
Closure Properties of Static Watson-Crick Linear and
Context-Free Grammars

Aqilahfarhana Abdul Rahman,1, a) Wan Heng Fong,1, b) Nor Haniza Sarmin,1, c)

and Sherzod Turaev2, d)

1)Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia.
2)Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates

University, P.O.Box 15551, Al-Ain, United Arab Emirates.
a)Corresponding author: aqilahfarhana2@graduate.utm.my

b)Electronic mail: fwh@utm.my
c)Electronic mail: nhs@utm.my

d)Electronic mail: sherzod@uaeu.ac.ae

Abstract. In DNA computing, a sticker system is a computing mechanism involving the Watson-Crick complementarity of
DNA molecules. The sticker system is known as a language generating device based on the sticker operation which is analyzed
through the concept of formal language theory. The grammar of a formal language can be described by determining finite sets
of variables, terminal symbols and production rules. Research on the grammar which uses the Watson-Crick complementarity
has been done previously, known as Watson-Crick grammars. As an improvement to the Watson-Crick grammars, the static
Watson-Crick grammars have been proposed as an analytical counterpart of sticker system which consist of regular grammar,
linear grammar and context-free grammar. In this research, the closure properties of static Watson-Crick linear and context-free
grammars are investigated. The result shows that the families of languages generated by static Watson-Crick linear and context-free
grammars are closed under different operations.

INTRODUCTION

Computers have been used in every possible way over the years. However, since computer technology has its physical
limit, some researchers and engineers have looked for solutions to these traditional models. The limitation of tradi-
tional silicon-based computer involves the speed and density, design complexity, non-recurring and high cost, power
consumption and heat dissipation. As an alternative to traditional computer, new computation technology is proposed
which includes biological (DNA), optical, molecular and quantum computing techniques.

DNA computing is based on the double-stranded structure of DNA molecules. There are two fundamental fea-
tures which are necessary in performing the computation using DNA, namely Watson-Crick (WK) complementarity
and massive parallelism. The former characteristic provides far-reaching findings regarding the data on the DNA
strands and the other strand can be decoded according to the complementarity by inspecting the data encrypted on a
single-strand. Meanwhile, the latter characteristic allows the building of many DNA strands with multiple operations
conducted concurrently on the encoded data.

There are two different theoretical models of DNA computing which have been introduced by Kari et al. [2]
and Paun et al. [3] namely sticker systems and Watson-Crick automata, respectively. Sticker system is a language
generating device which is based on the sticking operation and it is a model of techniques used by Adleman [4]. The
sticking operation begins with a well-started sequence and then prolongs to the right or to the left of the generated
sequences by using a set of single or double-stranded complementary sequence until a complete sequence is obtained.
In Watson-Crick finite automata, the two reading heads and the two input tapes are developed based on the concept of
finite automata. In order to increase the generative power, some additional restrictions have been proposed for sticker
systems [5, 6, 7] and Watson-Crick automata [8, 9, 10].

Different formal languages (formal grammars) have been widely used in the computational research of molecular
processes. In 2012, Watson-Crick regular grammar has been introduced by Subramanian et al. [11]. Later, this idea
has been used and modified in 2015 and extended to the linear grammar and context-free grammar [12]. Then, the
static Watson-Crick grammars are proposed as an analytical counterpart of the sticker system based on Watson-Crick
grammar [13]. Static Watson-Crick grammars generate both stranded strings by checking for the complementarity of
each complete substring, while Watson-Crick grammars generate each-stranded string by checking for the Watson-
Crick complementarity of a complete generated double-stranded string at the end of the derivation.

In this research, we mainly focus on static Watson-Crick linear grammars and static Watson-Crick context-free
grammars. We investigate the closure properties of the family of languages generated by both grammars. The study

Proceedings of the 27th National Symposium on Mathematical Sciences (SKSM27)
AIP Conf. Proc. 2266, 060005-1–060005-8; https://doi.org/10.1063/5.0018350

Published by AIP Publishing. 978-0-7354-2029-8/$30.00

060005-1

of closure properties is necessary for checking whether the language generated by the grammar belongs to the family
of the languages, which is significant in grammatical theory and practices.

