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ABSTRACT Crowd counting considers one of themost significant and challenging issues in computer vision

and deep learning communities, whose applications are being utilized for various tasks. While this issue is

well studied, it remains an open challenge to manage perspective distortions and scale variations. How well

these problems are resolved has a huge impact on predicting a high-quality crowd density map. In this study,

a hybrid and modified deep neural network (U-ASD Net), based on U-Net and adaptive scenario discovery

(ASD), is proposed to get precise and effective crowd counting. The U part is produced by replacing

the nearest upsampling in the encoder of U-Net with max-unpooling. This modification provides a better

crowd counting performance by capturing more spatial information. The max-unpooling layers upsample the

feature maps based on the max locations held from the downsampling process. The ASD part is constructed

with three light pathways, two of which have been learned to reflect various densities of the crowd and define

the appropriate geometric configuration employing various sizes of the receptive field. The third pathway is

an adaptation path, which implicitly discovers and models complex scenarios to recalibrate pathway-wise

responses adaptively. ASD has no additional branches to avoid increasing the complexity. The designed

model is end-to-end trainable. This integration provides an effective model to count crowds in both dense

and sparse datasets. It also predicts an elevated quality density map with a high structural similarity index

and a high peak signal-to-noise ratio. Several comprehensive experiments on four popular datasets for crowd

counting have been carried out to demonstrate the proposed method’s promising performance compared to

other state-of-the-art approaches. Furthermore, a new dataset with its manual annotations, called Haramain

with three different scenes and different densities, is introduced and used for evaluating the U-ASD Net.

INDEX TERMS Computer vision, deep learning, crowd counting, density map estimation, U-Net, adaptive

scenario discovery.

I. INTRODUCTION

In situations involving crowd movements such as religious

gatherings, sporting events, and public protests, crowd anal-

ysis and management are critical and have supreme signifi-

cance in avoiding stampedes and saving lives. Crowd analysis

can be a powerful tool in these situations for early prediction

of crowding and selecting appropriate necessary measures for

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

crowd control and management. Thus, avoiding any disaster

that is about to happen. The variety of crowd management

applications has prompted and inspired researchers from dif-

ferent disciplines to propose innovative and efficient methods

for crowd analysis and relevant tasks, including counting [1],

[2], behavior analysis [3], tracking [4], density estimation [5],

[6], anomaly detection [3], [7], [8], scene understanding [9],

segmentation [10]–[12], andmobile crowd sensing [13], [14].

Among these, density estimation and crowd counting are

critical elements that serve as the foundation for various
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purposes. Crowd surveillance and analysis are not trivial

problems and bring along different obstructions, like, occlu-

sion, background noise, changes in lighting, scale, people

distribution, and perspective. Researchers in this area have

come a long way to tackle some of these issues. The current

crowd scene analysis methods range from straightforward

crowd counting, predicting the total number of individuals

in a scene, to density map estimating, which shows crowd

distribution characteristics. The density map assists in obtain-

ing more precise and intensive details, which may be crucial

in making appropriate decisions, especially in risky scenar-

ios. Notwithstanding, producing precise distribution models

is very challenging. One significant trouble stems from the

estimation way. Because the produced values of the den-

sity are based on pixel-by-pixel estimation, the generated

density maps should have spatial coherence to demonstrate

the smooth transition amongst adjacent pixels. This is chal-

lenging because of the wide range of crowd density values.

As shown in Fig. 1, some of the samples consist of hundreds

of pedestrians, while other samples containing only a few.

This issue can be difficult for a single CNN to deal with the

full range of crowd densities. To tackle this challenge, multi-

column CNN architectures were introduced widely in the

literature. Such architectures can have different parallel CNN

branches with various sizes of the receptive field. In this kind

of architecture, a branch of a network with smaller receptive

fields can effectively address the high crowd density images.

In contrast, a network branch with larger receptive fields can

address low crowd density images well [15]. In addition, the

task would be hard to complete due to the variety of views,

which include infrequent crowd clusters and multiple camera

viewpoints, particularly when using conventional methods

without deep neural networks.

The proposed U-ASD model is inspired by U-Net [10]

with an additional adaptive scenario discovery (ASD) [16].

The model on an encoder-decoder layout with three light

parallel branches is built. The encoder part of the U-Net

is supplanted by VGG16-bn [17]. In addition, the output

of the U-Net encoder has been used as a backbone to the

last branches that represent the adaptive scenario discovery.

Adding the ASD as a binary classifier improves the model’s

crowd counting efficiency. The ground truth attention map

is fed into the adaptive scenario discovery branches, and the

output is combined with U-Net using a combined loss.

To sum up, the following contributions are made:

• A hybrid and modified network structure capable of

predicting precise density map half the size or resolution

of the input is proposed.

• A modified U-Net is produced by replacing the nearest

upsampling with max-unpooling. The upsampling using

max-unpooling for U-Net is proposed to extract more

spatial information through the complex max-unpooling

layers. Thus, a better crowd counting accuracy is

achieved. To the best of our knowledge, max-unpooling

has not yet been utilized in the literature for U-Net archi-

tecture for crowd counting. In this study, a comparison

in terms of the counting accuracy, the number of param-

eters, and training runtime between utilizing the near-

est upsampling and max-unpooling are presented in

Section V.

• A new dataset, dubbed Haramain, with its manual anno-

tations is presented. The Haramain dataset consists of

three various scenes and densities.

• The efficacy of the proposed U-ASD Net is tested on

four challenging datasets for crowd counting. Interest-

ingly, it surpasses state-of-the-art approaches, according

to our findings.

The other sections of this article are arranged as fol-

lows. Section II highlights some critical and timely relevant

research. The proposed model architecture is presented in

Section III. In Section IV, the evaluation metrics, experi-

mental setup, and qualitative and quantitative findings are

presented. Section V presents discussions and analyses of the

findings. The proposed work is concluded in Section VI.

II. RELATED WORK

Significant CNN-based crowd counting methods and related

density map prediction methods are being demonstrated in

this section. Furthermore, since the proposed U-ASD Net

uses segmentation and spatial CNN to address the crowd

counting task, related research studies about those methods

are briefly reviewed.

A. PATCH-BASED AND IMAGE-BASED METHODS

Because of its effectiveness in capturing local features and

generating a huge amount of training samples, patch-based

methods have been utilized in many methods [4], [18].

Patch-based methods train a model and estimate sliding

windows through the testing stage by cropping the images

of various sizes. Convolutional Neural Networks (CNN)

have been utilized in several methods for crowd counting

purposes [19]–[21]. Zhang et al. [19] developed a deep-

qualified CNN for crowd counting and estimating the level

of crowd density. Li et al. [20] suggested using the VGG16

encoder as well as dilated convolutional layers as a decoder

to assemble contextual features on a variety of scales.

Cao et al. [21] introduced a scale aggregation network to

extract multi-scale features utilizing the encoder that uses

scale aggregation modules and estimate high-resolution den-

sity maps using the decoder that uses a collection of trans-

posed convolutions. Fu et al. [18] suggested categorizing the

image into five diverse classes, where each class represents

different intensities of the density, rather than estimating

density maps. Layered boosting and selective sampling pro-

cedures were presented by Walach and Wolf [22]. The lay-

ered boosting means that CNN layers are added to the

model in an iterative manner so that each new layer is

learned to predict the residual error of the previous estima-

tion. Kumagai et al. [23] introduced the Mixture of CNNs

(MoCNN) model that comprises a combination of expert

CNNs as well as a gating CNN. The gating CNN specifies
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FIGURE 1. A CNN-based density estimation can be utilized to pose the crowd counting problem, but because of the large fluctuation in
densities across pixels in the various samples, this issue can be challenging and difficult for a single CNN. This figure presents two images
from the Shanghaitech dataset with substantially varying crowd densities.

a probability to each expert CNN layer, and the expert CNNs

estimate the crowd count. The weighted average count of all

the expert CNNs is the final output crowd count. According

to Sam et al. [24], the better output is determined by train-

ing regressors with a specific group of training patches and

exploiting variation in crowd density. Moreover, Sam et al.

put forward a switching CNN that intelligently determines the

best regressor suited for each input patch. Because the patch-

based methods seem unable to represent the global contextual

data, the whole image-based methods had been concentrated

by the proposed works [5], [25], [26]. Zhang et al.. [19] put

forward a multi-column CNN that processes the input image

with adjustable resolution and uses every column to comply

with various scales. Sheng et al. [24] introduced a novel

image representation that integrates semantic attributes and

spatial cues to enhance the discriminative power of feature

representations. Marsden et al. [27] introduced incorporat-

ing scale into the models with fewer model parameters and

proposed a single column fully convolutional network (FCN)

to estimate density map. A cascaded CNN architecture

(Cascaded-MTL) was proposed by Sindagi and Patel [26].

