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Abstract 
 

This paper presents the solution of the kinematic wave equation using a 

meshless radial point interpolation method (RPIM). The partial differential 

equation is discretized using a Galerkin weighted residual method employing 

RPIM shape functions. A forward difference scheme is used for temporal 

discretization, while the direct substitution method is employed to solve the 

nonlinear system at each time step. The formulation is validated against 

solutions from conventional numerical techniques and physical observation. In 

all cases, excellent agreements are achieved and hence the validation of the 

proposed formulation. Optimum values of the multi-quadrics shape 

parameters were then determined before the assessment of the performance 

of the method. Based on the convergence rate, it has been shown that the 

proposed method performs better than the finite difference method and 

equivalent to the finite element method. This highlights the potential of RPIM 

as an alternative method for hydrologic modeling. 

 

Keywords: Meshless method, radial point interpolation method, saint venant 

kinematic wave, hydrologic modeling, finite element method, finite difference 

method 

 

Abstrak 
 

Kertas kerja ini membentangkan penyelesaian persamaan gelombang 

kinematik dengan menggunakan kaedah Interpolasi Titik Radial Tanpa Mesh 

(RPIM). Persamaan pembezaan separa dibincangkan dengan menggunakan 

kaedah pemberat residual Galerkin yang menggunakan fungsi bentuk RPIM. 

Skema perbezaan hadapan digunakan untuk pengantian sementara 

manakala kaedah penggantian langsung digunakan untuk menyelesaikan 

sistem tak linear pada setiap langkah masa. Perumusan ini disahkan dengan 

membuat perbandingan denga  penyelesaian dari teknik numerik 

konvensional dan pemerhatian fizikal. Dalam semua kes, keputusan yang 

sangat baik dicapai dan dengan itu menjadi pengesahan kepada rumusan 

yang dicadangkan. Nilai optimum parameter bentuk multi-quadric kemudian 

ditentukan sebelum penilaian prestasi kaedah tersebut. Berdasarkan kadar 

konvergensi, telah ditunjukkan bahawa kaedah yang dicadangkan 
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melakukan lebih baik daripada kaedah perbezaan terhingga dan setara 

dengan kaedah unsur terhingga. Ini menonjolkan potensi RPIM sebagai 

kaedah alternatif untuk pemodelan hidrologi. 

 

Kata kunci: Kaedah meshless, kaedah interpolasi titik radial, saint venant 

kinematik, pemodelan hidrologi, kaedah unsur terhingga, kaedah perbezaan 

hujung 

© 2020 Penerbit UTM Press. All rights reserved 

  

 

 

1.0 INTRODUCTION 
 

A combination of one-dimensional continuity and 

momentum equations, also known as Saint Venant 

equations are a set of nonlinear unsteady partial 

differential equations. These equations are typically 

used in the hydrological modelling of surface runoff 

and channel flow. The full Saint Venant equations, 

commonly known as the dynamic wave equations, 

are often used to obtain the complete description of 

the flow. However, in most cases, where no 

backwater effect is expected and when the bed 

and frictional slope can be assumed as similar, the 

momentum equation can be simplified and 

represented by the Manning equation. The 

combination of continuity and Manning equations 

yields what is known as Kinematic Wave equation.   

While dynamic wave equation provides better 

description of the flow, the numerical solutions are 

expensive and usually unstable. Therefore, unless 

necessary, the kinematic wave has been the 

preferred method to solve many hydrological related 

problems [1]. However, despite its simplicity, the 

equation is still unsteady and nonlinear in nature. Due 

to the nonlinearity, an exact solution of the equations 

is difficult to be obtained. Nevertheless, a limited 

number of exact solutions for simplified cases are 

available in [2-5]. For other cases, the kinematic 

wave equation is typically solved numerically using 

finite difference method (FDM) [6] or finite element 

method (FEM) [7, 8].  

 

1.1 Radial Point Interpolation Method (RPIM): A 

Meshless Method 

 

A typical numerical method such as FDM or FEM 

requires the construction of grid or mesh to represent 

the physical domain of the problem. In most 

engineering problems where the physical domain is 

complex, geometrical meshing is difficult and a time 

consuming process. Meshless methods are some 

recent attempts to remedy this shortcoming as it 

requires no meshing of the domain [9,10]. 

RPIM can be considered as an enhancement of 

an earlier method known as Point Interpolation 

Method (PIM). The latter is a meshless method that 

uses polynomial functions to approximate the field 

variables. The application of PIM in hydrological 

modelling of flood routing has been detailed in Hirol, 

(2016) and Hirol, et. al. (2017) [11, 12]. The use of PIM 

might lead to matrix singularity during the derivation 

of the shape functions due to the inappropriate 

choice of polynomial function, leading to an ill-

conditioned matrix.  

