
FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 25

Jurnal Teknologi, 34(D) Jun 2001: 25–40
© Universiti Teknologi Malaysia

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT
USING Z – A CASE STUDY OF SMALL-SCALE EMBEDDED

HARD REAL-TIME SYSTEM

RADZIAH MOHAMAD1, DYG. NORHAYATI ABG. JAWAWI2, SAFAAI DERIS3 &
ROSBI MAMAT4

Abstract. The task of checking whether a real-time system satisfies its timing and concurrency
specifications is extremely important. One major area of research addressing software reliability
aspect is called formal method, which attempts to prove the correctness of programs with respect
to system specifications. Since, timing and concurrency properties can be very important in the
operation of real-time systems, there is a need for applying formal methods to verify timing prop-
erties. This paper investigates the process of building a formal specification of a small-scale embed-
ded hard real-time systems using Z. It is expected that the formal specification presented in this
paper can provide assistance in analysing design trade-offs early in the development process. It is
also expected that this paper can act as the foundation for any upcoming formal methods related
project especially for small-scale real-time systems project.

Key words: Software reliability, formal specification, Z, hard real-time, small-scale systems

Abstrak. Aktiviti menguji sama ada sistem masa nyata memenuhi spesifikasi masa dan
keserempakan adalah sangat penting. Salah satu bidang penyelidikan dalam bidang keboleh-
percayaan perisian ialah teknik formal yang cuba untuk membuktikan kesahihan sesuatu atur cara
dengan spesifikasinya. Oleh kerana masa dan keserempakan merupakan aspek yang penting dalam
sistem masa nyata, keperluan untuk menggunakan teknik formal sebagai teknik untuk mengesahkan
aspek masa dan keserempakan ini adalah amat tinggi. Kertas kerja ini mengkaji proses membina
spesifikasi formal untuk sistem masa nyata berskala kecil dengan menggunakan teknik Z. Spesifikasi
formal yang dibangunkan di dalam kertas kerja ini diharap dapat membantu proses penganalisisan
fasa reka bentuk di awal proses pembangunan sistem. Kertas kerja ini juga diharap dapat menjadi
rujukan kepada projek-projek teknik formal yang akan datang terutamanya projek yang berkaitan
dengan sistem masa nyata berskala kecil.

Kata kunci: Kebolehpercayaan perisian, spesifikasi formal, Z, masa nyata, sistem berskala kecil.

1.0 INTRODUCTION

The development of a wall climbing robot is currently requested strongly, on behalf
of human operator, to perform dangerous operations on the surface of a wall. The

1,2&3 Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310
Skudai, Johor Darul Ta’zim, Malaysia.

4 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul
Ta’zim, Malaysia.

Untitled-22 02/16/2007, 17:1325

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT26

potential applications for the robot are for operations such as fire fighting in high-rise
buildings, wall surface cleaning or decorating and transporting along wall surfaces.
A wall-climbing robot (WCR) is currently under development at Universiti Teknologi
Malaysia. The WCR can be categorized as a small-scale embedded hard real-time
system.

Real-time systems must produce their results within specified time intervals. The
correctness of the system is therefore not only dependent on the logical results but
also the time at which results are produced. According to the timing constraints,
real-time systems can be classified as either hard real-time systems or soft real-time
systems. In hard real-time systems, timing is critical where the lateness of the results
is not permitted under any circumstances since late response are either useless or
even dangerous. In soft real-time systems, timing correctness is important but not
critical. Solving timing constraints and co-ordinating the communication between
co-operating processes are therefore important in ensuring the software reliability.

Small-scale embedded hard real-time systems are becoming more sophisticated
and usually offer many functions in one product. As a result, software development
for small-scale embedded hard real-time systems are growing in scale and becoming
very complex over the years. Furthermore, a real-time system is inherently concur-
rent and multitasking since it has to react to and process numerous events simulta-
neously. Thus, developing software for even small-scale embedded real-time sys-
tems can be very difficult.

Due to the complexity and the nature of the control software for the WCR sys-
tem, proving the correctness of the software requirements of the robot earlier is
important so as to reduce the costs of requirement errors occur in later phases of
software development life cycle. The purpose of this paper is to present the process
of building a formal specification of a small-scale embedded hard real-time systems,
in particular, the specification of control firmware for a four-legged WCR.