The Cascaded-MTL integrates learning of a high level prior

to lifting the performance of the density estimation.

B. SEGMENTATION AND SPATIAL CNN

Utilizing pixel-wise regression, density estimation-based

techniques can predict a density estimation map and thus

localize the crowd. Then, the process of crowd counting is

performed by computing the integral image of the density

map [28]. To create density maps with keeping the spatial

size as the inputs or half the inputs, encoder-decoder archi-

tectures are considerably used [10]–[12], [29], [30]. In 2015,

U-Net was developed by Ronneberger et al. [10] for biomed-

ical image segmentation and was then extensively employed

for image segmentation in many other fields with different

encoders such as ResNet, Inception, and DenseNet mod-

ules. By applying skip connections between the correspond-

ing encoding and decoding path blocks, U-Net designed a

symmetric network structure in which convolutional fea-

tures are stacked from activations of the encoder to the

decoder parts. In [31], Shen et al. made use of a U-Net

structure with an adversarial loss to produce high-quality

density maps. Huynh et al. [32] put forward an inception

U-Net-based multi-task learning for crowd counting, den-

sity map-generating, and density level classification. In [30],

the authors proposed U-Net-like architecture called W-Net,

which applies a reinforcement branch to improve the crowd

counting accuracy and converge quicker.

III. PROPOSED METHOD

The workflow of the proposed method is shown in Fig. 2. The

estimated maps from the modified U-Net and ASD Net are

multiplied to generate the final crowd density map. The over-

all U-ASD network architecture is illustrated in Fig. 3. The

complete design of the U-ASDmodel is described in detail in

subsection A, followed by the specifics of its implementation.

A. U-ASD OVERALL ARCHITECTURE

The proposed U-ASD model is built on U-Net [10] and

ASD [16]. The model on an encoder-decoder layout with

three light parallel branches is built. The U-Net architecture

comprises both an “encoder part” to capture context and a

‘‘symmetric decoder part’’ to provide precise localization and

estimate the density map. To extract multi-scale visual fea-

tures from input image sequences, the backbone is utilized.

Following [30], a pre-trained VGG16-bn model, which is

a variant of VGG16 with batch normalization, is utilized.

The first VGG16-bn layers with four-max-pooling are used

as the backbone, and it replaces the encoder block of the

U-Net. Table 1 presents the configuration of the proposed

U-ASD model. The ASD part is used to assist the network in

converging faster and providing better performance with low

errors. The ASDNet’s output density map is 1/16 of the input

image. To fuse the U-Net’s output with the ASDNet’s output,

a Nearest-neighbor upsample layer (US) was introduced as

shown in Fig. 3 to upsample the output.

B. DENSITY MAP ESTIMATION

Semantic segmentation and density map estimation are

classification and pixel-wise regression issues, respec-

tively. Accordingly, numerous studies in crowd counting

address the concepts and hypotheses in semantic segmenta-

tion. Ronneberger et al. [10] designed U-Net (looks like a

U letter) to concentrate on the pixel-wise classification of

an image sequence. U-Net can focus on low-level abstract

features (extracted from the first convolutional layers of the
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FIGURE 2. The overall training workflow of the proposed method. The final density map is
obtained by multiply the generated density maps of the modified U-Net and ASD Net.

encoder part) and high-level semantic abstraction features

(extracted from the decoder part’s final layers). In the pro-

posed U-Net, the max-unpooling operations utilizing the

memorized max-pooling indices from the relating encoder

layer replace the nearest upsampling in the U-Net structure.

Further details about the U-Net are in subsection E.

Kang et al. [4] investigated the generated maps produced

by density estimation approaches for crowd analysis applica-

tions such as detection, counting, and tracking. They inves-

tigated the performance of those applications in great detail

when employing full-resolution density maps. Their find-

ings revealed that full resolution density maps enhanced the

effectiveness of localization tasks, including tracking and

detection. Furthermore, they mentioned that good counting

accuracy does not always necessitate full-resolution density

maps, and adopting reduced-resolutionmaps can speed up the

predictions while maintaining good counting performance as

in [19] and [25]. Because of downsampling strides in the

convolution layers and the pooling layers, most existing CNN

algorithms normally create density maps with a resolution

lower than the source images.

C. CLASSIFICATION VS. REGRESSION FOR COUNTING

As is well known, the network output of the CNN-based clas-

sification models is a vector of the same size as the number

of classes. The input image’s confidence score belongs to the

i-th class is expressed by the i-element in the vector. The final

classification result has been chosen according to the index

that has the highest confidence score during the testing stage.

For most classification problems, softmax loss is extensively

utilized [33]. Taking the human count number as the class

index, on the other hand, is not appropriate for crowd count-

ing problems. The difference between the ground-truth map

and the predicted map can be better retained in the proposed

U-ASD model while determining the estimation error. Such

information is extremely useful for more precisely optimizing

the CNNweights during the back-propagation stage. To allow

the entire model to implicitly detect all crowd scenarios and

respond to varied crowd images in a precise way, two types

of architectures in our model are used: U-Net and ADSNet,

which will be well explained in the next subsections. For

each architecture, a different loss function is defined. For the

modified U-Net, the 2-D pixel-wise mean square error (MSE)

loss is utilized for the density regression task, which can be

defined as in Equation 1 below:

Lmse(d
g, dp) =

1

n

n
∑

i=1

∣

∣d
g
i − d

p
i

∣

∣

2
(1)

where dg and dp refer to the ground-truth map and the pre-

dicted density map, respectively, and n is the total number of

pixels each.

In the proposed U-ASD model, the main aim of training

the ASD is to minimize the binary cross-entropy (BCE) loss,

which is used for measuring the error of a reconstruction,

which is defined as follows [30], [34], [35]:

Lbce(g, p) = −
1

m

m
∑

i=1

(gilog(pi) + (1 − gi)log(1 − pi)) (2)

where gi ∈ {0, 1} is the ground-truth attention map,

where there are two classes (background ‘0’) and (fore-

ground ‘1’), pi is the predicted attention map, and m is the

total number of pixels. To put it another way, the predicted

foreground mask is compared to the ground truth map using

a binary cross-entropy error function, and the low value of the

Lbce(g, p) means better accuracy.

D. POOLING AND UNPOOLING

To lower the size of the representation and make it more

manageable, the pooling layer is employed. It processes the

input and downsamples it without affecting the depth [36].

In other words, the process is done spatially. Thus, the input

and output depths stay the same. Unpooling is used to achieve

upsampling in the network. For density map estimation, pre-

cise pixel prediction is required to acquire accurate count-

ing. If max-unpooling is utilized, the feature map will be

heterogeneous because of the loss of spatial information

produced by max-pooling from the low-resolution image.

Nonetheless, after max-pooling, there is no data regarding

the locations of the feature vector in the low receptive field.

When max-unpooling is performed, the maxima locations

inside each pooling zone can be captured in a set of switch

variables stored in a continuous array after applying the

max-pooling. These switches are utilized in the related max-

unpooling to set the signal from the present feature map into

the up-sampled feature map’s relevant locations. Therefore,
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FIGURE 3. The architecture of U-ASD Net. The parameters of the convolutional layer are indicated as (Conv kernel size).
‘Conv’ refers to a convolution layer, and ‘Deconv’ refers to a deconvolution layer.

more fine detail can be recovered and preserved the spatial

information lost during max-pooling.