Alternatively, instead of polynomial function, a 

radial basis function can be used as an interpolation 

functions, the latter becomes the basis for RPIM. Liu 

and Gu (1999) [13] is the first to propose RPIM and the 

method has since been extended in [14-16]. Unlike 

PIM, RPIM is free from ill-conditioned matrix and 

singularity problem [17, 18]. The delta function 

property is also preserved in RPIM allowing boundary 

conditions to be imposed conveniently. These 

attractive features of RPIM motivate extension of the 

method to solve kinematic wave equation for 

hydrologic modelling.   

 

 

2.0 METHODOLOGY 
 

Governing Equations 

 

Saint Venant equations [19] are time dependent 

partial differential equations which describe the 

distribution of flow rate, Q and flow cross-sectional 

area, A as functions of distance, x along the channel 

and time t.  The equations can be given as: 

 

Equation of Mass 

  

  
 

  

  
  ( ) 

(1)  

where   is the cross-sectional area of the flow,   is 

the flow rate and   ( ) is the forcing term (i.e. 

precipitation, lateral flow).   

   

Equation of Momentum 

 

 

  

  
 

 

 

 

  
(
  

 
)   

  

  
  (     )    

(2)  

where    is the bed slope and    is the frictional slope, 

whilst   and   are the depth of water and 

gravitational pull, respectively.  The complete form of 

Equation (2) is termed as full dynamics equation.  

However, Equation (2) can be further simplified if it is 

assumed that      . This is known as the kinematic 
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wave assumption. This condition can be equivalently 

expressed in Manning form as 

       
(3)  

Equation (1) and (3) are the Saint Venant kinematic 

wave equations. By combining Equation (1) and 

Equation (3), the following equation can be 

obtained. 

 

  

  
 

 

  
 (   )   

  
   

(4)  

 

Weak Form of the Kinematic Wave Equation 

 

The kinematic wave equation given by Equation (4) 

can be solved numerically by converting the 

equation into weak form. This can be done by 

employing Galerkin weighted residual method. We 

first discretize Equation (4) in time by forward-

difference to obtain 

       

  
 

 

  
 (   )    

     

  
      

(5)  

where     and   refer to present and previous time-

step, respectively.  Rearranging gives 

     
  

  
 (   )    

     

  
         

(6)  

By weighting Equation (6) using shape functions,    

and expressing the flow rate as      ̂   where  ̂  

are the nodal values of  , the following is obtained. 

 

∫   (   ̂  
  

  
   ̂ 

(   )     ̂ 

   

    ̂ 
 
)    ∫      

 

  

(7)  

 

To note, in Equation (7), superscript     is omitted for 

ease of notation.  By collecting the nodal values,  ̂  

and shifting known terms to the right hand side of the 

equation, Equation (7) can now be given as 

 

.∫        
 

∫
  

  
  (   ̂ )

(   )    

   
  /  ̂  

∫      ̂ 
 

 
   ∫      

 
  

(8)  

 

Equation (8) can be represented in matrix form as 

[   ( ̂)]{ ̂}   * +  
(9)  

where , - is the coefficient matrix, , - is the mass 

matrix whilst { ̂} and * + are the vector of nodal 

values and nodal loads, respectively.   

Nonlinear Solver 

 

Equation (9) is nonlinear thus requires a nonlinear 

solver. In this work, direct substitution scheme is 

employed. For mild nonlinearity the scheme works 

well. 

 

Derivation of RPIM Shape Functions 

 

RPIM interpolation function contains both radial and 

polynomials basis given as  

 

 

where * + is the vector of radial basis function (RBF).  
* + and * + are the vectors of the coefficient of RBF 

and the monomials, * + respectively. There are 

several forms of radial basis functions that can be 

used as detailed in [16]. This study uses multi-quadrics 

(MQ) interpolation which, for one-dimensional 

problem can be given as  

where    and   are the shape parameters which 

values can be obtained through numerical test whilst 
* + is the vector of radial distance of point of interest, 

Xpi given as 

Coefficients in * +and * + of Equation (10) are 

constants which values can be determined by 

forcing the interpolation to be equal to nodal value 

of the field variable at the node’s location.  In 

evaluated form, this can be given as 

where { ̂} is the vector of the nodal values of the 

flow rate. , | - and , | - contain the evaluated 

values of radial basis function and the monomials 

evaluated at the location of the nodes respectively. 

