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Abstract. Heavy rainfall and the associated floods occur frequently in the Malaysia and have 
caused huge economic losses as well as massive impact on agriculture and people. As a 
consequence, it is necessary to understand the distribution of extreme rainfall in order to 
improve the managements in a country. Thus, the aim of this paper is to determine the best 
method to estimate parameters of Generalized Extreme Value (GEV) distribution that represent 
the annual maximum series (AMS) data of daily rainfall by using method of moments (MOM), 
maximum likelihood estimators (MLE) and Bayesian Markov Chain Monte Carlo (MCMC). 
The daily precipitation rainfall amount of 12 rain gauge stations in Johor from year 1975 to 
2008 were used and the AMS data of each year were fitted with GEV distribution. Based on 
goodness-of-fit tests, namely Relative Root Mean Square Error (RRMSE) and Relative 
Absolute Square Error (RASE), the performances of three parameters of GEV distribution 
estimated by MOM, MLE and Bayesian MCMC were compared for each station. The results 
indicated that Bayesian MCMC method was performed better than MOM and MLE method in 
estimating the parameters of GEV distribution.   

1. Introduction 
As Malaysia is located in a tropical climate zone, extreme rainfall is estimated to take place regularly 
every year resulting from local tropical wet season. Extreme rainfall event is often related with the 
changes of climate, which may be followed by a series of natural disasters like flash flood and 
landslides. The rapid changes in the climate has steadily risen the number of extreme floods in 
Malaysia, particularly in Johor. Johor experienced a tropical rainforest climate with monsoon rains 
from November to February from the South China Sea. The mean annual rainfall is 1778 mm with 
average temperatures ranging between 25.5°C and 27.8°C. The worst history of flooding was recorded 
in 1967 as it effects 250,000 people in urban and rural areas of West Malaysia [1]. Then, continuous 
heavy downpour had occurred in Johor on December 2006, that led to the 2006/2007 Malaysia floods 
with water levels as high as 10 feet (3.0 m) above ground level in Muar, Kota Tinggi and Segamat. In 
2014, the flood disaster hit several states includes Kelantan, Perlis, Kedah and Johor as well as 
Sarawak and Sabah can be classified as worst as the floods in 1967 as 200,000 people were affected 
with 21 people were killed [2]. Unpredictable extreme rainfall events phenomenon that increase in 
frequency lately has brought damages costing millions of Malaysian ringgit.  
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Extreme rainfalls data need to be modelled by suitable statistical distributions while providing the best 
inferences for the patterns of extreme rainfall. There are many distributions that can be used in 
extreme rainfall analysis, such as Generalized Extreme Value (GEV) distribution, Generalized Pareto 
(GP) distribution, Generalized Logistic (GLO), Exponential and Gamma distribution. In an overview 
on rainfall modelling in Malaysia, Shamsudin et al. [3] found GP distribution was the most suitable 
distribution of rainfall intensity using hourly data than Exponential, Beta and Gamma distributions. 
Other than GP distributions, GEV, GLO and Wakeby distributions can represent the extreme rainfall 
[4,5]. Nevertheless, GEV distribution was the most appropriate distribution to describe the extreme 
rainfall compared with Gamma, Generalized Normal (GNO), GP, Gumbel, log Pearson Type III 
(PE3), Pearson Type III and Wakeby distributions [6]. Similarly, Ibrahim et al. [7] and Ismail et al. [8] 
showed that GEV distribution was best fit distribution than other distributions.  
 
For extreme distributions, three parameters namely shape, scale and location can be estimated by using 
several methods. Adetan et al. [9] used Method of Moments (MOM) and Maximum Likelihood 
Estimator (MLE) to analyse the lognormal raindrop size distribution. For distribution with multiple 
parameters, MOM was usually more tractable than MLE. This is supported by Hosking et al. [10] as 
parameter estimation via MOM method produce better estimation than MLE. Nonetheless, Coles et al. 
[11] stated that parameter estimation via MLE method was the best method as its all-around utility and 
adaptability to model change. This statement had proven with the performance of MLE in estimate the 
parameter for GEV and GP distributions [12,13]. Even so, the method incapable to estimate the 
parameters for small sample [14]. Eli et al. [15] improved the performance of parameter estimation by 
adopting Bayesian MCMC approach. Bayesian approach capable to measure the uncertainties in 
extreme rainfall event and does not rely on asymptotic theory as MLE method [16,17]. Therefore, the 
aim of this study is to evaluate the performance of MOM, MLE and Bayesian MCMC in estimating 
the three parameters of GEV distributions. The annual maximum series (AMS) of daily precipitation 
rainfalls in Johor will be fitted with GEV distribution. Then, the performance of parameters estimated 
by MOM, MLE and Bayesian MCMC is determined by conducting goodness-of-fit tests.  
 