E. U-NET

1) ENCODER PART

Only the first layers from the pre-trained VGG16-bn network

are used as an encoder for U-Net to generate the multi-scale

feature maps, and the fully connected layers for the classifica-

tion process are excluded. Following theU-Net structure [10],

the feature maps (FMs) resulting from the encoder part (FM1,

FM2, FM3, and FM4 shown in Fig. 3) are employed as inputs

to the decoder part.

2) DECODER PART

The decoder part is illustrated in Fig. 4. First, the FM4 out-

put and its index Idx4 are used to upscale the input using

Max-unpooling, and then the output of FM3 is concate-

nated with it. After that, this concatenated input is passed to

Block 1 demonstrated in Fig. 4. Block 1 includes 2×max-

unpool and two convolutional layers with 1 × 1 × 256 and

3 × 3 × 256, respectively, followed by batch normaliza-

tion (BN) and rectified linear unit (ReLU). The output of

this block is upscale using 2×max-unpool and concatenated

with the output of FM2. Similarly, the process of increasing

the size is reiterated prior to feeding Block 2 (with the same

architecture as in Block 1 but with a different channel size).

At last, another upscaling and concatenation fromBlock 2 are

performed, and Block 3 generates the final feature map.

At the training phase, the loss function of U-Net is the 2-D

MSE loss, which is defined previously in Equation 1.

F. ASD NET

Recent papers in [30] and [37]–[39] have been utilized

VGG16-bn for crowd counting, and the proposed models

of these papers achieved high performance. Therefore, fol-

lowing these studies, the VGG16-bn has been used as a

FIGURE 4. Decoder architecture for U-ASD Net. Batch normalization
layers ‘‘BN’’ are added between each ‘‘Conv’’ and ‘‘ReLU’’ layer.

backbone for our model instead of VGG16 that was used

in the original ASD Net. After the backbone, the ASD part

incorporates three light parallel paths as in Fig. 3. The first

part, B1, is intended to address the sparse crowds. It contains

a deconvolutional layer (DC), which upscales the inputs.

After the DC, there are five convolutional layers with larger

receptive fields followed by max-pooling. Fig. 5 presents the

details about the structure of the convolutional layers group

1 (CLs1) in the B1 pathway. The second pathway, B2, is
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TABLE 1. Configuration of the proposed U-ASD network. The parameters
in the convolutional layers ‘‘Conv2d’’ and the deconvolutional layer
‘‘ConvTranspose2d’’ are denoted as ‘‘kernel size, number of filters, stride,
dilation’’. Unless otherwise stated, the stride and dilation are set to 1 by
default, the padding is set to 0 by default. Maxpooling ‘‘MaxPool2d’’ and
maxunpooling ‘‘Maxunpool2d’’ layers are denoted as ‘‘kernel size, stride’’.
Global average pooling ‘‘GAP’’ is denoted as ‘‘dimensions’’. Fully
connected layers (FCs) are referred to as ‘‘size of the input’’ and ‘‘size of
output,’’ respectively.

intended for the dense crowd. The structure of the convo-

lutional layers group 2 (CLs2) in B2 is shown in Fig. 6.

Both B1 and B2 pathways are relative and can estimate a

density map. For fusing the density maps, a dynamic weight-

ing method named adaption discovery is used. Adaptation

discovery is a process that permits the network to carry out

feature recalibration for the weight of the B1 and B2 branches,

FIGURE 5. Structure of the convolutional layers group 1 (CLs1), where
(512, 256, 128, 64, 1) are the number of filters, and (1, 9, 7, 7, 3) are the
kernel size.

FIGURE 6. Structure of the convolutional layers group 2 (CLs2), where
(256, 128, 64, 1) are the number of filters, and (3, 3, 3, 3) are the kernel
size.

through which it can learn to utilize global information to

emphasize informative features while suppressing less help-

ful ones selectively. B3 in Fig. 3 presents the details of this

process. It contains a global average pooling (GAP) and two

fully connected layers (FCs) followed by ReLU and Sigmoid-

Normalization. The GAP can be used to calculate the global

average value of each channel. The multi-layer feature map

M that is extracted by the convolutional layers of the U-Net

encoder is considered as an input to the GAP. Its dimensions

are h × w × c, where h denoting height, w denoting width,

and c are the number of channels. Mc(i, j) is the element

at location (i, j) in the c − th channel (i, j). The output is

1×1×c. To capture the interdependencies between channels,

two fully connected layers followed by an activation function

of Sigmod, which are not shown in Fig. 3, have been added

after the GAP. The first FC layer minimizes the dimension

from c to c/16, and the second FC reduces the dimension

from c/16 to c/32. An initial response w after the sigmoid

function is obtained, the w adaptively recalibrates the weight

of the B1 and B2 pathways. Thus, w is normalized into the

interval of [0, 0.5] [16], [40], the output of theB1 andB2 paths

can be computed as follows:

outputB1,B2 = (1 − w)B1 + wB2 (3)

IV. EXPERIMENTS

The evaluation metrics and experimental details are initially

addressed in this section. The results of the proposed U-ASD

Net are then reported and analyzed on five challenging crowd

counting datasets.

A. EVALUATION METRICS

The counting accuracy of the CNN-based crowd counting

networks can be measured by mean absolute error (MAE),

mean squared error (MSE), and the resolution of the den-

sity map [33]. Further details are explained in the following

paragraphs.

• The most well-known evaluation metrics in the scope

of evaluating crowd counting methods are the MAE
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TABLE 2. Datasets details. Num: number of images/frames, Avg: average number of count, Min: minimal crowd count, Max: maximum crowd count, Total:
total number of annotations.

and MSE, respectively, which can be described as

below [41]–[43]:

MAE =
1

N

N
∑

i=1

∣

∣ci − ĉi
∣

∣ (4)

MSE =
1

N

N
∑

i=1

∣

∣ci − ĉi
∣

∣

2
(5)

where N represents the total number of patterns in the

test set, ci is the count label, and ĉi is the predicted count

value for the i-th test pattern. TheMAEmetric represents

the precision of the estimated count, and theMSEmetric

is a measure of the robustness of counting.

• Peak signal-to-noise ratio (PSNR), the method of com-

puting the mean square error between the predicted

density map and its ground truth of all pixels, is pre-

ferred for determining the accuracy of the predicted

map.Mathieu et al. [44] argued that the PSNR is a better

metric for assessing quality. The PSNR is defined as

follows [45], [46]:

PSNR(M , I ) = 10log10
max2I

(1/N )
∑N

j=0(Mi − Ij)2
(6)

where M refers to the density map image, maxI is

the highest possible value of image intensities, and N

denotes the total number of pixels in the map image.

Generally, a higher PSNR value shows a higher image

quality.

• Structural Similarity Index (SSIM) is frequently utilized

to assess the quality of the estimated density map [47].

The SSIM estimates the image similarity based on con-

trast, structure, and luminance, which can be calculated

by multiplying the three terms described. The SSIM

value is in the [−1, 1] range. The higher the SSIM value,

the lower the distortion has been. The SSIM formula is

defined as follows [48]:

SSIM (g, p) = [l(g, p)]α.[c(g, p)]β .[s(g, p)]γ (7)

where:

l(g, p) =
2µgµp + C1

µ2
g + µ2

p + C1
,

c(g, p) =
2σgσp + C2

σ 2
g + σ 2

p + C2
,

s(g, p) =
2σgp + C3

σgσp + C3

µg, µp, σg, σp, σgp are the local means, standard devi-

ations, and cross-covariance for both the ground-truth

density (g) and predicted density (p) maps, respectively.