 The organization of this paper is as follows: Section 2 will discuss the informal
specification of the WCR. This will be followed by the formal specification of the
WCR in the Section 3. Specifications for each component of WCR requirement
were derived using Z. Section 4 will then conclude the paper.

2.0 INFORMAL SPECIFICATION OF THE WALL-CLIMBING
ROBOT FIRMWARE

The main function of the embedded digital controller is to move the four legs of the
robot with a predefined sequence during climbing operation. The block diagram of
the embedded controller for the wall-climbing robot is shown in Figure 1.

The main functional operation of the robot controller can be divided into three
major groups i.e.:

Untitled-22 02/16/2007, 17:1326

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 27

(i) sensors monitoring
(ii) motor control
(iii) serial communication with external PC

The embedded controller monitors its environment using some sensors i.e. colli-
sion sensors, proximity sensors and pressure sensors. Collision sensors send signal
to controller when the sensor collides any obstacles. Obstacle sensors detect the
presence of a distance obstacles. This environment must be monitored typically
every 500 milliseconds to detect the presence of obstacles using the collision and the
obstacle sensors during the forward and reverse movement of the robot. Three
position sensors in the form of rotary potentiometers at each leg measure the joint
angles of the leg during the leg movement. Position sensors read the current position
of the legs joint angle. The highest priority task in the controller software is the
motor control task with a cycle of 50 milliseconds. This is to ensure the correct
movement of the legs.

3.0 FORMAL SPECIFICATION OF THE WALL-CLIMBING
ROBOT FIRMWARE

Formal methods have been studied for a long time for the development of software.
Formal methods have been thought of as having great promise for the development

Embedded
 controller

D
/
A
A
/
D

Position
sensor

D
/
A
A
/
D

Position
sensor

D
/
A
A
/
D

Position
sensor

Leg # 1

Leg
2

Leg
 # 4

Leg
3

PC

Serial
comm.

Proximity
sensor

Collision
sensor

Pressure
sensor

motor 1

motor 2

motor 3

Figure 1 Block diagram of Four-Legged Wall Climbing Robot

Untitled-22 02/16/2007, 17:1327

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT28

of real-time systems [1]. The term formal method refers to the use of the techniques
from logic and discrete mathematics in the specification, design and construction of
computer systems and software [2]. The essence of the formal methods is a formal
specification. Since timing and concurrency properties are very important in the
operation of real-time systems, there is a need for applying formal methods to specify
timing properties. In order to increase the reliability of the software developed,
developing specification that can be verified during an early stage of the develop-
ment is hence needed.

The formal specification notation Z is one of the most popular and widely used
notations for the formal specifications and development of software and hardware
systems [3]. Z is a formal specification language based on a standard set theory and
uses a mathematical notation. The specification is divided into a number of units or
blocks [4]:

(a) Basic type definition defining the values which constants and variables
may take.

(b) Global constant and variable definition within the system and any con-
straints on them.

(c) Schemas defining the state and operations of the system.

Traditionally, Z is widely perceived as being unsuitable to specify concurrent and
temporal behaviour of the system [3]. Recently however, there has been consider-
able interest in applying Z to specify a concurrent and temporal behaviour of the
system. Much of this work has concentrated on integrating Z with formalisms better
suited to specifying concurrent and temporal behaviour, such as Petri Nets [5], Tem-
poral Logic [3], CSP [6] and CCS [6]. However, a main disadvantage shared by all
these approaches is the difficulty of reconciling the semantics of the separate nota-
tions, resulting in problems of compatibility with the standardized definition of Z
and existing Z tools for proof and type checking. Moreover, techniques for reason-
ing with the resultant hybrid notations generally makes poor use of the excellent
proof system offered by Z. This paper shows a somewhat different approach to
specifying concurrent and temporal behaviour of the system in Z. Rather than inte-
grating Z with yet another formalism, modifications are made to the Z specification
based on the Z’s generic model proposed by [7]. Next subsection introduces the
formal specification of the WCR using Z.

