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Abstract. Other than usage for environmental remediation, ozone is also increasingly studied 

for its potential in combustion enhancement. In this study, the characterization of the ozone 

production at varied voltage, duty cycle and cylinder configuration for reactor was conducted 

using multivariable power least squares method (MPLSM). This alternative correlation 

method in the form of power function was applied in this study to determine the dominant 

factor affecting the ozone production using the multi-cylinder reactor. The regressed equation 

using MPLSM method indicated voltage as the dominant factor in the production of ozone 

compared to the effect of duty cycle. The correlations generated from MPLSM for both 

reactor configurations were able to predict most of the ozone concentration results within 25% 

deviation from the actual experimental data. As such, MPLSM could be considered as an 

alternative method to be used for correlations of non-polynomial results.  

1. Introduction  

With the current trend of intensified, clean and safe process [1, 2], ozonation is gaining attention as 

alternative for environmental remediation [3-5]. Ozone was also found to effectively decompose 

volatile organic compounds (VOC) and removing pollutant gases as well as odour treatment [6-9].  

Recently, ozone is also studied for potential in combustion enhancement [10-13]. Ombrello et al. 

[10] identified that development of new technologies to enhance combustion should also cover beyond 

high speed propulsion devices. Stationary power generation and ultra-lean, ultra-low emission internal 

combustion engines are some of the areas which can be further improved through new combustion 

technologies such as plasma-assisted combustion technique [10]. Plasma activation offers the benefit 

of decreased ignition times and lower ignition temperatures, enhanced flame stabilization, increased 

flame propagation and increased flammability limit in combustion systems [11, 12, 14]. The improved 

combustion could be achieved via the presence of free electrons, ions, active radicals and excited 

molecules as well as thermal enhancement generated from the corona discharge [10, 12]. As such, 

modification of traditional combustion techniques by incorporating non-thermal plasma in the system 

is a promising area to be explored. Non-thermal plasma was found to be effective in producing ozone 

through excitation of energetic electrons [7]. 
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This work is a continuation from our previous study on characterization of ozone production from 

multi-cylinder reactor in a non-thermal plasma device [15]. In our previous study, ozone production 

experiment was conducted, and the data collected was characterized using response surface 

methodology (RSM). However, it was found that the configuration was biased towards one of 

configuration. Consequently, the predicted results for another configuration was out of range.  

MPLSM was selected as an alternative method for the characterization in this study because the 

trend of ozone generation is not always in polynomial form as it depends on the parameter or 

combination of parameters varied [8, 17, 18]. However, RSM usually analyses responses based on 

polynomial trend only. MPLSM is able to solve multivariables problems using power function, in 

which the indices of the parameters are indicated as real numbers. It is able to approximate the indices 

of the variables using simple matrix solution. The magnitude of the indices could also be used to 

indicate the variable dominance ranking.  

In this study, the same data which was collected in our previous study was characterized for the 

ozone production using multivariable power least squares method (MPLSM) [16]. The accuracy of the 

regressed equation from the method would be compared with the regression from RSM. 

 

2. Methodology 

2.1 Regression using MPLSM 

The experimental parameters from our previous study [15], as shown in Table 1, was used in this 

study. The data was obtained from variation of numerical factors, i.e. the range of voltage between of 

12 kV to 16 kV and duty cycle from 10 to 30. The similar set of variation was conducted in categorical 

factor of multi-cylinder reactor configuration, i.e. 3 x 40 mm and 10 x 10 mm.   

 The evaluation on the effect of voltage and duty cycle to the ozone concentration produced from 

the multi-cylinder reactor was conducted for each configuration of cylinders using MPLSM [16].  The 

method considered the independent numerical variables, x1, x2... xm, in which m is the total number 

of set in the independent variables, can be correlated with the dependent variable, y using the 

multiplication of respective power function of the independent variables as shown in Equation (1): 
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Equation (1) was then expanded in logarithmic form as shown in Equation (2) before the deployment 

of least squares method  
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By taking A = In(a) and Bj = bj, with the subscript j as the number of set of variables, the square of 

least squares residual was formulated as: 
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Upon expansion of Equation (3), solution for A was obtained by taking the minimization of R2 with 

respect to A, in which: 
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where i is the ith elements within the set of variables while n is the total number of elements within the 

set of variables. The minimization of R2 with respect to B1, B2, …, Bm would yield the set of equations 

which was solved using matrix.  

 

Table 1. Parameters varied in this study [15]. 