If α = β = γ = 1, and C3 = C2/2 the SSIM can be

written as:

SSIM (g, p) =
(2µgµp + C1)(2σgp + C2)

(µ2
g + µ2

p + C1)(σ 2
g + σ 2

p + C2)
(8)

B. EXPERIMENTAL SETUP

The U-ASD was tested on two image crowd counting bench-

marks and three video crowd counting benchmarks (i.e.,

ShanghaiTech Part A, ShanghaiTech Part B, and UCF CC 50)

and (i.e., UCSD,Mall, Haramain), respectively. Fig. 7 depicts

some of their typical scenes. Table 2 lists the basic statistics

of each dataset, and shows the total number of people in each

dataset. As shown Table 2, the datasets have varying crowd

densities, and ShanghaiTech Part A, ShanghaiTech Part B,

and UCF CC 50 are highly imbalanced.

The training and evaluation were carried out in Python

using PyTorch on a Tesla V100 GPU. Following [42],

the original training images and frames, which have different

resolutions as described in Table 2, are firstly resized to a

resolution of 576 × 768, and the ground truths are formed

at the same resolution.

1) Ground-truth generation: Since the CNN-based meth-

ods utilized for crowd counting require processing

continuous data, and the available ground-truth infor-

mation is discrete [16] thus, a conversion process is

required to generate the density map and attention map

information utilizing the discrete key points that repre-

sent the head annotations as shown in Fig. 8.

• Density map generation: To obtain a density

map (Di) for each image in a dataset utilizing the

available ground-truth information (labeled peo-

ple heads), [25] is followed. The presence of a

head at pixel pi is reflected as a delta function

δ(p− pi). This allows the following interpretation

of an image with N -labeled heads:

H (p) =

N
∑

i=1

δ(p− pi) (9)

127450 VOLUME 9, 2021



A. Hafeezallah et al.: U-ASD Net: Supervised Crowd Counting Based on Semantic Segmentation and ASD

FIGURE 7. Examples of frames from the following datasets: ShanghaiTech Part A, UCF CC 50, UCSD, Haramain H1, Haramain H2, Haramain H3, and
Mall, respectively.

This function can be convolved with a Gaussian

kernel G to transform it into a continuous density

function. Thus, the density can be formulated as:

F(p) = H (p) × Gσ (p) (10)

However, if the crowd is supposed to be uniformly

distributed over each head, the average distance

between the head and its nearest k neighbors esti-

mates a rational approximation of the geometric

distortion (resulting from the perspective effect).

Consequently, the spread parameter σ for each

individual in the picture should be determined

based on the size of their head. A kernel with a

window size of µ = 15 and a spread parameter

of σ = 4 are used in the experiments described in

this paper.

• Attentionmap generation: The attentionmap (Ai)

is generated following the methods in [30], [38] by

first generating the density map with a larger

spread parameter σ = 6. Then, a threshold to

the corresponding density map is applied. The

attention map can be obtained using the following

formulated Equation:

Ai =

{

0 Di < T

1 Di > T
(11)

In our conducted experiments, the threshold is set

to (T = 0.001). This threshold value was the best

experimentally. Different threshold settings will

change the performance, as shown in Table 3.

TABLE 3. Different threshold values to generate an attention map.

Fig. 9 shows a comparison between the density and

attention maps. For visualization of the density map

and the attention map, Fig. 9 (b) and (c) were created

by Matplotlib imshow() function utilizing the jet cmap.

Thus, the range values of the densitymap as well as 0(s)

and 1(s) binary values of the attention map are mapping

to the associated RGB value for the ‘‘jet’’ color scale.

2) Data augmentation: The images are indiscriminately

cropped to 512×680. In like manner, density maps and

binary maps are correspondingly resized, and the count

labels are regenerated.Moreover, arbitrary horizontally

flipping is utilized in the training step.

3) Implementation details: The MSE loss and BCE loss

are used to train the whole U-ASD network, and the

Adam optimizer is employed for optimization. The

U-ASD model aims for optimizing the combined loss

function as follows:

LTotal = λ1Lbce + λ2Lmse (12)

where Lmse and Lbce are the loss functions for U

and ASD, respectively, as mentioned in Section III C.

λ1 and λ2 are parameters that are used as a bal-

ance between the loss values. The optimum values
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FIGURE 8. An example of head annotations in blue color from the
Haramain H3 dataset.

for λ1 and λ2, which have been chosen empirically,

are 20 and 1000, respectively. Fig. 10 represents the

qualitative results of the U-ASD method on differ-

ent test scenes. The sub-figures are, respectively, for

each scene the: original image, ground-truth density

map, and estimated density map. As shown in the

sample results from UCSD, Mall, and Haramain H1,

Fig. 10 (d, e, and f), the U-ASD model counts well not

only under highly dense crowds but also counts well in

sparse scenarios. As crowd density rises, people will

appear to partially occlude one another, limiting the

capacity of classic detection methods and prompting

the development of density estimate models. Such sit-

uations can be noticed in Fig. 10 (a), (b), (c), (f), (h).

Interestingly, the proposed model can locate these

occluded people and count the crowds very well by

producing high-quality density maps and thus pro-

viding accurate counting accuracy. The scenarios in

the Mall dataset have strong perspective distortions,

which results in significant variations in the scale and

appearance of individual objects. Also, the occlusion

resulted from some potted plants raises the complexity.

As you can see in Fig. 10 (e), the produced density map

from the U-ASD model on the Mall dataset locates the

individual correctly and provides well counting.

4) Evaluation details: In the evaluation stage, a patch-

based assessment as in [21] and [30] is used. The

test images are cropped into patches and generated

9-overlapping units for each image. Then, a sliding

window is run over the test image during the prediction

FIGURE 9. The comparison between the density and attention maps.
(a) Original images, Dataset: Haramain H3, and UCF CC 50, respectively,
(b) Density map, (c) Attention map.

process. Predictions are determined for each window

before being aggregated to get the total count in the

image.

C. SHANGHAITECH DATASET EVALUATION

ShanghaiTech dataset [25] is a wide range and very chal-

lenging dataset, and it comprises two main parts. Part A

contains 300 and 182 training and testing images, respec-

tively. The images of this part have different resolutions

and are gathered from the Internet. On the other hand,

Part B comprises 400 and 316 training and testing images,

respectively. The images of Part B have the same reso-

lution of 768 × 1024 and have been collected from a

metropolitan security camera. Table 4 shows the results

of Part A and Part B of the ShanghaiTech dataset with

other relevant mainstream methods (Zhang et al. [19],

FCN [27], Flounder-Net [49], MCNN [25], Huang et al. [50],

Cascaded-MTL [26], Switching-CNN [24], DecideNet [6],

SaCNN [51], Wang et al. [40], DAN [52], ACSCP [31],

CP-CNN [5], PCC Net [42], D-ConvNet [53], IG-CNN [54],

L2R [55], HADF-Crowd [56], AU-CNN [57], CSRNet [20],

AAFM [58], AWRFN [59], Zhang et al. [60], DENet [43] and

U-ASD Net [ours]). Compared with other methods, U-ASD

accomplishes the best MAE of 64.6 and the third-best MSE

of 106.1 on Part A. In addition, our method outperforms
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FIGURE 10. Qualitative results of U-ASD Net using different datasets with the ground truth density maps. Gt: Ground Truth Image, Est: Estimated
Image.

all the state-of-the-art methods in Part B and accomplishes

amazing results MAE of 7.5 and MSE of 12.4.

D. UCF CC 50 DATASET EVALUATION

UCF CC 50 dataset is created by [61], and it covers various

views with different perspective distortion. UCF CC 50 is

constituted of only fifty images but has large head anno-

tations of 63,074, and the images differ in the number of

individuals with a range from 96 to 4,633 with an average

number of 1,279. Since this dataset has only fifty images,

the state-of-the-art approaches utilize the traditional 5-fold

cross-validation procedure to assess their methods [19], [20],

[42], [61]. Thus, the 5-fold cross-validation is also applied

to assess the proposed U-ASD method. Fig. 11 illustrates

the estimated errors by applying 5-Fold Cross-Validation.