Due to the additional polynomial terms, the 

simultaneous equation of Equation (13) can be 

expanded into  

where 
 

  * +* +  * +* +  (10)  

* +  (* +  (    )
 )  (11)  

*  +  √(     )
  

(12)  

{ ̂}
 

 , | -* +  , | - * +  
(13)  

{ ̂
 
}
 

 [
 |  | 

 

 |  
] *  +  , | -*  +  

(14)  
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, | - is termed as moment matrix. n is the number of 

the field node in the support domain and   is the 

number of polynomial terms used which can be zero 

or    . Using Equation (14), we can solve the 

corresponding coefficients as 

 

By inserting Equation (17) into Equation (10) we 

obtain 

 

In the same time, the flow rate can also be expressed 

in terms of shape functions and nodal values as 

Since Equation (18) and Equation (19) represent the 

same distribution of the flow rate, evaluating the 

equations at a point of interest, Xpi would give 

 

After rearrangement, Equation (20) can be given as 

From Equation (21), shape functions of RPIM at a 

point of interest i.e. { |  } can be solved by 

employing simultaneous solver such as Gauss 

elimination thus avoiding the need for direct 

inversion.   

 

 

Derivation of the First Derivative of RPIM Shape 

Functions 

 

Differentiating Equation (10) and Equation (19) and 

evaluating at a point of interest, Xpi, give  
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(22)  

 

Equation (22) can be compactly expressed as 

 

, 
  |  

  
- { ̂}

 
 ,

  |  

  
   

  |  

  
- *     +  (23)  

 

Inserting Equation (14) into Equation (23) gives 

 

, 
  |  

  
- , | -*     +  ,

  |   

  
  
  |  

  
- *     +  (24)  

After some cancellations and rearrangement, we 

obtain 

, | - , 
  |  

  
-

 

 ,
  |   

  
  
  |  

  
-

 

 
(25)  

 

By solving { 
  |  

  
}, we then obtain the evaluated 

values of the derivative of the RPIM shape functions 

at the point of interest. 

 

Final Form of Kinematic Wave for RPIM Formulation 

 

Inserting { |  } of Equation(21) and { 
  |  

  
} of Equation 

(25) into the discretized weak formulation of Equation 

(8), the final form of the RPIM formulation for the 

kinematic wave can be given as (in numerical 

integration forms) 

 

, -      ∑ ∑   ̂  |   | 

  

   

  

   

|  | (26)  

, -     
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 (28)  

, -     

 ∑ ∑   ̂ *  |   | 

  

   

  

   

 (   )
  

  
  | (  |   | )

(   )       | 

  
+ |  | 

(29)  

 

where |  | is the Jacobian for fth background cell 

and   ̂ is the Gauss weighting factor for the gth  

Gauss point. GP is the total number of Gauss points 

{ ̂
 
}  { ̂  ̂   ̂    } (15)  

{
 
 
}

 *              +             
(16)  

*  +  , | -  { ̂
 
}
 

 
(17)  

  *  +, | -  { ̂
 
}
 

 
(18)  

  * +{ ̂}
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{ |  }{ ̂}
 

 * |   |  +, | -  { ̂
 
}
 

 
(20)  

, | -  { |  }
 

 * |   |  +  
(21)  
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and BC is the background cell of the Gauss 

quadrature.  

 

 

3.0 RESULTS AND DISCUSSION 
 

Prior to the determination of the optimum value of 

the shape parameters of the radial basis function, 

the derived formulation is verified herein against two 

of benchmark cases. 

 

Case 1: Verification against Chow et.al (1988) [6] 

 

The first verification is made against the numerical 

solution obtained from FDM as detailed in [6]. The 

flow is driven by a time-varying inflow as given in 

Table 1. The hypothetical channel, discretized into a 

finite grid system, is shown in Figure 1. The channel 

has a bed slope of one percent and a Manning’s 

roughness factor of 0.035. There is no lateral flow or 

rainfall. The initial condition is a uniform flow of 2000 

cfs along the channel.  

 
Figure 1 Uniform discretization of the channel [6] 

 
Table 1 Inlet data [6] 

 

Inflow Time (min) Inflow Rate (cfs) 

0 

12 

24 

36 

48 

60 

72 

84 

96 

108 

120 

2000 

2000 

3000 

4000 

5000 

6000 

5000 

4000 

3000 

2000 

2000 

 

 

Figure 2 (a) shows the plot of flow rate,   

calculated at various locations whilst Figure 2 (b) 

shows the plot of   a distance of 6000ft from 

upstream. In the latter, close agreement can be 

observed between the results given by RPIM and and 

the one given by Chow (1988). It can also be seen 

that the RPIM solution converges with the increase in 

the number of node.   