2. Methodology 

2.1 Data sources 
A datasets of the daily precipitation rainfalls amount of 12 rain gauge stations in Johor for 34 years 
(1975 to 2008) were obtained from Department of Irrigation and Drainage Malaysia. Table 1 shows 
the details locations of each station. 

Table 1. The coordinates of 12 rain gauge station in Johor 

Station Location Latitude Longitude 
S01 Ladang Getah Kukup Pontian 1.3167° N 103.4500° E 
S02 Ladang Benut Renggam 1.8831° N 103.3946° E 
S03 Stor JPS JB 1.2634° N 103.7547° E 
S04 Pintu Kawalan Tampok Batu Pahat 1.6499° N 103.2000° E 
S05 Senai 1.6203° N 103.6563° E 
S06 Sek Men Bkt Besar 1.7835° N 103.6819° E 
S07 Sek Men Inggeris Batu Pahat 1.8500° N 102.9333° E 
S08 Pintu Kawalan Sembrong 2.0000° N 193.1667° E 
S09 Pintu Kawalan Separap 1.9167° N 102.8667° E 
S10 Kluang 2.0336° N 103.3194° E 
S11 Tangkak 2.2667° N 102.5500° E 
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The data selection for extreme rainfall used in this study was annual maximum series (AMS). AMS 
methods involve selection of the highest value of rainfall observed each year. Figure 1 shows the 
scatter plot / time series plot of annual maximum amount of daily rainfall 12 stations in Johor for 34 
years. From the figure, the highest annual maximum rainfall in Johor was 433.4 mm which occurred in 
year 2004 and year 2002 was the lowest annual maximum rainfall with 117.4 mm. The average annual 
maximum rainfall in Johor was 113.0478 mm. 

 
Figure 1. Scatter plot / time series plot of annual maximum amount 
of daily rainfall. 

2.2 Probability Distribution 
By the extreme value theorem, the GEV distribution is the limit distribution of properly normalized 
maxima of a sequence of independent and identically distributed random variables. Being that, the 
GEV distribution is used as an approximation to model the maxima of long (finite) sequences of 
random variables.  

Let X1,…,Xn denoted the independent annual maximum rainfall distribution, the probability density 
function of GEV is 

             (1) 

where 𝜺 is the location, 𝜶 is the scale and k is the shape parameters with parameter space -¥ <	𝜺 < ¥,   
𝜶 > 0 and  -¥ < k < ¥ , respectively.  

2.3 Parameter Estimation Method 

2.3.1 Method of Moment (MOM). Three parameters of GEV distribution were calculated by using 
equations (2), (3), and (4) by substituted the value of sample mean, standard deviation and skewness. 
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 (4) 

 
where 𝝁%, 𝝈% and	𝜸% are the sample mean, standard deviation and skewness respectively.  

2.3.2 Maximum Likelihood Estimators (MLE). The MLE of k, 𝜎, and 𝜇 after differentiating with 
respect to each parameters of distribution as follows; 
 

  (5) 

    (6) 

   (7) 

The MLEs (𝜺,, 𝜶%, 𝒌.) were obtained by maximising equation (5), (6) and (7) with respect to the vector 
(𝜺, 𝜶, 𝒌)	for 𝑖	 = 	1, … . . , 𝑛 using numerical techniques. In this study, three parameters of GEV 
distribution had es using the ismev package within the free statistical environment R software.  

2.3.3 Bayesian Markov Chain Monte Carlo (MCMC). Given a distribution of interest, 𝜋, a reversible 
Markov chain, which has this distribution as its stationary distribution can be constructed. Simulating 
from such a Markov chain will result in values from the distribution of interest. The procedure was to 
construct a transition kernel p(𝜃,𝜙) such that the equilibrium distribution of the chain was 𝜋. This 
transition kernel was made up of two elements which was an arbitrary transition kernel q(𝜃,𝜙), also 
known as the proposal distribution and an acceptance probability a(𝜃,𝜙). The acceptance probability 

𝒂(𝜽,𝝓) = 𝒎𝒊𝒏 ?𝟏, 𝝅(𝝓)𝒒(𝝓,𝜽)
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The particular type of MCMC method used in this study was based on simulation of a random walk 
chain. The proposed value 𝝓 at point j  is 𝝓 = 𝜽(𝒋E𝟏) + 𝒘𝒋 . The  𝒘𝒋 were identically and independent 
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1000 iterations of the posterior density with the Metropolis-Hastings algorithm had been determined. 
If the convergence of the posterior density not converged to the limiting distribution, tune the 
variances of the proposal distributions in order to have reasonably good acceptance rates were between 
10% to 40%. Else, modify the initial values until achieve the good acceptance rates. For example, for 
station S01, the simulated valued for three parameters of GEV were found to converge to the limiting 
distribution as shown in Figure 2, suggesting that no obvious tendencies and periodicities. Thus, the 
variances for non-informative priors had been chosen to be large enough in order to create flat priors.  