As shown in Fig. 11, the average MAE and MSE are

232.3 and 217.8, respectively. Table 5 shows that the U-ASD

method presents the third-best result in terms of the MAE

metric and the best result in terms of the MSE metric with

reducing the estimation MSE error by about 50.5 compared

with the ASANet method.

E. UCSD DATASET EVALUATION

UCSD dataset [64] has several video frames for the same

scene snapped by surveillance cameras with a resolution

of 238 × 158. It includes 2,000 frames with a total

TABLE 4. Estimated errors on ShanghaiTech dataset with state-of-the-art
methods.

of 49,885 annotated people. In this dataset, the number of

individuals in the frames is sparse, with varying ranges

of 11 − 46. To use the UCSD dataset in analyzing the
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TABLE 5. Estimated errors using state-of-the-art methods on UCF CC
50 dataset.

FIGURE 11. Estimated errors based on UCF CC 50 dataset by applying
5-fold cross-validation.

performance of the U-ASD method, the original settings

in [64] are followed. The image sequences 601-1400 are used

as the training set, and the remaining 1200 image sequences

as the testing set. The results of the UCSD dataset are

recorded in Table 6. The results of U-ASD are comparable

with the state-of-the-art methods. The U-ASD has obtained

the best MSE with 2.1.

F. MALL DATASET EVALUATION

Mall dataset [65] is recorded inside a shopping centre

by a public surveillance camera. This dataset poses some

challenges, such as glass surface reflections and lighting

conditions. The first 800 video sequences are used for

training, while the other remaining 1,200 frames are used

for testing, as described in [65]. A comparison against

R-FCN [69], Faster R-CNN [70], Gaussian process regres-

sion [64], Ridge regression [65], Cumulative Attribute

Regression [66], MoCNN [23], Count forest [67], Weighted

VLAD [71], ACM-CNN [41], MCNN+SEG+LR [72],

TABLE 6. Estimated errors on UCSD dataset with state-of-the-art
methods.

TABLE 7. Estimated errors on Mall dataset with state-of-the-art methods.

TABLE 8. Estimated errors on the Haramain dataset.

Bi-ConvLSTM [68], and Exemplary-Density [73], is given

in Table 7. The U-ASD Net achieves the best performance.

G. HARAMAIN DATASET EVALUATION

The Haramain dataset includes various scenes at the holy

haram in Mecca and Al-Madinah. People from all over the

globe gather at the holy haram places for the sake of wor-

ship. Therefore, maintaining people’s comfort while praying

is considered a major management goal. About more than

three million people visited the holy haram in Madinah each

year. It covers an area of over 98,000m2 and has 42 multi-

door entrances [74]. Consequently, maintaining a fine flow

at all areas and entrances is a challenging task. Estimating

the number of people in the crowd scenes helps to smooth

the distribution of up to 167,000 people throughout the holy

haram at a time.

To help addressing the crowd management in holy places,

the Haramain dataset with its manual annotations is intro-

duced, consisting of three parts for three different scenes.

The first and second parts, called H1 and H2, respectively,

include 70 and 60 image sequences from two scenes at

Madinah mosque. The third part, called H3, comprises 60

image sequences from al-sahn area at al-haram al-sharif
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TABLE 9. The detailed information of the U-ASD net and the main state-of-the-art methods on ShanghaiTech Part A dataset, U-ASD net* uses the nearest
upsampling in the U-net part.

mosque in Mecca, Saudi Arabia, during the pilgrimage sea-

son. The resolutions for each part and other details are

shown in Table 2. Since the annotation process requires

a lot of time, the length of video clips for this dataset

has been limited, and 5-fold cross-validation is applied.

Fig. 12 shows the estimated errors by applying 5-Fold Cross-

Validation. Table 8 shows the results of the proposed U-ASD

on the Haramain dataset. As clearly seen, applying the 5-fold

cross-validation improves performance metrics by 8.1 and

6.9 on average for MAE and MSE metrics.

V. DISCUSSION AND ANALYSIS

The specifics of the proposed U-ASD model were contrasted

with the state-of-the-art methods (Cascaded-MTL [26],

Switching-CNN [24], CP-CNN [5], and PCC Net [42]) to

demonstrate the superiority of our method. The four main

metrics for evaluating density estimation efficiency are men-

tioned and calculated in Table 9 on the ShanghaiTech Part A:

MAE, MSE, PSNR, and SSIM. As can be observed, U ASD

Net is the best. The integration of U-Net with ASD-Net is

responsible for this performance since it allows the whole

model to implicitly identify all crowd scenarios and respond

to diverse crowd images in a highly scenario-specific manner.

U-ASDNet* is the model, which uses the nearest upsampling

in the U-Net part. As clear in Table 9, the U-ASD provides

better performance in terms of the counting accuracy (i.e.,

MAE and MSE), which comes at the expense of the runtime.

In the experiments, the computational complexity, in terms

of the number of parameters and training runtime, and the

quality of the estimated density maps are also measured.

Further details are in the next subsections.

A. COMPUTATIONAL COMPLEXITY

To reduce the complexity of the U-ASD Net, the VGG16-bn

network (except the fully connected layers) is used for the

encoder part of the U-Net and as a backbone for the ASD

branches. In addition, for simplicity and to avoid adding

complexity to the U-ASD Net, the original ASD Net is used

without extra layers, except adding a nearest upsample layer

at the output of the net to fuse it with the output from the

U-Net.

Table 9 includes information on the computation complex-

ity in terms of the number of parameters and execution run-

time. Even though Cascaded-MTL [26] presents the lightest

model with only 0.12M parameters and 3ms runtime among

other models [5], [24], [42], it has the worst estimation per-

formance. During the evaluation phase, U-ASD takes 94ms to

FIGURE 12. Estimated errors based on Haramain dataset by applying
5-fold cross-validation.

process a 512×680 frame from ShanghaiTech Part A dataset

on one Tesla V100 GPU. Since humans, in general, do not

move so fast as well as each frame does not require to be

analyzed, this runtime speed is adequate for several realistic

applications [75]. Moreover, comparing the U-ASDwith Pre-

train models on ImageNet, the U-ASD provides a faster

execution time than Switching-CNN and CP-CNN models.
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FIGURE 13. The actual ground truth Gt and the predicted number Pn of
crowd for ShanghaiTech dataset.

FIGURE 14. The actual ground truth Gt and the predicted number Pn of
crowd for UCSD dataset.

Thus, taking into account the performance metrics (MAE,

MSE, PSNR, and SSIM), and the number of parameters, the

proposed U-ASD Net is very competitive.

B. QUALITY OF THE PREDICTED DENSITY MAP

To test the quality of the estimated density maps produced

by U-ASD Net, the PSNR and SSIM were computed on

ShanghaiTech Part A and Part B, UCF CC 50 and UCSD

datasets for the MCNN [25], CP-CNN [5], CSRNet [20],

ADCrowdNet [76], PCC Net [42], and U-ASD methods.

Table 10 shows the PSNR and SSIM comparison. Clearly,

the U-ASD offers the best structural integrity.

The estimations over time of each frame in ShanghaiTech

Part A, ShanghaiTech Part B, UCSD, and Mall datasets con-

cerning their ground truth are illustrated in Figs. 13, 14, and 15.

FIGURE 15. The actual ground truth Gt and the predicted number Pn of
crowd for Mall dataset.

FIGURE 16. MAE comparisons on Part A of the ShanghaiTech dataset for
various λ1 and λ2 values.

Interestingly, the prediction counts are almost identical to the

ground truth counts.

C. PARAMETER λ1 AND λ2 STUDY

Comparative experiments on Part A of the ShanghaiTech

dataset were conducted in order to determine the best values

of λ1 and λ2 in Equation 12. Fig. 16 (a) illustrates that as the

value of λ1 increases, the MAE error value decreases, and the

lowest error is acquired at λ1 = 20. The error then increases

since the weight of the Lmse loss becomes too significant in

comparison to the Lbce loss. As a result, in our experiments,

20 is identified to λ1. Similarly, as shown in Fig. 16 (b), the

lowest MAE is acquired when λ2 is specified by 1000.