This paper is organized as follows: Section 1 gives the background and introduction of the paper. Section 2
presents definitions and notations from the theories of formal languages, Watson-Crick grammars and static Watson-
Crick grammars. The closure properties of both grammars are presented in Section 3. Lastly, a summary and future
study for this research are given in Section 4.

In the next section, some preliminaries which are used in this paper are discussed.

PRELIMINARIES

In this section, some basic notations, terms and definitions related to formal language theory, sticker systems, Watson-
Crick grammars and static Watson-Crick grammars are presented. For further details, the reader can refer to [12-14].

A string over a set T is a finite sequence of symbols from the alphabet T . The set of all finite strings is denoted as
T ∗. The set of symbols from which the strings are constructed is called the alphabet, T . An empty string is denoted
by λ . The symbol T+ is the set of all nonempty finite strings over T which excludes the empty string. Therefore, a
language is defined as a subset of the set of strings where L ⊆ T ∗. The membership of an element to a set is denoted
by ∈ and the empty set is denoted by /0.

A Chomsky grammar is defined as a quadruple G = (N,T,S,P) where the alphabet N is the finite set of variables, T
is the finite set of terminal alphabets, S ∈ N is the start alphabet, and P ⊆ (N ∪T)∗N(N ∪T)∗ × (N ∪T)∗ is the set of
production rules of G. The rules of (x,y) ∈ P are written in the form of x → y where x ∈ (N ∪T)+ and y ∈ (N ∪T)∗.
Here, u directly derives v or v is derived from u with respect to G, written as u ⇒ v, if and only if u = u1xu2,v = u1yu2,
for some u1u2 ∈ (N∪T)∗ and x→ y∈P. The set of all terminal strings is the language generated by the grammar which
is defined by L(G) = {w ∈ T ∗ : S ⇒∗ w}. The Chomsky grammars are classified into recursively enumerable, context-
sensitive, context-free, linear and regular grammars. The families of languages generated by recursive enumerable,
context-sensitive, context-free, linear and regular grammars are denoted as RE, CS, CF, LIN and REG respectively.

The definition of a Watson-Crick grammar is presented in the following [12]:

Definition 1. A Watson-Crick grammar G = (N,T,S,P,ρ) is called

i. regular if each production has the form A −→ 〈u/v〉B or A −→ 〈u/v〉 where A,B ∈ N and 〈u/v〉 ∈ 〈T ∗/T ∗〉.
ii. linear if each production has the form A −→ 〈u1/v1〉B〈u2/v2〉 or A −→ 〈u/v〉 where A,B ∈ N and 〈u1/v1〉,

〈u2/v2〉,〈u/v〉 ∈ 〈T ∗/T ∗〉.
iii. context− free if each production has the form A −→ α where A ∈ N and α ∈ (N ∪〈T ∗/T ∗〉)∗.

The notation 〈u/v〉 represents the element (u,v)⊆V ×V in the set of pairs of strings and the symbol V is replaced
with T for 〈V ∗/V ∗〉. The sticker system is developed by using sticker operation on DNA molecules. Let V be an
alphabet and let ρ be a symmetric relation where ρ ∈V ×V over V . The set

WKρ(V) =

[
V
V

]∗
ρ

where

[
V
V

]
ρ
= {

[
x
y

]
|x,y ∈V,

(
x
y

)
∈ ρ},

denotes the Watson-Crick domain associated to alphabet V and complementarity relation ρ . The elements

[
w1

w2

]
∈

WKρ(V) is called double-stranded sequences. The pair of

(
x
y

)
indicates there is no relation between the elements x

and y; while

[
x
y

]
indicates that the elements in the upper and lower strand are complement and have the same length.