 

 
(a) 

 
 

 
(b) 

 
Figure 2 Flow rate validation for Case 1 

 

 

Case 2: Verification against gauged (real) data 

(Litrico et al. 2010) [8]  

  

In contrast to the previous case, Litrico et al. (2010) 

[8] dealt with real data, gauged from Jacui River in 

Brazil. The flow was driven by time-varying upstream 

boundary conditions (varying inflow) as shown in 

Figure 3. The data consisted of propagation of dam 

release on the Jacui River in Brazil between Itauba 

and Volta Grande, recorded at a time step of 30 

minutes. Table 2 gives the data for the river.  
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Figure 3 Upstream flow [8] 

 

Table 2 Data of Jacui River [8] 

 

Data Value 

Channel Length (L) 29600 m 

Width (W) 55.6 m 

Manning coefficient (n) 0.07 

Slope (Sb) 0.00089 

 

 

 
 

Figure 4 Flow rate validation for Case 2 

 

 

Figure 4 shows the plot of the flow rates where a 

similar trend of prediction is given by both numerical 

methods plotted against the gauged data. The 

agreement herein (and in the previous case) 

validate our proposed RPIM formulation. The slight 

discrepancy is due to the use of arbitrary value of 

shape parameters in RPIM. In the next section, the 

optimum value of the shape parameters will be 

determined and then used in the convergence 

study.     

 

Numerical Test to Determine the Optimum Values of 

Shape Parameters 

 

Selection of shape parameters value to be used in 

the analysis is crucial as it governs the performance 

and the accuracy of a formulation [20].  By adopting 

Multi-quadrics (MQ) as the radial basis function, the 

specification of two shape parameters,    and   is 

required which values are best determined by 

conducting a numerical test. Optimum values are 

taken as those that provide the lowest error norms 

which can be calculated as 

 

where   is the number of results considered whilst 

 (  )
    

 and  (  )
   

 are the values of flow rates 

obtained from RPIM and FEM respectively. Equation 

(30) is a L2-norm loss function formulation. To note, 

since there is no closed-form solution available for the 

two benchmark cases, the “accurate” solution 

herein, i.e  (  )
   

  is taken as the converged value 

from FEM formulation.  

Since there are two parameters to be 

determined, one is set constant at a time. Herein, the 

optimum value of   is first sought by setting the value 

of    to unity. Figure 5 shows the error norms of the 

flow rates from the benchmark cases for varying 

values of shape parameter   and numbers of nodes 

(i.e. 11, 21 and 41). From the plots, while the results 

seem to be insensitive to   for Case 1, there is a slight 

reduction in the error norms for Case 2. Narrowing the 

range of the reduction in between 0.6 and 0.8, the 

optimum value for   is chosen as 0.7. 

 

 
 
Figure 5 Optimum value determination for shape parameter 
  

 

 

Having determined the optimum value of  , the 

optimum value for   , is then determined. Similar 

trend is observed where there is a slight reduction in 

error norms for Case 2 as shown in Figure 6. Narrowing 

the range of the reduction in between 0.5 and 1.5, 

the optimum value for    is chosen as unity.  

 

L -norm error  e  
 

𝑁
 

 𝑄(𝑥𝑗)
𝑅𝑃𝐼𝑀

 𝑄(𝑥𝑗)
𝐹𝐸𝑀

 

 𝑄(𝑥𝑗)
𝐹𝐸𝑀

 

𝑁
𝑗        (30) 
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Figure 6 Optimum value determination for the shape 

parameter    

 

 

Convergence Study and Assessment on the 

Numerical Performance 

 

In numerical formulation related works, convergence 

study is an important stage as it allows the 

assessment of the performance of a newly derived 

formulation. The performance is measured in terms of 

the convergence rate; the rate at which the solution 

approaches the “correct” solution. Herein, the 

numerical performance of RPIM is assessed by 

comparing its convergence rate against FEM and 

FDM. To ensure that RPIM performs at its best, 

optimum values from previous tests are used. 

 

 
 

Figure 7 Convergence rate for Case 1 

 

 
Figure 8 Convergence rate for Case 2 

 

 

By referring to Figures 7 and 8, the different 

performance between the weighted-residual based 

formulations (FEM and RPIM) and the collocation-

based FDM is apparent where the formers converge 

faster than the latter despite all being of 1st order 

accuracy.  It is well known that the averaging of the 

error inherent in the weighted residual formulation 

would lead to a better performance. In this context, 

RPIM performs identical to FEM and better than FDM. 

This highlights the potential of RPIM as an alternative 

numerical method to FEM for hydrologic modelling as 

the method, whilst has equal performance, does not 

require the formation of mesh and assembly process. 

 

 

4.0 CONCLUSION 
 

This paper details the RPIM formulation in solving Saint 

Venant Kinematic Wave equation. The formulation is 

verified against a couple of benchmark problems. 

For best performance, the optimum value of the 

shape parameters is determined through a numerical 

test. Employing the optimum values, the 

performance of the RPIM formulation is assessed 

against the conventional FEM and FDM in a 

convergence study. It is shown that RPIM performs 

similar to FEM and better than FDM. This highlights the 

potential of the RPIM as an alternative numerical 

method for hydrologic modelling as it does not 

require the formation of mesh and assembly process.  
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