D. THE PERFORMANCE OF U-ASD NET COMPONENTS

In the conducted experiments, it is noted that training the

U-Net without the ASDNet in ShanghaiTech Part B achieved
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TABLE 10. PSNR and SSIM comparison to demonstrate the quality of the predicted density map.

FIGURE 17. The curves of testing loss for U-Net, ASD Net, and U-ASD Net. After epoch 7, the U-Net’s performance degrades, and the loss
increases. Thus, the training of U-Net is stopped at this early stopping. U-ASD has the smoothest convergence curve and lowest error.

TABLE 11. Comparison of different U-ASD Net components using
ShanghaiTech Part B dataset.

the best MAE value at epoch number 7, as shown in Fig. 17.

After epoch number 7, the U-Net drastically degrade the

counting performance and the loss goes up. Thus, the training

of U-Net is stopped at this early stopping. This was the main

reason the ASD Net was introduced as a binary classifier.

The ASDNet, when independently trained, counts better than

U-Net, whereas the quality of the estimated density map is

lower than the U-Net. Both networks are combined using a

combined loss function as described in Equation 12 (i.e., BCE

loss and MSE loss), and the whole U-ASD Net is trained in

an end-to-end fashion. As shown in Table 11, integrating U

and ASD networks helps in increasing the counting accuracy

and improve the quality of the produced density maps.

VI. CONCLUSION

This paper proposes an end-to-end trainable hybrid modified

network architecture, named U-ASD Net, by integrating two

novel architectures designed for image segmentation and

crowd counting. The proposed U-ASD model has the ability

to predict precise and high-quality density maps at half res-

olution compared to the input. The PSNR and SSIM metrics

have proven the superiority of the proposed model in gen-

erating high-quality density maps. Moreover, the proposed

model contributes in alleviating the drawbacks present in the

state-of-the-art methods by addressing both sparse and dense

scenes for crowd counting efficiently.

In the modified U-Net, the up-sampling algorithm is

changed from nearest tomax-unpooling for upsampling using

thememorized indices used inU-Net. This accomplishes high

counting accuracy. The proposed model achieves the lowest

count error in terms of the MAE in ShanghaiTech Part A,

Part B, andMall datasets with 64.6, 7.5, and 1.8, respectively.

Moreover, it achieves the lowest count error in terms of the

MSE in ShanghaiTech Part B, UCF CC 50, UCSD, and Mall

datasets with 12.4, 217.8, 2.1, 2.2, respectively. In addition,

the proposed model accomplishes the best quality density

maps on all the utilized datasets.

To assist in addressing crowd management and control in

the holy places at Mecca and Al-Madinah, a new dataset,

named Haramain dataset, is introduced, which consists of

three parts for three different scenes. The proposed U-ASD

model is applied in this dataset, and all the MAE, MSE,

PSNR, and SSIM metrics have shown promising results.

Extensive experiments on four benchmark datasets and

comparisons with recent state-of-the-art methods presented

the substantial improvements accomplished by the proposed

model.

ACKNOWLEDGEMENT

The authors extend their appreciation to the Deputyship of

Research and Innovation, Ministry of Education in Saudi

Arabia, for funding this research work through project num-

ber 758. The authors also would like to thank the Research

Management Center of Universiti Teknologi Malaysia for

managing this fund under vot. no. 4C396.

REFERENCES

[1] A. Hafeezallah and S. Abu-Bakar, ‘‘Crowd counting using statistical fea-

tures based on curvelet frame change detection,’’ Multimedia Tools Appl.,

vol. 76, no. 14, pp. 15777–15799, Jul. 2017.

VOLUME 9, 2021 127457



A. Hafeezallah et al.: U-ASD Net: Supervised Crowd Counting Based on Semantic Segmentation and ASD

[2] A. A. H. Allah, S. A. A. Bakar, and W. A. Orfali, ‘‘Curvelet transform sub-

difference image for crowd estimation,’’ in Proc. IEEE Int. Conf. Control

Syst., Comput. Eng. (ICCSCE), Nov. 2014, pp. 502–506.

[3] A. Al-Dhamari, R. Sudirman, and N. H. Mahmood, ‘‘Abnormal behavior

detection using sparse representations through sequential generalization

of k-means,’’ TURKISH J. Electr. Eng. Comput. Sci., vol. 29, no. 1,

pp. 152–168, Jan. 2021.

[4] D. Kang, Z. Ma, and A. B. Chan, ‘‘Beyond counting: Comparisons of

density maps for crowd analysis tasks-counting, detection, and tracking,’’

IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 5, pp. 1408–1422,

May 2019.

[5] V. A. Sindagi and V. M. Patel, ‘‘Generating high-quality crowd density

maps using contextual pyramid CNNs,’’ in Proc. IEEE Int. Conf. Comput.

Vis. (ICCV), Oct. 2017, pp. 1861–1870.

[6] J. Liu, C. Gao, D. Meng, and A. G. Hauptmann, ‘‘DecideNet: Counting

varying density crowds through attention guided detection and density

estimation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,

Jun. 2018, pp. 5197–5206.

[7] A. Al-Dhamari, R. Sudirman, and N. H. Mahmood, ‘‘Transfer deep learn-

ing along with binary support vector machine for abnormal behavior

detection,’’ IEEE Access, vol. 8, pp. 61085–61095, 2020.

[8] A. Al-Dhamari, R. Sudirman, N. H. Mahmood, N. H. Khamis, and

A. Yahya, ‘‘Online video-based abnormal detection using highly motion

techniques and statistical measures,’’ Telkomnika, vol. 17, no. 4,

pp. 2039–2047, 2019.

[9] Z. Wang, W. Li, Y. Shen, and B. Cai, ‘‘4-D SLAM: An efficient dynamic

Bayes network-based approach for dynamic scene understanding,’’ IEEE

Access, vol. 8, pp. 219996–220014, 2020.

[10] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks

for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,

pp. 234–241.

[11] J. Fu, J. Liu, Y. Wang, J. Zhou, C. Wang, and H. Lu, ‘‘Stacked deconvolu-

tional network for semantic segmentation,’’ IEEE Trans. Image Process.,

early access, Jan. 25, 2019, doi: 10.1109/TIP.2019.2895460.

[12] G. Lin, A. Milan, C. Shen, and I. Reid, ‘‘RefineNet: Multi-path refinement

networks for high-resolution semantic segmentation,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1925–1934.

[13] E. Wang, M. Zhang, X. Cheng, Y. Yang, W. Liu, H. Yu, L. Wang, and

J. Zhang, ‘‘Deep learning-enabled sparse industrial crowdsensing and

prediction,’’ IEEE Trans. Ind. Informat., vol. 17, no. 9, pp. 6170–6181,

Sep. 2021.

[14] H. Yin, Z. Yu, L. Wang, J. Wang, L. Han, and B. Guo, ‘‘ISI-

ATasker: Task allocation for instant-sensing-instant-actuation mobile

crowd sensing,’’ IEEE Internet Things J., early access, Jul. 6, 2021, doi:

10.1109/JIOT.2021.3095160.

[15] V. Ranjan, H. Le, and M. Hoai, ‘‘Iterative crowd counting,’’ in Proc. Eur.

Conf. Comput. Vis. (ECCV), 2018, pp. 270–285.

[16] X. Wu, Y. Zheng, H. Ye, W. Hu, T. Ma, J. Yang, and L. He, ‘‘Counting

crowds with varying densities via adaptive scenario discovery framework,’’

Neurocomputing, vol. 397, pp. 127–138, Jul. 2020.

[17] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-

able: http://arxiv.org/abs/1409.1556

[18] M. Fu, P. Xu, X. Li, Q. Liu, M. Ye, and C. Zhu, ‘‘Fast crowd density

estimation with convolutional neural networks,’’ Eng. Appl. Artif. Intell.,

vol. 43, pp. 81–88, Aug. 2015.

[19] C. Zhang, H. Li, X. Wang, and X. Yang, ‘‘Cross-scene crowd counting via

deep convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2015, pp. 833–841.