The set of incomplete molecules is denoted as Wρ(V) = Lρ(V)∪Rρ(V)∪LRρ(V) where

Lρ(V) = (

(
λ

V ∗
)
∪
(

V ∗
λ)

)[
V
V

]∗
ρ
,

Rρ(V) =

[
V
V

]∗
ρ
(

(
λ

V ∗
)
∪
(

V ∗
λ

)
),

060005-2

LRρ(V) = (

(
λ

V ∗
)
∪
(

V ∗
λ

)
)

[
V
V

]+
ρ
(

(
λ

V ∗
)
∪
(

V ∗
λ

)
).

Another notion of LRρ(V) is introduced in this research, where

LR∗
ρ(T) = (

(
λ
T ∗

)
∪
(

T ∗

λ

)
)

[
T
T

]∗
ρ
(

(
λ
T ∗

)
∪
(

T ∗

λ

)
),

LR+
ρ (T) = (

(
λ
T ∗

)
∪
(

T ∗

λ

)
)

[
T
T

]+
ρ
(

(
λ
T ∗

)
∪
(

T ∗

λ

)
),

A sticker system is a construct γ = (V,ρ,A,D), where V is an alphabet, ρ ∈ V ×V is a symmetric relation, A is a
finite subset of LRρ(V) (called axioms) and D is a finite subset of Wρ(V)×Wρ(V) (called domimoes). For the two
sequences x,y ∈ LRρ(V), x ⇒ y if and only if y = μ(u, μ(x, v)) for some (u, v) ∈ D, where μ is defined as the sticking
operation. Hence, μ(u, μ(x, v)) = μ(μ(u,x),v) since the prolongation to the left is independent as the one to the right
such that the sticker operation is associative. Moreover, a sequence x1 ⇒ x2 ⇒ ... ⇒ xk is obtained and is called a
computation in γ as x1 ∈ A and xk ∈ WKρ(V). Thus, a complete computation, σ is represented as x1 ⇒∗ xk when
there is no sticky end in the last sequence. A sticker language is a language generated by the sticker system, γ which

is defined by L(γ) = {w ∈
(

V
V

)∗

ρ
|x ⇒∗ w,x ∈ A}. Next, the following shows the definition of static Watson-Crick

grammars [13]. For static Watson-Crick regular grammars, we state only for right-linear grammars since the definition
is similar with the left-linear grammars.

Definition 2. A static Watson-Crick grammar G = (N,T,ρ,S,P) is called:

i. right-linear grammar if each production is in the form of S −→
[

u
v

](
x
y

)
A where A ∈ N−{S},

[
u
v

](
x
y

)
∈ Rρ(T);

A −→
(

x
y

)
B where A,B ∈ N −{S} and

(
x
y

)
∈ LR∗

ρ(T); A −→
(

x
y

)[
u
v

]
where A ∈ N −{S},

(
x
y

)[
u
v

]
∈ Lρ(T);

or S −→
(

λ
λ

)
.

ii. linear grammar if each production is in the form of S →
[

u1

v1

](
x1

y1

)
A
(

x2

y2

)[
u2

v2

]
where A ∈ N−{S},

[
u1

v1

](
x1

y1

)
∈

Rρ(T) and

(
x2

y2

)[
u2

v2

]
∈ Lρ(T); A →

(
x1

y1

)
B
(

x2

y2

)
where A,B ∈ N−{S} and

(
x1

y1

)
,

(
x2

y2

)
∈ LR∗

ρ(T); A →
(

x1

y1

)

where A ∈ N −{S} and

(
x1

y1

)
∈ LR∗

ρ(T); or S −→
(

λ
λ

)
.

iii. context-free grammar if each production is in the form of S → x1A1x2A2 · · ·xkAkxk+1 where Ai ∈ N −{S} for 1 ≤
i ≤ k,x1 ∈ Rρ(T),xi ∈ LR+

ρ (T) for 2 ≤ i ≤ k and xk+1 ∈ Lρ(T); A → y1B1y2B2 · · ·ytBtyt+1 where A,Bi ∈ N −{S}
for 1 ≤ i ≤ t,yi ∈ LR+

ρ (T) for 2 ≤ i ≤ t +1 and y1,yt+1 ∈ LR∗
ρ(T); A −→ x where A ∈ N −{S} and x ∈ LR∗

ρ(T);

or S −→
(

λ
λ

)
.