Run Voltage (kV) Duty cycle Configuration 

(mm) 

1 16 20 10x10 

2 16 10 3x40 

3 14 20 10x10 

4 12 10 3x40 

5 12 30 3x40 

6 16 30 10x10 

7 14 30 10x10 

8 12 30 10x10 

9 14 20 3x40 

10 14 20 3x40 

11 12 10 10x10 

12 16 20 3x40 

13 14 20 10x10 

14 12 20 10x10 

15 16 10 10x10 

16 14 10 3x40 

17 16 30 3x40 

18 14 20 3x40 

19 14 30 3x40 

20 14 10 10x10 

21 14 20 10x10 

22 14 20 10x10 

23 14 20 10x10 

24 14 20 3x40 

25 14 20 3x40 

26 12 20 3x40 
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The subscript k represents the value of second subscript of the term ρ. The matrix in Equation (5) was 

solved using Matlab R2013a software. 

3. Results and discussion 

3.1 Ozone production model based on MPLSM 

Based on the method described in Section 2.1, the coefficients of the model with power based 

correlations generated from MPLSM for configuration of 3 x 40 mm and 10 x 10 mm are shown in 

Equation (9) and (10), respectively. 

 

Ozone concentration = 0.01Voltage1.84Duty cycle0.0947             (9) 

 

               Ozone concentration = 0.008Voltage1.92Duty cycle0.0451           (10) 

 

where unit for ozone concentration is ppm, unit for voltage is kV and duty cycle is unitless. 

Based on the correlations, the predicted versus actual data for multi-cylinder reactor with 

configuration of 3 x 40 mm and 10 x 10 mm were plotted and presented in Figure 1 and Figure 2 

respectively. The predicted data from our previous correlation based on RSM is also included in the 

graph for comparison [15]. 

It is observed that the correlations generated from MPLSM for both configurations was able to 

predict the response close within the 25% range of prediction target. Several points were slightly 

outside the targeted range. However, MPLSM managed to correct the range of the predicted ozone 

concentration for configuration of 3 x 40 mm closer to actual data. 
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Figure 1. Comparison of predicted results using correlations based on MPLSM (•) and RSM (∆) 

regression versus actual ozone concentration data generated from 3 x 40 mm electrode configuration. 

The solid line represents 100% accuracy while the dotted lines represent the 25% deviation from 

perfect accuracy. 

 

 

 
Figure 2. Comparison of predicted results using correlations based on MPLSM (•) and RSM (∆) 

regression versus actual ozone concentration data generated from 10 x 10 mm electrode configuration. 

The solid line represents 100% accuracy while the dotted lines represent the 25% deviation from 

perfect accuracy. 
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From the indices of the variables in Equation (9) and (10), voltage was the dominant variable since 

it has the higher value of power compared to duty cycle. This is consistent with the ANOVA results 

from our previous RSM analysis [15].  

Based on Figure 1 and Figure 2, it is also observed that cylinders configuration of 3 x 40 mm could 

produce higher ozone concentration compared to cylinders configuration of 10 x 10 mm. This was 

because stronger electric field was generated with the lower number of cylinders in the reactor as the 

same input power was divided across lesser cylinders. This led to increased electron number density 

which enhanced ionization and collisional excitation of plasma electrons [19]. 

 

3.2 Comparison of RSM and MPLSM for Characterization of Ozone Production 

The advantage of RSM was that it could analyse the significance of both numerical and categorical 

factor at once. Hence, it would be beneficial to be used in analysis which required conformation of 

categorical factor based on statistical analysis. However, the resulting model from simultaneous 

numerical and categorical factor needs to be graphically verified based on set deviation target such as 

in Figure 1 and Figure 2. Otherwise, the biasness of model towards a certain categorical factor might 

be undetected.  

As explained in Section 2.1, the trend of ozone production depends on the parameter or 

combination of parameters varied and it is not always in polynomial form. Under this circumstance, 

MPLSM is an alternative method to be used to correlate the variables with the response. The indices 

for each variable can also be used to determine the dominance of the factor in influencing the 

response. Based on the results obtained in this study, MPLSM appeared to be reliable in correlation of 

the data. However, MPLSM was unable to conduct numerical analysis for categorical and numerical 

factor simultaneously. As such, the significance of categorical factor would need to be analysed 

separately if MPLSM is employed. 

 

4. Conclusion 

The effect of voltage, duty cycle and different configuration on ozone production in multi-cylinders 

reactor in non-thermal plasma was characterized using MPLSM. Voltage was identified as dominant 

factor via analysis using MPLSM. The correlations generated from MPLSM for both configurations 

were able to predict the ozone concentration results close within the prediction target range. As such, 

MPLSM could be considered as an alternative method to be used for correlations of non-polynomial 

trend of results. 
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