnormal Traffic
Detection Module (ATDM) and DDoS Attack Detection
Module (DADM) that are adopted from the AL-DDoS
model of Zhou et al. (2014). It further includes a new
Adaptive Traffic Control Module (ATCM) and Kalman and
Bloom Filters Module (KBFM). Our main contribution is
the ATCM module, which integrates an adaptive agent to
recognize and isolate normal from abnormal traffic and
hinders all ill-conceived traffics. *e APFA model is
implemented and tested using the CIDDS dataset to
produce standard scenarios targeting web servers. *e test
results show that the APFA model outperforms three
similar models and achieves an accuracy of 0.9964, a
precision of 0.9962, and a sensitivity of 0.9996. Two points
of improvement can be further investigated, which are the
effect of cost function on agent adaptive behavior and
enabling the DADM to detect low rate and FC-like DDoS
attack patterns. In addition, putting and testing the APFA
model online could furnish greater confidence in its ca-
pability to perform in real-time.
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