The language generated by a static WK (regular, linear, context-free) grammar G is defined as L(G) = {u :

[
u
v

]
∈

WKρ(T) and S =⇒
G

∗
[

u
v

]
}. The families of static Watson-Crick regular, linear and context-free languages are denoted

by SREG, SLIN and SCF respectively.
Next, we recall some closure properties which are used in this study. The union of two languages L1 and L2,

denoted as L1 ∪L2, is the set of all strings which includes the elements in both L1 and L2. Next, the concatenation
of two languages L1 and L2 is the set of all strings that is obtained when any element of L1 is concatenate with
any element of L2 where L1L2 = {xy : x ∈ L1,y ∈ L2}. The star-closure (or Kleene-star closure) of a language is

060005-3

defined as L∗ = L0 ∪L1 ∪L2 ∪ ·· · and the mirror image (reverse) of a language is the set of all string reversals where
LR = {wR : w ∈ L}.

In the next section, the closure properties of static Watson-Crick linear and context-free grammars are presented.

RESULTS AND DISCUSSIONS

In this section, the closure properties of static Watson-Crick linear and context-free grammars are discussed. First,
we discussed on the closure properties for static Watson-Crick linear grammars. Both static Watson-Crick linear and
context-free languages have the same definition on the properties of union and mirror image. The definition on the
union of the static Watson-Crick linear and context-free languages is defined next.

Definition 3. Union
Let L(G1) and L(G2) be two languages generated by static Watson-Crick linear (or context-free) grammars. The
union of the two languages L(G1) and L(G2) is L(G1)∪L(G2) = {x|x1 ∈ L(G1)or x2 ∈ L(G2)}.

In the next lemma, we proved that the union between two static Watson-Crick linear languages is also a static
Watson-Crick linear language.

Lemma 1. If L1 and L2 are SLIN, then L1 ∪L2 is also a SLIN.
Proof. Let G1 = (N1,T,ρ,S1,P1) and G2 = (N2,T,ρ,S2,P2) be static Watson-Crick linear grammars generating lan-

guages L1 and L2 respectively, such that L1 = L(G1) and L2 = L(G2). Assume that N1∩N2 �= /0. Let G = (N,T,ρ,S,P)
be a static Watson-Crick linear grammar which generates L such that L = L(G). We set N = N1 ∪N2 ∪{S} which
contains all nonterminals of G1 and G2 including the start symbol for which S /∈ N1 ∪N2. Next, a set of production
rules is set where P = P1∪P2∪{S −→ S1}∪{S −→ S2}. A string w is in L(G) when there is a derivation S ⇒ Si =⇒

Gi

∗ w

for i = 1 or 2. Thus, L(G) is the union of languages L1 and L2 such that L(G) = L1 ∪L2.

Next, the definition on the concatenation of the static Watson-Crick linear languages is presented.

Definition 4. Concatenation
Let L(G1) be a language generated by static Watson-Crick regular grammars and L(G2) be a language gen-
erated by static Watson-Crick linear grammars. The concatenation of the two languages L(G1) and L(G2) is
L(G1) ·L(G2) = {xy|x ∈ L(G1) and y ∈ L(G2)}.

Next, we proved that the concatenation between static Watson-Crick regular and linear languages is also a static
Watson-Crick linear language.

