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 The human Autonomic Nervous System (ANS) controls the body’s 
physiological responses, such as heart rate, electrodermal activity, 
temperature, and pupil diameter. The physiological responses are increased 
in the presence of stressing stimuli, and this is a typical ANS response. 
However, in the case of children with Autism Spectrum Disorder (ASD), 
they suffer from autonomic dysregulation as reported in the past owing to 
their atypical ANS response. This study investigated the ANS response of 
children with ASD and compared it with the response of normal children. 
EDA response datasets of 35 children with ASD and 55 normal children 

were acquired with the help of E4 wristband at a sampling rate of 4Hz.  
The signals were preprocessed to remove artefacts and noise and later 
compared. Furthermore, an SVM classifier was also used to classify the EDA 
response signals of normal children and children with ASD. The obtained 
results highlight that the ANS response of children with ASD is atypical as 
their EDA response is blunt and shows no significant tonic and phasic 
changes in EDA levels in the presence of stressing stimuli. In addition to 
that, an accuracy of 75% was obtained using the LF kernel of SVM classifier. 

The study further unfolds the hypoactive sympathetic response of children 
with ASD during a stressing event. Furthermore, this will help in future to 
anticipate the emotional responses of children with ASD such as anger, 
happiness, and anxiety. 
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1. INTRODUCTION  

The human body is made up of complex mechanisms in which it is difficult to identify  

a problematic state without a battery of tests. However, the body does show multiple indications in case of 

distress or alarming situations, and those indications are known as physiological signals [1, 2] produced by 

the body’s physiological processes. The human physiological signals include heart rate, electrodermal 

activity (EDA) response, body temperature, pupil diameter, brain waves, and respiration [1, 3].  
The variations in the abovesaid physiological signals highlight some problematic state such as stress, anxiety, 

fear, or any other form of emotional arousal [4-6]. For instance, the variation in Electrocardiogram (ECG) 

signal provides meaningful information regarding the heart’s functionality [7]. These physiological signals 

are also an indication of some underlying medical conditions, hence, making these signals interesting enough 

to be studied and scrutinized in order to understand them and prevent harmful outcomes. The human 
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physiological responses are governed by the Sympathetic Nervous System (SNS) and Parasympathetic 

Nervous System (PNS) which are the branches of Autonomic Nervous System (ANS) [1, 5]. The role of SNS 

is to increase the rate of physiological responses in case of any alarming situation. At the same time, the PNS 

helps to regulate these rates and bringing the body back to homeostasis. This phenomenon is known as a 

normal or typical or regular autonomic nervous system response. On the other hand, when the rate of 

physiological signals decreases in the presence of a stressor instead of increasing, such phenomenon is 

known as abnormal or atypical autonomic nervous system response. Such person is referred to as suffering 

from autonomic dysregulation [8]. 
Among the many physiological signals, this research only focuses on the study of variation in EDA 

response of a person as an indicator of distress or anxiety. The EDA response, which is an involuntary 

function is the measure of changes in skin’s electrical properties due to the presence of stressors or some 

underlying medical conditions [9, 10]. The EDA response is categorized into two types, known as phasic 

change and tonic change. The tonic change, which is also known as SCL [11], refers to the smooth and 

gradual changes in the EDA response signal, which occur in the absence of stressing stimuli. On the other 

hand, the phasic change, which is also known as SCR [11], refers to the rapid/sudden changes in the EDA 

response, as shown in Figure 1. The highlighted/encircled areas in Figure 1 show phasic changes and the 

remaining parts of the graph show tonic changes of an EDA response signal. The physiological responses of 

special children are not well-studied previously hence, the role of ANS response in special children is not 

clear. Therefore, this study aims at developing an understanding of only one physiological response which is 

EDA of children with Autism Spectrum Disorder (ASD) and normal children. ASD is a neurological and 
developmental disorder which starts in the infant stages and remains throughout an individual’s life [12]. 