3.1 The Embedded Robot's Control Software

This section introduces the basic data items of the robot controller’s software re-
quirement specification. The set of controller's operational modes is defined by the
free type Modes. YesNo is the type consisting of the two constants Yes and No. OnOff
is the type consisting of the two constants On and Off.

Untitled-22 02/16/2007, 17:1328

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 29

The following types are used to describe state information of sensors.
Collision_Sensor denotes the state of a collision sensor; On denotes the sensor collides
any obstacles, while Off denotes the sensor does not collide any obstacles.
Obstacle_Sensor denotes the state of an obstacle sensor; On denotes the sensor de-
tects the presence of a distance obstacle, while Off denotes the normal state (does
not detect the presence of obstacle). Pressure_Pad denotes the state of the suction
pads of the robot leg; Yes denotes enough pressure is maintained in the suction
pads, while No denotes the pressure maintained in the suction pads is not enough.
PressureActivate is used to describe whether an indicator for specific button on a
pressure pumps is activated (active) or deactivated (passive). Pccommand denotes the
command from the PC to the controller; Start_Move denotes the command to the
controller to trigger the robot to start moving, while Stop denotes the stop moving
command. RobotState refers to the state of the robot at time t; Moving denotes the
robot's leg or body is moving, while Stop_Move denotes the leg or body is stop from
moving; Idle denotes the leg or body is not moving.

The abstract system’s state of the robot controller is specified by the schema
RobotController. There is one major system variable mode of type Modes representing
the current operational mode. The other system variables can directly be derived
from the system specification.

67

Untitled-22 02/16/2007, 17:1329

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT30

During initialization, the controller is in the Idle mode and the Robot is in the Idle
state.

The following schemas define predicates on the controller’s state that are used to
model the interdependencies between the dynamic behavior and the current
controller’s state.

Informally, the specification above asserts that when the leg’s pressure is enough,
the pad variable is set to Yes. In the presence of a distance obstacle, the obstacle
sensor indicator will be triggered to On and the mode will be changed to Waiting PC
command as to whether to keep on moving or stop from moving. Whenever the
collision sensor collides with any obstacles, the collision sensor indicator will be
triggered to On. The next four specifications assert the relevant mode of the control-
ler as per operation.

3.2 Pressure Sensor Operation

Schema PressureState models the state of active, passive buttons defined for each
state of the suction pads of the robot leg.

Untitled-22 02/16/2007, 17:1330

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 31

The following schema (PressureSensor) describes the operation of the pressure
sensor. Here, the D convention is used to include the before and after components
of the state schema PressureState, PressureLeg and PressureMode. If a pressure pump
button indicator of suction pad, pad?, is passive, it will be activated only if the
suction pad has no enough pressure (pad? = No). In the former case, this will be as
a pre-selection, so that the pressure pump will automatically be activated as soon as
the suction pad has no enough pressure. If the pressure pump is activated and the
suction pad has enough pressure, pumping the pressure into the suction pad has no
effect since when the suction pad has no enough pressure, the pressure pump will
automatically be activated in any case.

3.3 Collision Sensor operation

Collision sensor sends signal to the controller when the sensor collides any ob-
stacles. Schema CollideState models the state of Moving, Stop_Move of the robot's leg
or body defined for each state of the collision sensor.

The following schema (Col lisionSensor) describes the operation of the collision
sensor. If the state of the robot’s leg or body is Moving, the Stop_Move command will
be sent to the robot by the controller if the collision sensor sensor? collides any
obstacles (sensor?=On). In the former case, this will be as a pre-selection, so that the
robot will automatically be stopped as soon as the sensor collides any obstacles.

Untitled-22 02/16/2007, 17:1331

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT32

3.4 Obstacle sensor operation

The obstacle sensor sends signal to a controller when it detects the presence of a
distance obstacle. Schema ObstacleState models the state of Moving, Stop_Move of the
robot’s leg or body defined for each state of the obstacle sensor.