Lemma 2. If L1 is a SREG and L2 is a SLIN, then L1 ·L2 is a SLIN.
Proof. Let G1 = (N1,T,ρ,S1,P1) be a static Watson-Crick regular grammar which generates the language L1

and let G2 = (N2,T,ρ,S2,P2) be a static Watson-Crick linear grammar which generates the language L2. Define
G = (N,T,ρ,S,P) as a static Watson-Crick linear grammar which generates L such that L = L(G). The start symbol
initiates the derivation in both G1 and G2 by setting S = S1 for G1. The derivation of terminal string generates w in
the form of uv, where u ∈ L1 and v ∈ L2. The derivation of u uses only rules from P1 and v rules from P2. In the last
production rule of P1, we set the start symbol S2 in P2 as the nonterminal symbol to start the derivation of v ∈ L2.

The production rule P is defined as P = (P1 −{A −→
(

x
y

)
∈ P1})∪ {A −→

(
x
y

)
S2 : A −→

(
x
y

)
∈ P1}∪P2. Next, N

contains all nonterminals of N1 and N2 such that N = N1 ∪N2. Hence, L(G) is the concatenation of the languages L1

and L2 such that L(G) = L1 ·L2.

In formal language theory, the pumping lemma is used to prove that a language does not belong to the familiy of the
languages. The following shows the theorem of pumping lemma for linear languages which is used to prove Lemma
3, where |uvyz| and |vy| denote the length of the strings uvyz and vy respectively.

060005-4

Theorem 1. [14] Let L be an infinite linear language. There exists some positive integer m, such that for any w in L
with |w| ≥ m are decomposed as w = uvxyz with |uvyz| ≤ m, |vy| ≥ 1 such that uvixyiz in L for all i = 0,1,2,

The positive integer m can be referred as the pumping length in which every word w ∈ L of length at least m can be
written as w = uvxyz with |uvyz| ≤ m, |vy| ≥ 1 such that uvixyiz in L for all i = 0,1,2, In the following lemma, we
proved that the concatenation of two static Watson-Crick linear languages is not a static Watson-Crick linear language.

Lemma 3. If L1 and L2 are SLIN, then L1 ·L2 is not a SLIN.
Proof. Let G1 = (N1,T,ρ,S1,P1) be a static Watson-Crick linear grammar which generates the language L1 and let

G2 = (N2,T,ρ,S2,P2) be a static Watson-Crick linear grammar which generates the language L2. Then, we define
G = (N,T,ρ,S,P) which generates the language L(G) = L1 ·L2. We prove by contradiction. First, assume L is linear.
Let w = uvxyz be a string in L of length at least m, where m is the pumping length of positive integer such that
for any w ∈ L, |w| ≥ m. By pumping lemma, there exist u,v,x,y,z with |uvyz| ≤ m, |vy| ≥ 1 such that wi = uvixyiz,
i = 0,1,2, . . .n hold. The strings v and y must be located within m symbols of the left and right ends of w, respectively,
while the middle string x can be of arbitrary length. By considering all possible ways that satisfy the conditions above,
it is shown that the string w is not in L. Hence, SLIN is not closed under concatenation.

Example 1 shows that SLIN is not closed under concatenation.

Example 1. Let L(G1) = {an
1bn

1cn
1 : n ≥ 2} and L(G2) = {an

2bm
2 cm

2 dn
2 : n ≥ 2,m ≥ 1} be SLIN. The concate-

nation of these two languages yield L(G) = L(G1) · L(G2) = {an
1bn

1cn
1an

2bm
2 cm

2 dn
2 : n ≥ 2,m ≥ 1} which is not a

SLIN. To prove by using pumping lemma, assume the language is linear and apply the condition to the string
w = am+1

1 bm+1
1 cm+1

1 am+1
2 bm

2 cm
2 dm+1

2 . The inequality |uvyz| ≤ m shows that in this case, the strings u,v,y,z must consist

a1
′s and c1

′s. If we pump the string once, we get a(m+1)+k
1 bm+1

1 cm+1
1 am+1

2 bm
2 cm

2 d(m+1)+ j
2 , with either k ≥ 1 or j ≥ 1, a

result that is not in L. Hence, by contradiction, the language is not linear.