 
                   a)                                                      b) 

 
    c)   

Figure 2: Graph plot (a) location, (b) scale and (c) shape parameters of GEV parameters for 
1000 iterations  

2.4 Goodness-of-fit tests 
The performance between MOM, MLE and Bayesian MCMC to estimate the GEV distribution are 
analysed based on Relative root mean squared error (RRMSE) and relative absolute square error 
(RASE). These formulas are used to measure the discrepancy between observed and estimated values 
under distributions given as:  
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where 𝒏 is the random samples of size, 𝒀𝒊:𝒏 is the observed values and 𝑸.(𝑭𝒊) is estimated values for 
the 𝒊th order statistics of a random sample of size n. The smallest values of RRMSE and RASE indicate 
the best method to fit the distribution. 

3. Results and Discussion 

3.1  Parameters Estimation 
The MOM, MLE and Bayesian MCMC method were used to compare the performance in estimate the 
parameters of GEV distribution. For MOM method, three parameters of GEV distribution that were 
calculated by using equations (2), (3) and (4) by substituted the value of sample mean, standard 
deviation and skewness. Meanwhile, the three parameters of MLE and Bayesian MCMC were 
obtained by using the ismev package and evdbayes package of R software, respectively. Table 2 
shows the parameters estimated value of ε, α and k representing the location, shape and scale 
parameters of GEV distribution for each method, respectively. 

Table 2. Parameters estimation by using MOM, MLE and Bayesian MCMC 

Station MOM MLE Bayesian MCMC 
𝜀  𝛼 k 𝜀 𝛼 k 𝜀 𝛼 𝑘 

S01 80.2404 14.6287 -0.0040 79.8201 13.909 -0.0474 79.8817 14.5718 0.0221 
S02 81.8856 25.2609 0.0973 81.2139 26.722 -0.0868 81.2411 26.0955 0.0079 
S03 96.1237 25.7437 0.1991 95.469 29.46 -0.1497 95.8450 27.5911 0.0260 
S04 93.0223 31.5881 0.0938 96.212 36.467 0.0434 94.6132 34.1559 0.0696 
S05 94.0156 27.7122 0.4023 95.523 42.301 -0.1260 94.7427 34.9889 0.1383 
S06 91.7740 23.0340 0.3636 94.224 31.887 -0.0839 93.0090 27.4739 0.1404 
S07 84.0615 30.508 0.0852 90.007 35.728 0.09 87.0344 33.1518 0.0882 
S08 81.8914 26.7675 0.1815 81.056 28.415 -0.1751 81.4368 27.6622 0.0057 
S09 73.4046 23.4974 -0.1966 82.296 24.257 0.1955 77.8833 23.9882 0.0037 
S10 92.1264 27.4194 0.4284 92.812 40.018 -0.1847 92.4700 33.7089 0.1215 
S11 79.9307 14.5155 0.0061 79.566 13.936 -0.0490 79.7238 14.2616 0.0238 
S12 149.8015 51.8051 0.2095 156.05 62.981 0.0349 152.9041 57.6173 0.1218 

For MOM method, Station S09 had the lowest location parameter value, 73.4046 and Station S12 had 
the highest with 149.8015. In addition, the value of scale parameter was between 14.5155 to 51.8051. 
Station S01 had the minimum value of scale parameter while Station S12 had the maximum value of 
scale parameter. As the value of location parameter bigger, the value of scale parameter also bigger. 
There were only two stations that have negative values for shape parameter, Station S01 and Station 
S09. The values of shape parameter, k for the rest stations were greater than zero. 

For MLE method, the value of location parameter was between 79.566 to 156.05. The minimum value 
of 𝜺, 79.566 was in Station S11, while the maximum value of 𝜺, 156.05 was in Station S12. Station 
S01 had the lowest value of 𝜶, 13.909 and the station S12 had the highest value of 𝜶, 62.981. The 
value of shape parameter, 𝒌 mostly was less than zero. Station S04, S07, S09 and S12 were the only 
stations with non-negative value of 𝒌.  