[20] Y. Li, X. Zhang, and D. Chen, ‘‘CSRNet: Dilated convolutional neural net-

works for understanding the highly congested scenes,’’ in Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1091–1100.

[21] X. Cao, Z. Wang, Y. Zhao, and F. Su, ‘‘Scale aggregation network for

accurate and efficient crowd counting,’’ in Proc. Eur. Conf. Comput. Vis.

(ECCV), 2018, pp. 734–750.

[22] E. Walach and L. Wolf, ‘‘Learning to count with CNN boosting,’’

in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,

pp. 660–676.

[23] S. Kumagai, K. Hotta, and T. Kurita, ‘‘Mixture of counting CNNs:

Adaptive integration of CNNs specialized to specific appearance

for crowd counting,’’ 2017, arXiv:1703.09393. [Online]. Available:

http://arxiv.org/abs/1703.09393

[24] D. B. Sam, S. Surya, and R. V. Babu, ‘‘Switching convolutional neural

network for crowd counting,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jul. 2017, pp. 4031–4039.

[25] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, ‘‘Single-image

crowd counting via multi-column convolutional neural network,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,

pp. 589–597.

[26] V. A. Sindagi and V. M. Patel, ‘‘CNN-based cascaded multi-task learning

of high-level prior and density estimation for crowd counting,’’ in Proc.

14th IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2017,

pp. 1–6.

[27] M. Marsden, K. McGuinness, S. Little, and N. E. O’Connor, ‘‘Fully

convolutional crowd counting on highly congested scenes,’’ 2016,

arXiv:1612.00220. [Online]. Available: http://arxiv.org/abs/1612.00220

[28] X. Jiang, Z. Xiao, B. Zhang, X. Zhen, X. Cao, D. Doermann, and L. Shao,

‘‘Crowd counting and density estimation by trellis encoder-decoder net-

works,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2019, pp. 6133–6142.

[29] V. Nekrasov, C. Shen, and I. Reid, ‘‘Light-weight RefineNet for real-time

semantic segmentation,’’ 2018, arXiv:1810.03272. [Online]. Available:

http://arxiv.org/abs/1810.03272

[30] V. K. Valloli and K. Mehta, ‘‘W-Net: Reinforced U-Net for den-

sity map estimation,’’ 2019, arXiv:1903.11249. [Online]. Available:

http://arxiv.org/abs/1903.11249

[31] Z. Shen, Y. Xu, B. Ni, M. Wang, J. Hu, and X. Yang, ‘‘Crowd counting

via adversarial cross-scale consistency pursuit,’’ in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5245–5254.

[32] V.-S. Huynh, V.-H. Tran, and C.-C. Huang, ‘‘Iuml: Inception U-Net based

multi-task learning for density level classification and crowd density esti-

mation,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern. (SMC), Oct. 2019,

pp. 3019–3024.

[33] N. Ilyas, A. Shahzad, and K. Kim, ‘‘Convolutional-neural network-based

image crowd counting: Review, categorization, analysis, and performance

evaluation,’’ Sensors, vol. 20, no. 1, p. 43, Dec. 2019.

[34] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, andM. Jagersand,

‘‘U2-Net: Going deeper with nested U-structure for salient object detec-

tion,’’ Pattern Recognit., vol. 106, Oct. 2020, Art. no. 107404.

[35] M. Zhao, J. Zhang, C. Zhang, and W. Zhang, ‘‘Leveraging heterogeneous

auxiliary tasks to assist crowd counting,’’ in Proc. IEEE/CVF Conf. Com-

put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 12736–12745.

[36] R. Imtiaz, T. M. Khan, S. S. Naqvi, M. Arsalan, and S. J. Nawaz,

‘‘Screening of glaucoma disease from retinal vessel images using semantic

segmentation,’’ Comput. Electr. Eng., vol. 91, May 2021, Art. no. 107036.

[37] F. Wang, J. Sang, Z. Wu, Q. Liu, and N. Sang, ‘‘Hybrid attention network

based on progressive embedding scale-context for crowd counting,’’ 2021,

arXiv:2106.02324. [Online]. Available: http://arxiv.org/abs/2106.02324

[38] L. Zhu, Z. Zhao, C. Lu, Y. Lin, Y. Peng, and T. Yao, ‘‘Dual path

multi-scale fusion networks with attention for crowd counting,’’ 2019,

arXiv:1902.01115. [Online]. Available: http://arxiv.org/abs/1902.01115

[39] Z. Yan, R. Zhang, H. Zhang, Q. Zhang, and W. Zuo, ‘‘Crowd counting

via perspective-guided fractional-dilation convolution,’’ IEEE Trans. Mul-

timedia, early access, Jun. 30, 2021, doi: 10.1109/TMM.2021.3086709.

[40] L.Wang,W. Shao, Y. Lu, H. Ye, J. Pu, andY. Zheng, ‘‘Crowd countingwith

density adaption networks,’’ 2018, arXiv:1806.10040. [Online]. Available:

http://arxiv.org/abs/1806.10040

[41] Z. Zou, Y. Cheng, X. Qu, S. Ji, X. Guo, and P. Zhou, ‘‘Attend to count:

Crowd counting with adaptive capacity multi-scale CNNs,’’Neurocomput-

ing, vol. 367, pp. 75–83, Nov. 2019.

[42] J. Gao, Q. Wang, and X. Li, ‘‘PCC Net: Perspective crowd counting via

spatial convolutional network,’’ IEEE Trans. Circuits Syst. Video Technol.,

vol. 30, no. 10, pp. 3486–3498, Oct. 2020.

[43] L. Liu, J. Jiang, W. Jia, S. Amirgholipour, Y. Wang, M. Zeibots, and X. He,

‘‘DENet: A universal network for counting crowd with varying densities

and scales,’’ IEEE Trans. Multimedia, vol. 23, pp. 1060–1068, 2021.

[44] M.Mathieu, C. Couprie, andY. LeCun, ‘‘Deepmulti-scale video prediction

beyond mean square error,’’ 2015, arXiv:1511.05440. [Online]. Available:

http://arxiv.org/abs/1511.05440

[45] A. K. Al-Dhamari and K. A. Darabkh, ‘‘Block-based steganographic algo-

rithm using modulus function and pixel-value differencing,’’ J. Softw. Eng.

Appl., vol. 10, no. 1, pp. 56–77, 2017.

[46] H. Hiary, K. Eddin, M. S., and A. Al-Dhamari, ‘‘A hybrid steganography

system based on LSBmatching and replacement,’’ Int. J. Adv. Comput. Sci.

Appl., vol. 7, no. 9, pp. 374–380, 2016.

127458 VOLUME 9, 2021

http://dx.doi.org/10.1109/TIP.2019.2895460
http://dx.doi.org/10.1109/JIOT.2021.3095160
http://dx.doi.org/10.1109/TMM.2021.3086709


A. Hafeezallah et al.: U-ASD Net: Supervised Crowd Counting Based on Semantic Segmentation and ASD

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality

assessment: From error visibility to structural similarity,’’ IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[48] K. A. Darabkh, A. K. Ai-Dhamari, and I. F. Jafar, ‘‘A new steganographic

algorithm based on multi directional PVD and modified LSB,’’ J. Inf.

Technol. Control, vol. 46, no. 1, pp. 16–36, 2017.

[49] J. Chen, S. Xiu, X. Chen, H. Guo, and X. Xie, ‘‘Flounder-Net: An effi-

cient CNN for crowd counting by aerial photography,’’ Neurocomputing,

vol. 420, pp. 82–89, Jan. 2021.

[50] S. Huang, X. Li, Z. Zhang, F.Wu, S. Gao, R. Ji, and J. Han, ‘‘Body structure

aware deep crowd counting,’’ IEEE Trans. Image Process., vol. 27, no. 3,

pp. 1049–1059, Mar. 2018.

[51] L. Zhang, M. Shi, and Q. Chen, ‘‘Crowd counting via scale-adaptive

convolutional neural network,’’ in Proc. IEEE Winter Conf. Appl. Comput.