The concatenation between two strings which is generated by static Watson-Crick linear grammars shows that it is
not included in SLIN. This concludes that SLIN is not closed under concatenation. On the other hand, the star-closure
can be represented as the concatenation of L with itself for i times. Since SLIN is not closed under concatenation,
then we conclude that SLIN is not closed under star-closure.

Next, the definition on the mirror image (reversal) of the static Watson-Crick linear and context-free languages is
presented.

Definition 5. Mirror image
Let L(G) be a language generated by static Watson-Crick linear (or context-free) grammars. The mirror image of a
language is the set of all string reversals where L(G)R = {wR|w ∈ L(G)}.

Following that, we proved that the mirror image of the static Watson-Crick linear language is also a static Watson-
Crick linear language.

Lemma 4. If L1(G) is a SLIN, then LR
1 (G) is also a SLIN.

Proof. Let L1 be a language which is generated by a static Watson-Crick linear grammar, L(G1) ∈ SLIN. We need to

show that LR
1 (G) ∈ SLIN . Define G = (N1,T,ρ,S1,P1) as a static Watson-Crick linear grammar which generates the

language LR
1 (G). We set the production rule of P1 in a reversal form such that (uv)R = vRuR where R is the reversal.

The production rule P1 consists of the following forms:

i. S →
[

u2

v2

](
x2

y2

)
A
(

x1

y1

)[
u1

v1

]
where A ∈ N−{S},

[
u2

v2

](
x2

y2

)
∈ Rρ(T),

(
x1

y1

)[
u1

v1

]
∈ Lρ(T), and S →

[
u1

v1

](
x1

y1

)
A(

x2

y2

)[
u2

v2

]
∈ P,

ii. A →
(

x2

y2

)
B
(

x1

y1

)
where A,B ∈ N −{S},

(
x1

y1

)
,

(
x2

y2

)
∈ LR∗

ρ(T) and A →
(

x1

y1

)
B
(

x2

y2

)
∈ P ; or

060005-5

iii. A →
(

x1

y1

)
where A ∈ N −{S} and

(
x1

y1

)
∈ LR∗

ρ(T) .

Hence, the reversal of L1 is the language generated by static Watson-Crick linear grammars, i.e. LR
1 (G) ∈ SLIN.

All the results above are summarized in the following theorem.

Theorem 2. The family of static Watson-Crick linear languages is closed under union, concatenation with static
Watson-Crick regular language and mirror image.

Next, the closure properties of static Watson-Crick context-free languages are presented as follows. The definition
on the union of the static Watson-Crick context-free languages is defined as in Definition 3.

In the following lemma, we proved that the union between two static Watson-Crick context-free languages is also
a static Watson-Crick context-free language.

Lemma 5. If L1 and L2 are SCF, then L1 ∪L2 is also a SCF.
Proof. Let G1 = (N1,T,ρ,S1,P1) and G2 = (N2,T,ρ,S2,P2) be static Watson-Crick context-free grammars gener-

ating languages L1 and L2 respectively, such that L1 = L(G1) and L2 = L(G2). Without loss of generality, assume
that N1 ∩N2 �= /0. Let G = (N,T,ρ,S,P) be a static Watson-Crick context-free grammar which generates L such that
L = L(G). We set N = N1 ∪N2 ∪{S} which contains all nonterminals of G1 and G2 including the start symbol for
which S /∈ N1 ∪N2. Next, a set of production rules is set where P = P1 ∪P2 ∪{S −→ S1}∪{S −→ S2}. A string w is
in L(G) when there is a derivation S ⇒ Si =⇒

Gi

∗ w for i = 1 or 2. Thus, L(G) is the union of languages L1 and L2 such

that L(G) = L1 ∪L2.