The following schema (ObstacleSensor) describes the operation of the obstacle
sensor. If the state of the robot’s leg or body is Moving, the signal will be sent to the
PC when the sensor sensor1? detects a distance obstacle (sensor1?=On) and the con-
troller will then have to wait for a reply command from the PC as for the robot either
to stop moving or keep on moving. While waiting for the PC’s command, the robot’s
leg or body state will be maintained to a Moving state. In the former case, this will be
as a pre-selection, so that a signal will automatically be sent to the PC as soon as the
sensor detects a distance obstacle.

Untitled-22 02/16/2007, 17:1332

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 33

3.5 Position Sensor operation

Position sensor reads the current position of legs and body of the robot. The robot
has four legs and a body. They are formally defined by the free type Leg and
Body.

Set RobotPos combines leg identifiers of the robot of type natural numbers. Set
Robotpos1 combines body identifier of the robot of type natural numbers.

Schema PosState models the current position defined for each leg and body of the
robot and the target position defined for each leg and body of the robot.

The following schema (PositionSensor) describes the operation of the position sen-
sor. If the current position of the leg or body is different from its target position, a
signal will be sent from the controller to the robot's leg or body to move to the target
position (i.e. the current position + the error or the difference between the current
position and the target position). In the former case, this will be as a pre-selection, so
that the robot's leg or body will automatically be moved to the target position as
soon as there is a difference between the target position and the current position.

Untitled-22 02/16/2007, 17:1333

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT34

3.6 Motor Control operation

The motor receives the computation of control signal (the error computation be-
tween the target position and the current position of each legs and body of the
robot) from a controller to ensure the correct movement of each leg and body.
Schema MotorControl describes the operation of the motor control with the output of
a computation error, error! sent to the motor control.

3.7 Serial communication with external PC

PC commands focus on telling the robot to start moving or stop from moving.
Schema External_pc describes the operation of the external PC.

Untitled-22 02/16/2007, 17:1334

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 35

3.8 Temporal specification of the WCR

The temporal specification of the WCR is based on the improved Z recipe by [7].
The next specifications define states which specify all the operations which interact.
This process is called promotion. SendCol lisionSignal for example, specifies all the
individual operations which interact in sending the collision signal to the controller.

The operations can now be used to add timing constraints to the operation of the
controller.

Informally, this specification asserts that the controller must receive signals from a
collision sensor at least 500 milliseconds but no more than 20 seconds, from an
obstacle sensor at least 2 seconds but no more than 30 seconds, from a pressure
sensor at least 10 seconds but no more than 30 seconds, from a position sensor 5

Untitled-22 02/16/2007, 17:1335

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT36

milliseconds but no more than 20 milliseconds, from a motor control at least 50
milliseconds but no more than 100 milliseconds.

3.9 Concurrency Specification

A dynamic specification describes the concurrent behavior in terms of the allowable
sequences of behaviors that result from the execution of its operations. It is assumed
that operations are atomic, i.e. they occur instantaneously. Concurrency is modeled
by the non-deterministic interleaving of atomic operations. As with the temporal
consideration, the approach used here is based on the improved recipe by [7].

The first step in modeling the concurrency behavior is to construct a next-state
schema. This is the disjunction of the system’s operations. It represents the fact that
an atomic step in the controller’s behavior may be caused by any one of its opera-
tions. The next-state schema for the controller is the disjunction of SendCollisionSignal,
SendObstacleSignal, SendPressureStatus, SendPositionStatus and SendToMotorControl.

The controller’s initial state set and next-state relation must be obtained from
Initialize and ControlNS. To do this, schema binding (q) is used to project out the
relevant state components before direct substitution into validcompt [7]:

Any behavior that satisfies t will be a valid behavior of the controller.

3.10 The Robot Behaviour

The robot is that component of the system that is needed to reason about properties
of the complete system. It is assumed that the behavior of the robot is either moving

Untitled-22 02/16/2007, 17:1336

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 37

or stop from moving. So, as when the formal method is concerned, it is assumed that
the sequence consideration of the leg’s and body’s movement falls into another field
of study.

The robot has four independent legs and a body. A generic leg’s state and body’s
state are first specified:

The leg or the body is either at the state of moving or stop from moving. Initially,
the leg and body is at the state of Idle.

The robot has four legs and a body called leg1, leg2, leg3, leg4 and body and
have ten discrete movements.