Vis. (WACV), Mar. 2018, pp. 1113–1121.

[52] H. Li, X. He, H. Wu, S. A. Kasmani, R. Wang, X. Luo, and L. Lin, ‘‘Struc-

tured inhomogeneous density map learning for crowd counting,’’ 2018,

arXiv:1801.06642. [Online]. Available: http://arxiv.org/abs/1801.06642

[53] Z. Shi, L. Zhang, Y. Liu, X. Cao, Y. Ye, M.-M. Cheng, and

G. Zheng, ‘‘Crowd counting with deep negative correlation learning,’’

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 5382–5390.

[54] D. B. Sam, N. N. Sajjan, R. V. Babu, and M. Srinivasan, ‘‘Divide and

grow: Capturing huge diversity in crowd images with incrementally grow-

ing CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,

Jun. 2018, pp. 3618–3626.

[55] X. Liu, J. van de Weijer, and A. D. Bagdanov, ‘‘Leveraging unlabeled data

for crowd counting by learning to rank,’’ inProc. IEEE/CVFConf. Comput.

Vis. Pattern Recognit., Jun. 2018, pp. 7661–7669.

[56] N. Ilyas, B. Lee, and K. Kim, ‘‘HADF-crowd: A hierarchical attention-

based dense feature extraction network for single-image crowd counting,’’

Sensors, vol. 21, no. 10, p. 3483, May 2021.

[57] D. Wu, Z. Fan, and M. Cui, ‘‘Average up-sample network for crowd

counting,’’ Appl. Intell., pp. 1–13, May 2021. [Online]. Available:

https://link.springer.com/article/10.1007/s10489-021-02470-8

[58] Z. Duan, H. Chen, and J. Deng, ‘‘AAFM: Adaptive attention fusion mecha-

nism for crowd counting,’’ IEEE Access, vol. 8, pp. 138297–138306, 2020.

[59] S. Peng, L. Wang, B. Yin, Y. Li, Y. Xia, and X. Hao, ‘‘Adaptive weighted

crowd receptive field network for crowd counting,’’ Pattern Anal. Appl.,

vol. 24, no. 2, pp. 805–817, May 2021.

[60] S. Zhang, H. Li, andW. Kong, ‘‘A cross-modal fusion based approach with

scale-aware deep representation for RGB-D crowd counting and density

estimation,’’ Expert Syst. Appl., vol. 180, Oct. 2021, Art. no. 115071.

[61] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, ‘‘Multi-source multi-scale

counting in extremely dense crowd images,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., Jun. 2013, pp. 2547–2554.

[62] D. Onoro-Rubio and R. J. López-Sastre, ‘‘Towards perspective-free object

counting with deep learning,’’ in Proc. Eur. Conf. Comput. Vis. Cham,

Switzerland: Springer, 2016, pp. 615–629.

[63] X. Chen, H. Yan, T. Li, J. Xu, and F. Zhu, ‘‘Adversarial scale-adaptive

neural network for crowd counting,’’Neurocomputing, vol. 450, pp. 14–24,

Aug. 2021.

[64] A. B. Chan, Z.-S. John Liang, and N. Vasconcelos, ‘‘Privacy preserving

crowd monitoring: Counting people without people models or tracking,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–7.

[65] K. Chen, C. C. Loy, S. Gong, and T. Xiang, ‘‘Feature mining for localised

crowd counting,’’ in Proc. Brit. Mach. Vis. Conf., 2012, p. 3.

[66] K. Chen, S. Gong, T. Xiang, and C. C. Loy, ‘‘Cumulative attribute space

for age and crowd density estimation,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2013, pp. 2467–2474.

[67] V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada, ‘‘COUNT forest:

CO-voting uncertain number of targets using random forest for crowd den-

sity estimation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,

pp. 3253–3261.

[68] F. Xiong, X. Shi, and D.-Y. Yeung, ‘‘Spatiotemporal modeling for crowd

counting in videos,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

Oct. 2017, pp. 5151–5159.

[69] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via region-

based fully convolutional networks,’’ 2016, arXiv:1605.06409. [Online].

Available: http://arxiv.org/abs/1605.06409

[70] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time

object detection with region proposal networks,’’ 2015, arXiv:1506.01497.

[Online]. Available: http://arxiv.org/abs/1506.01497

[71] B. Sheng, C. Shen, G. Lin, J. Li,W. Yang, and C. Sun, ‘‘Crowd counting via

weighted VLAD on a dense attribute feature map,’’ IEEE Trans. Circuits

Syst. Video Technol., vol. 28, no. 8, pp. 1788–1797, Aug. 2018.

[72] J. He, X.Wu, J. Yang, andW.Hu, ‘‘CPSPNet: Crowd counting via semantic

segmentation framework,’’ in Proc. IEEE 32nd Int. Conf. Tools With Artif.

Intell. (ICTAI), Nov. 2020, pp. 1104–1110.

[73] Y. Wang and Y. Zou, ‘‘Fast visual object counting via example-based

density estimation,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),

Sep. 2016, pp. 3653–3657.

[74] A. A. H. Allah, S. A. Abu-Bakar, and W. A. Orfali, ‘‘Sub-difference image

of curvelet transform for crowd estimation: A case study at the Holy Haram

in Madinah,’’ Res. J. Appl. Sci., Eng. Technol., vol. 11, no. 7, pp. 740–745,

Nov. 2015.

[75] L. Liu, Z. Qiu, G. Li, S. Liu, W. Ouyang, and L. Lin, ‘‘Crowd counting

with deep structured scale integration network,’’ in Proc. IEEE/CVF Int.

Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1774–1783.

[76] N. Liu, Y. Long, C. Zou, Q. Niu, L. Pan, and H. Wu, ‘‘ADCrowd-

Net: An attention-injective deformable convolutional network for crowd

understanding,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2019, pp. 3225–3234.

ADEL HAFEEZALLAH received the B.Sc. and

M.Sc. degrees in electrical engineering from King

Abdulaziz University (KAU), Saudi Arabia, and

the Ph.D. degree in electrical engineering from

Universiti Teknologi Malaysia (UTM), Malaysia.

Currently, he is an Assistant Professor with the

College of Engineering, Taibah University, and a

Researcher for one of the Ministry of Education’s

international collaboration initiatives for crowd

management. His research interests include signal

processing, computer vision, and machine learning.

AHLAM Al-DHAMARI received the B.Sc. degree in computer engineering

from Hodeidah University, Yemen, the M.Sc. degree in computer engineer-

ing and networks from the University of Jordan, Jordan, and the Ph.D.

degree in electrical engineering from Universiti Teknologi Malaysia (UTM),

Malaysia. Currently, she is a Researcher with Universiti Teknologi Malaysia

under the Postdoctoral Fellowship scheme for the project ‘‘Smart Crowd

Surveillance and Management System for Pilgrimages.’’ Her research inter-

ests include image and video processing, computer vision, machine learning,

deep learning, computer architectures, and crowd analysis and management.

SYED ABD RAHMAN ABU-BAKAR (Senior

Member, IEEE) received the B.Sc. degree in elec-

trical engineering from Clarkson University, Pots-

dam, New York, USA, the M.S.E.E. degree from

Georgia Tech, and the Ph.D. degree from the

University of Bradford, U.K. He has been with

the Faculty of Engineering, School of Electrical

Engineering, Universiti Teknologi Malaysia, since

1992, where he is currently a Full Professor with

the Electronics and Computer Engineering Divi-

sion. In 2004, he formed the Computer Vision, Video and Image Processing

Research Laboratory and has become the Head since then. He has pub-

lished more than 150 scientific articles both at national and international

levels. His research interests include computer vision and image processing

with applications in video-based security and surveillance, medical image

processing, and biometrics. In 2019, he received the Meritorious Regional

Chapter Service Award from the IEEE Signal Processing Society. He was

the Chair of the IEEE Signal Processing Society Malaysia Chapter, from

2014 to 2018.

VOLUME 9, 2021 127459