Next, the definition on the concatenation of the static Watson-Crick context-free languages is presented.

Definition 6. Concatenation
Let L(G1) and L(G2) be a language generated by static Watson-Crick context-free grammars. The concatenation of
the two languages L(G1) and L(G2) is L(G1) ·L(G2) = {xy|x ∈ L(G1) and y ∈ L(G2)}.

Next, Lemma 6 shows that the concatenation between two static Watson-Crick context-free languages is also a
static Watson-Crick context-free language.

Lemma 6. If L1 and L2 are SCF, then L1 ·L2 is also a SCF.
Proof. Let G1 = (N1,T,ρ,S1,P1) and G2 = (N2,T,ρ,S2,P2) be static Watson-Crick context-free grammars gener-

ating languages L1 and L2 respectively, such that L1 = L(G1) and L2 = L(G2). Let G = (N,T,ρ,S,P) be a static
Watson-Crick context-free grammar which generates L such that L = L(G). The start symbol initiates the derivation
in both G1 and G2 by setting S = S1 for G1. The derivation of terminal string generates w in the form of uv, where
u ∈ L1 and v ∈ L2. The derivation of u uses only rules from P1 and v rules from P2. In the last production rule of P1,
we set the start symbol S2 in P2 as the nonterminal symbol to start the derivation of v ∈ L2. The production rule P is
defined as P = (P1 −{A −→ x ∈ P1})∪ {A −→ xS2 : A −→ x ∈ P1}∪P2. Next, N contains all nonterminals of N1 and
N2 such that N = N1 ∪N2. Thus, the concatenation of language L(G) = L1 ·L2 ∈ SCF.

Next, the definition on the star-closure of the static Watson-Crick context-free languages is presented.

Definition 7. Star-closure
Let L(G) be a language generated by static Watson-Crick context-free grammars. The star-closure of language L(G)
is L(G)∗ = {L0 ∪L1 ∪L2 ∪·· ·}.

Next, Lemma 7 shows that the star-closure of a static Watson-Crick context-free language is also a static Watson-
Crick context-free language.

Lemma 7. If L1 is a SCF, then L∗
1 is also a SCF.

060005-6

Proof. Let G = (N1,T,ρ,S,P1) be a static Watson-Crick context-free grammar generating language L∗
1. We set S = S1

and N = N1. The production rule P is defined in the form of P1 = P1 ∪ (P1 −{A −→ x ∈ P1})∪{A −→ xS1 : A −→
x ∈ P1}∪{S1 −→ λ}. The S1 symbol generates the number of copies of P1. Each of these initiates the derivation of a
string in L1. The concatenation of any number of strings from L1 yields L∗

1. Therefore, the star-closure of language L
is L(G) = L∗

1.

The definition on the mirror image (reversal) of the static Watson-Crick linear languages is presented as in Defini-
tion 5. In the following lemma, we proved that the mirror image of the static Watson-Crick context-free language is
also a static Watson-Crick context-free language.

Lemma 8. If L1(G) is a SCF, then LR
1 (G) is also a SCF.

Proof. Let L1(G) ∈ SCF. We need to show that LR
1 (G) ∈ SCF . Define G = (N1,T,ρ,S1,P1) which generates the

language LR
1 (G) We set the production rule of P1 in a reversal form such that (uv)R = vRuR where R is the reversal.

The production rule P1 consists of the following form:

i. S → xk+1Akxk · · ·A2x2A1x1 where Ai ∈ N −{S} for 1 ≤ i ≤ k,xk+1 ∈ Rρ(T),xi ∈ LR+
ρ (T) for 2 ≤ i ≤ k and x1 ∈

Lρ(T), and S → x1A1x2A2 · · ·xkAkxk+1 ∈ P1;

ii. A→ yt+1Btyt · · ·B2y2B1y1 where A,Bi ∈N−{S} for 1≤ i≤ t,yi ∈ LR+
ρ (T) for 2≤ i≤ t+1 and y1,yt+1 ∈ LR∗

ρ(T),
and A → y1B1y2B2 · · ·ytBtyt+1 ∈ P1 ; or

iii. A −→ x where A ∈ N −{S} and x ∈ LR∗
ρ(T).