 

 

 
 

Figure 1. Phasic and tonic changes in an EDA response signal 

 

 

In this regard, previously, many physiological signals have been studied for the purpose of stress, 

anxiety, and emotion recognition. For instance, in [13], only skin conductance was used to detect human 

stress along with two accelerometers and achieved an accuracy of 94.7%. The experimental phase consisted 

of arithmetic problems as stressors which were meant to be solved by intended subjects, and decision tree 

classifier was used for this study. The accelerometers were used for differentiating between stress and 

physical activity however, the use of skin conductance as a significant stress indicator is still under scrutiny 
for children with ASD. Moreover, in [9] galvanic skin response sensor was used to measure skin conductance 

for the purpose of stress detection. The ADWIN and Fit methods were used in this study. It is a good research 

with a detailed explanation but lacks the element of wider subject range as the data was only collected from 5 

subjects. Later in [14], a team of researchers monitored the cardiac activity of participants during some 

activities with the help of a wireless chest belt. The research monitored the cardiac response of 10 

participants, including 5 children with ASD and 5 children with language disorder between the age of 2 – 5 

years. The research showed an increase in cardiac response during designed activities. In another research 

[15], the researchers collected two physiological signals named GSR and ECG for stress detection.  

The features were extracted using Fisher’s discriminant criteria and Support Vector Machine (SVM) was 

used for stress classification. In the same line of research, [16] used heart rate, EDA response, and body 
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temperature signals for classifying stress levels. The researcher used fuzzy logic, decision tree, Naïve Bayes, 

and K-NN classifiers and found that the fuzzy logic achieved an accuracy of 96%, whereas the accuracy of 

other techniques was lower. The data was collected from 35 participants, and the arithmetic game was used 

to induce stress in participants. 

Furthermore, in [17], changes in ANS were measured to determine stress among 15 children with ASD 

and 18 children without ASD. It was observed that cardiac activity was increased in children with ASD during 

baseline and anxiety induction test while the perspiration response was normal, and no change was found in skin 

temperature either. Whereas, in children without ASD, cardiac activity, perspiration, and temperature were only 

elevated during the experiment. Similarly, in [18], heart rate, GSR, and temperature signals were measured from 

both normal and autistic children. The research highlighted those autistic children had elevated GSR response in 
low-anxiety and high-anxiety situations as well. Another research [19] also acquired heart rate, EDA response, 

and body temperature signals for anxiety detection and reported a blunted EDA response in children with ASD 

during high-anxiety situations. They used the Stroop Colour Word (SCW) test for inducing stress in twenty-nine 

children, including 17 normal children and 12 children with ASD. 

Based on the abovementioned previous works, it is evident that the EDA response is a significant 

indicator in applications such as stress monitoring, anxiety, and emotion recognition. However, if the 

autonomic dysregulation found in children with ASD is taken into consideration, it is questionable whether 

the EDA response of children with ASD is significant or not.  

Therefore, the problem addressed in this research is to identify the significance of variation in EDA 

response signal of children with specials needs and normal children. Among special children, this paper 

specifically focuses on the EDA response of children with Autism Spectrum Disorder (ASD) as previous 
research suggests that they suffer from autonomic dysregulation [8, 10, 17, 19]. The other objective of this 

work is to design a classification system capable of classifying the EDA responses of normal children and 

children with ASD. Furthermore, this paper also aims at resolving the conflict between previous research by 

comparing the EDA responses of children with ASD and normal children. This is because one research [18] 

states that children with ASD have increased EDA response during high-anxiety (stressing) situations 

whereas the other research [19] suggests that they have a blunt EDA response during these situations. 

Furthermore, previous research suggests that children with ASD have atypical ANS response [10] due to 

which their physiological response is different when compared with normal children. Hence, the questions 

investigated in this study are: 

a) Whether the EDA response of children with ASD is a significant indicator of stress or not? 

b) Do children with ASD have atypical ANS response or not? 

The paper is organized in a manner that Section 1 provides a general introduction of the research 
along with the previous works, the problems addressed, and the objectives of this research. Section 2 covers 

the methodology, which includes the details of participants, stress-inducing test, data acquisition device, and 

the experimental setup. After that, the obtained results, discussions, and limitations of this study are 

mentioned in Section 3. Finally, a conclusion is made in Section 4. 