This is contrary to the findings of Bayesian MCMC method, the lowest value of location parameter 
was Station S11 and the highest was Station S12. For scale parameter, Station S11 had the minimum 
value with 14.2616374 and Station S12 had the maximum value with 57.6173102. The value of shape 
parameter was in range 0.003766 to 0.1404307. 
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3.2 Goodness-of-fit tests 
The performance between MOM, MLE and Bayesian MCMC methods in estimating the three 
parameters of GEV distribution were evaluated. Two goodness-of-fit tests, RRMSE and RASE were 
used in this study and the results were shown in Table 3 and 4, respectively. 

Table 3. RRMSE for each station of MOM, MLE and Bayesian MCMC techniques 

  Method of estimation  
Station MOM MLE Bayesian 

S01 0.256902 0.229621 0.246127 
S02 0.501242 0.551212 0.535344 
S03 0.306121 0.210266 0.200859 
S04 0.46232 0.411378 0.427525 
S05 0.465458 0.460676 0.460631 
S06 0.358596 0.375547 0.349043 
S07 0.373299 0.343539 0.319048 
S08 0.453333 0.451499 0.446852 
S09 0.287355 0.296446 0.280579 
S10 0.440113 0.438457 0.439653 
S11 0.419095 0.418318 0.419139 
S12 0.895192 0.946235 0.921786 

Referring to Table 3, MOM method gives the smallest value of RRMSE for Station S02 with 0.501242 
while MLE method give the smallest value of RRMSE for Station S01, S04, S10 and S11 with 
0.229621, 0411378, 0.438457 and 0.418318 respectively. It can be seen that Bayesian MCMC method 
had the smallest value of RRMSE for station S03, S05, S06, S07, S08, S09 and S12 with 0.200859, 
0.460631, 0.349043, 0.319048, 0.446852, 0.280579 and 0.921786 respectively.  

Table 4. RASE of each station for MOM, MLE and Bayesian MCMC techniques 

  Method of estimation  
Station MOM MLE Bayesian 

S01 0.192852 0.17016 0.182527 
S02 0.387559 0.479713 0.424989 
S03 0.459326 0.413477 0.336432 
S04 0.349278 0.331559 0.336325 
S05 0.398912 0.396061 0.343142 
S06 0.347624 0.420437 0.300725 
S07 0.287221 0.367409 0.215896 
S08 0.363576 0.363189 0.287255 
S09 0.337847 0.347842 0.316543 
S10 0.382431 0.377048 0.37692 
S11 0.301373 0.301143 0.309687 
S12 0.919324 0.943251 0.893338 

Based on Table 4, Station S01, S04, S10 and S11 had the smallest value of RASE with 0.17106, 
0.331559, 0.377048 and 0.301143 respectively for MLE method. MOM method only had the smallest 
value of RASE for station S02 while Bayesian MCMC method had the smallest value of RASE for the 
rest of stations. 
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From Table 3 and 4, this study recommended MLE method than MOM to estimate the parameters of 
GEV distribution as MLE method gained a small difference between the observed and estimated. This 
result was contrast with Adetan et al. [9] and Hosking [10] which declared that MOM method give the 
best fit compared with the MLE method. Van et. al [18] stated that MOM was a very simple approach 
but may result in increased sampling errors due to the squaring of observations but MLE method was 
the best method due to of its all-around utility and adaptability to model change [11] Coles (2001). 
Yet, Bayesian MCMC method was the best method due to its small value of RRMSE and RASE 
followed by MLE and MOM. This result in line with the study conducted by Eli et al. [15] and prove 
that Bayesian MCMC method does not rely on asymptotic theory and could measure the uncertainties 
in extreme rainfall event [16,17]. 

4. Conclusion 
The best method of parameter estimation for GEV distribution had been explored in this study. The 
yearly AMS of rainfall data in Johor for 34 years was used to fit GEV distribution. Three parameters 
namely location, shape and scale of GEV distribution were estimated using MOM, MLE and Bayesian 
MCMC method. Based on goodness-of-fit tests, MLE method gained lower value of RRMSE and 
RASE than MOM method. It can be concluding that MLE method fairly better agreement with the 
measured data than MOM method. However, Bayesian MCMC method produced small value of 
RRMSE and RASE than MLE method. The result revealed Bayesian MCMC gained the smallest 
value of RRMSE and RASE for seven stations followed by MLE (four stations) and MOM (one 
station). Although extreme data are limited in nature, Bayesian inferences have the ability to 
incorporate other source of information via prior distribution. In addition, Bayesian MCMC method 
offers a way of dealing with information conceptually different from all other statistical methods 
which it provides a method in which observations are used to update estimates of the unknown 
parameters of a statistical model. Another approach which would benefit from future research is 
applying peak over thresholds series (POT) approach (also known as partial duration series, PDS) 
instead of AMS approach or change the posterior distribution for Bayesian MCMC for 𝜺, 𝜶 and 𝒌. 
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