Hence, the reversal of L1 is the language generated by static Watson-Crick context-free grammars, i.e. LR
1 (G) ∈ SCF.

All the results above are summarized in the following theorem.

Theorem 3. The family of static Watson-Crick context-free language is closed under union, concatenation, star-
closure and mirror image.

CONCLUSION

In this paper, we have shown that the family of static Watson-Crick linear languages are closed under union, concatena-
tion with static Watson-Crick regular languages and mirror image; and the family of static Watson-Crick context-free
languages are closed under union, concatenation, star-closure and mirror image. Besides, static Watson-Crick lin-
ear languages are not closed under concatenation. Thus, we found that static Watson-Crick linear languages are not
closed under star-closure. Hence, the closure properties of grammars depend on the computational power of static
Watson-Crick grammars. This research can be further studied by finding the closure of homomorphism, intersection,
complement and so on for both static Watson-Crick linear grammars and static Watson-Crick context-free grammars.

ACKNOWLEDGMENTS

The first author would like to thank UTM Zamalah for funding her studies at Universiti Teknologi Malaysia (UTM)
under the Zamalah Scholarship. The second and third authors would also like to thank the Ministry of Education
(MOE) and Research Management Centre (RMC), UTM for the financial funding through Fundamental Research
Grant Scheme (FRGS) Vote No. 5F022.

REFERENCES

1. H. S. Hassan and M. Asghar, "Limitation of silicon based computation and future prospects," IEEE, 559–561 (2010).

060005-7

2. L. Kari, G. Păun, G. Rozenberg, A. Salomaa, and S. Yu, Acta Informatica 35, 401 – 420 (1998).

3. G. Pãun, G. Rozenberg, and A. Salomaa, DNA Computing: New Computing Paradigms, (Springer-Verlag, New York,1998).

4. L. M. Adleman, Science 1021 – 1024 (1994).

5. N. M. Sebry, N. Z. A. Hamzah, N. H. Sarmin, W. H. Fong, and S. Turaev, Malaysia Journal of Fundamental and Applied Sciences 8 (2012).

6. M. Selvarajoo, W. H. Fong, N. H. Sarmin, and S. Turaev, Malaysia Journal of Fundamental and Applied Sciences 9 (2013).

7. Y. S. Gan, W. H. Fong, N. H. Sarmin, and S. Turaev, AIP Conference Proceedings, Vol. 1602 (2014).

8. E. Petre, Journal of Automata, Languages and Combinatories 8, 59 – 70 (2003).

9. M. I. M. Tamrin, S. Turaev, and T. M. T. Sembok, AIP Conference Proceedings, Vol. 1605 (2014).

10. L. Hegedüs, B. Nagy, and Ö. Eğecioğlu, Natural Computing 11, 361 – 368 (2012).

11. K. Subramanian, S. Hemalatha, and I. Venkat, Proceedings of the Second International Conference on Computational Science, Engineering
and Information Technology, (2012).

12. N. L. M. Zulkufli, S. Turaev, M. I. M. Tamrin, and M. Azeddine, AIP Conference Proceedings, Vol. 1691 (2015).

13. W. H. Fong, A. A. Rahman, N. H . Sarmin, and S. Turaev, International Jounral of Online Engineering 15 (2019).

14. P. Linz, An Introduction to Formal Languages and Automata (Jones and Barlett Publishers, United States, 2006).

060005-8

https://doi.org/10.1007/s002360050125
https://doi.org/10.1007/s11047-011-9290-9