 

 

2. RESEARCH METHOD 

This section discusses the details regarding the participants, data acquisition device, and the steps 

taken to obtain the objectives of the study. 

 

2.1.  Participants 
The EDA response signal data were collected from two groups of children with a total number of 90 

participants. The first group (G1) was of normal children (n = 55) within the age range of 4 – 12 years and 

the second group (G2) were of children with ASD (n = 35) within the age range of 4 – 12 years. The children 

in the ASD group were selected from autistic centres and were diagnosed with ASD. The children in the 

normal group were selected from a school and did not have any mental or physical disabilities. All the 

parents of children were given consent forms prior to the data acquisition, which contained all the 

information regarding the study.  

 

2.2.  Data acquisition device 

The E4 wristband by Empatica [20] was used for recording EDA response signals from all the 

participants. The device houses four sensors including photoplethysmography (PPG) sensor, EDA sensor, 

temperature sensor and a 3-axis accelerometer. The electrodes are silver coated and can be placed on a 
participant’s wrist. The device can record up to 36+ hours [21] of data on a single charge, and the recorded 

data is automatically uploaded to Empatica’s secure server. Furthermore, the data can also be accessed in 

real-time through its app available on Android and iOS. For this study, only EDA response data was obtained 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 2, August 2020 :  1113 - 1120 

1116 

as the scope of this research is limited to studying the EDA response signals only. The EDA response signals 

were recorded at a non-customizable sampling frequency of 4Hz with a range of 0.01 – 100 µSiemens. The 

previous research [22] suggests that the sampling frequency of 1 to 10 Hz is sufficient to obtain a GSR 

signal, hence, the chosen frequency of 4Hz provides sufficient information. 

 

2.3.  Stroop colour word test 

The Stroop Color and Word Test (SCWT) is a neuropsychological test extensively used for both 

experimental and clinical purposes [23]. The SCW test was used for inducing stress in the participants based 
on [23] and was divided into two segments; congruent and incongruent. The test consisted of three phases, 

Phase1, Phase2, and Phase3, and each phase comprised of 30 questions. The first phase was relatively easier. 

Then the second phase was designed to be a bit more difficult as it introduced the time limit while the third 

phase was designed to be very difficult. The first phase was of 5 minutes and the second phase was of 2.5 

minutes with a time limit of 5secs/question. The third phase of the experiment was of 1 minute and 20 

seconds with a time limit of 2secs/question. The first two phases were based on the congruent segment of the 

SCW test, while the last phase was based on the incongruent segment. The SCW test was designed with the 

help of a software named “Wondershare Quiz Creator” as it offered all the necessary features required for 

this experiment. A snapshot of the quiz (experiment) is shown in Figure 2. 

 

 

 
 

Figure 2. Sample of experiment 

 

 

2.4.  Experimental procedure 

The procedure for data acquisition was completely non-invasive and took approximately 10 minutes 

per participant, and each participant was required to visit only once for this session. The detailed step by step 

procedure for data acquisition is shown below: 

a. Participants were asked to sit in a calm environment. 

b. Participants were asked to fill a form consisting of details such as random identification number, age, 

gender, and medical history/diagnosis/condition. 

c. The E4 wristband was fastened to the participant’s wrist in a manner that it was neither too tight nor 

too, loose, as shown in Figure 3. 

d. For the baseline recordings, the participants will be asked to close their eyes and relax for 1 minute. 

e. The participants were asked to solve the SCW test consisting of the abovementioned three phases. 
 

 

 
 

Figure 3. E4 wristband fastened to participant’s wrist 
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2.5.  Statistical analysis and classification 

The obtained signals of both groups G1 and G2 were statistically analysed with the help of t-test to 

identify the significance of the difference between the two sets. If the obtained value of the t-test is less than 

0.05, then it is said to be statistically significant. 

Furthermore, a Support Vector Machine (SVM) based classifier was also implemented in MATLAB 

as previous research suggests that SVM classifiers provide better accuracy in similar cases [24, 25].  