Five schemas are now specified which will be used to promote the operations of
the generic leg and body to the robot's state:

Untitled-22 02/16/2007, 17:1337

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT38

Each of the generic leg and body operations are then promoted to operations of
the robot legs and body:

The specification of the system needs an overall state so the operations which
interact can be specified. In this project, the total state is called WallClimbing. There-
fore, the WallClimbing is a conjunction of Robot schema and RobotControl ler schema.

The operation Moving_Leg1 is a combination of WallClimbing, Leg1ToRobot,
External_Pc and PosState with pos! of type Natural Numbers as an output and leg1?
as an input. The predicate part denotes that if the PC sends the Start_Move com-
mand and the robot movement is move_leg1, then the state of the leg 1 is Moving.
pos! denotes the output of the Moving state if the leg 1 which is the current position
of the leg 1. The same explanation applies to Moving_Leg2, Moving_Leg3, Moving_Leg4
and Moving_Body operations.

Untitled-22 02/16/2007, 17:1338

FORMAL SPECIFICATION OF A WALL-CLIMBING ROBOT 39

FinalPosLeg1 denotes the final position of the leg 1 after correcting the error
between the current position and the target position in which if there is an error, the
leg or the body will be moved to the targeted position. The error computation will
then be sent to the motor control. The same explanation applies to FinalPosLeg2,
FinalPosLeg3, FinalPosLeg4 and FinalPosBody.

4.0 CONCLUSION

The main idea behind this paper is that in order to increase the readability and
correctness of the computer software, in particular the hard real-time systems, it is
desirable to separate the often contradictory aims of writing a clear and understand-
able program with one which is efficient. Formal specifications can greatly help in
providing a rigorous and precise framework within which the specification can be
written. This paper has shown that Z specification can be developed for the small-
scale embedded hard real-time system. A case study, the embedded controller of
the four-legged WCR was used to illustrate the approach.

The case study shows that the expressibility of Z specifications can be consider-
ably improved upon, enabling important properties such as concurrent and tempo-
ral behavior [8]. The case study also shows that the introduction of timing and
parallelism adds very little extra complexity compared with the traditional Z and is
suitable to specify the static and dynamic behavior of the small-scale hard real-time
systems.

Untitled-22 02/16/2007, 17:1339

RADZIAH MOHAMAD, DYG. NORHAYATI, SAFAAI DERIS & ROSBI MAMAT40

ACKNOWLEDGEMENT

The authors would like to thank UTM Mobile Robot Research Group (MRRG) for
their cooperation in defining the wall-climbing robot requirement specification.

REFERENCES
[1] Joseph, M. 1997. Real-time systems and Formal Methods, In Real-time systems: Specification, Verification &

Analysis edited by Mathai Joseph, Prentice Hall.
[2] NASA, 1997. “Formal Methods Specification and Analysis Guidebook for the Verification of Software

and Computer Systems”, Vol. II: A Practitioner’s Companion, 1997.
[3] Duke, R. and G. Smith. 1989. Temporal Logic and Z Specifications. Australian Computer Journal, 21(2):

62 – 69, May 1989.
[4] Spivey, J. M. 1992. The Z Notation: A Reference Manual. Prentice Hall, Second Edition, 1992.
[5] Eva, A. S. 1994. Visualising Concurrent Z Specification. Z User Workshop, Cambridge 1994, Workshops

in Computing, Springer-Verlag, 1994.
[6] Coombes, A. and J. Mc Dermid. 1993. Specifying temporal requirements for distributed real-time sys-

tems in Z. Software Engineering Journal. 8(5): 273 – 283, September 1993.
[7] Evans A. S. 1994. Specifying & verifying concurrent systems using Z in M. Naftalin, T. Denvir, and M.

Bertran, editors, FME’94: Industrial Benefit of Formal Methods. Formal Methods Europe, Springer-Verlag
volume 873 of LNCS, pp 366-400.

[8] Evans A. S. 1997. A Case Study in Specifying, Verifying and Refining a Parallel Systems in Z. FMPPTA,
Geneva, April 1st.

Untitled-22 02/16/2007, 17:1340