The classifier was used to differentiate between the EDA responses of the two groups with the help of 

training. The SVM classifier was trained with 80% of the data, and the remaining 20% of the data was used 

for testing. The prime issue when training a classifier is to find the most appropriate kernel function [24]. 

SVM offers multiple kernel functions among which Linear Function (LF) and Radial Basis Function (RBF) 
are utilized in this study. The equations for LF and RBF kernel functions of SVM are stated as: 

 

 (   )  (     ) (1) 

 

 (   )      (          ) (2) 
 

The compatibility of the kernel function is directly related to the efficiency of the SVM classifier, 

and it also affects the accuracy of the SVM classification system.  

 

 

3. RESULTS AND ANALYSIS 

As per the information provided in Section 2, the EDA sensor acquired data at a sampling rate of 4 Hz, 
which means that it acquired 240 samples/minute. In this study, the EDA response signals were recorded for 8 

minutes on average. Hence, the obtained total number of samples was 1920. Among them, only 1500 samples 

of EDA response data were analyzed. The remaining 420 samples were removed due to device setup, noise, and 

motion artefacts. The elimination and selection of samples are shown in Figure 4. The average of all 55 datasets 

from G1 and all 35 datasets from G2 was taken according to the phases: P1, P2, and P3 as shown in Figure 5. 

Each dataset contained 1500 samples, and each phase consisted of 500 samples. The average values show the 

average EDA response level, highlighting that the EDA values of G1 are increasing in accordance with the 

phases, while the EDA values of G2 show a little to no change with the increase in phases. 

Along with that, for simplifying the analysis, the arithmetic mean (μ), standard deviation (σ), and 

variance (σ2) of only ten participants including five from G1 and five from G2, were also calculated as shown 

in Table 1. Mean, Standard Deviation, and Variance of EDA response signals. Furthermore, all the signals 

were preprocessed by applying a moving average to remove the noise artefacts with a smoothing factor of 
0.01. The subsequent subsections show the obtained results and discussion regarding the objectives 

mentioned in Section 1.  

The EDA responses of G1 were compared with the EDA responses of G2, and all showed similar 

results. For the ease of understanding, the comparison of only 2 signals is shown in Figure 8, and among 

them, one signal is taken from G1 and compared with a signal of G2. It can be clearly seen in Figure 8 that 

the EDA response of G1 is increasing during the experiment with the increase in the difficulty of the SCW 

test. However, in the case of G2, the graph shows hypoactivity throughout the experiment. A similar case of 

hypoactivity of EDA response of sample from G2 can be witnessed in Figure 8 where the EDA response is 

blunt over time, and no significant phasic and tonic changes can be seen during the experiment. On the other 

hand, the sample from G1 is increasing over time. Moreover, after performing the statistical analysis,  

the research obtained a t-test value of 0.0254, which shows that it is statistically significant. 
 

 

 
 

Figure 4. Division of acquired EDA response samples 

 
 

Figure 5. Mean of EDA response signals of G1 and G2 
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Table 1. Mean, variance, and standard deviation of EDA response signals 

No. 
G1 G2 

μ σ 
2
 σ μ σ 

2
 σ 

1 3.377 1.384 1.176 2.625 0.030 0.173 

2 6.390 2.063 1.436 1.949 0.028 0.169 

3 10.473 7.418 2.723 11.574 0.055 0.235 

4 12.395 1.181 1.086 3.420 0.052 0.228 

5 3.260 1.576 1.255 2.763 0.054 0.233 

 

 

 
 

Figure 6. Spread of EDA response values of G1 

 
 

Figure 7. The spread of EDA response values of G2 

 

 

Moreover, the EDA response signals were classified with the help of implemented SVM classifier 

and obtained an accuracy of 75% while using the LF kernel and an accuracy of 66% was achieved when 

using RBF kernel. Hence, for this particular study, the LF kernel of SVM classifier provided the best 

classification results. 

 
 

 
 

Figure 8. Atypical ANS response of children with ASD 

 

 

3.2.  Atypical ANS response of children with ASD 

The typical/normal response of a person during the presence of stress is that the physiological 

signals, including heart rate, skin conductance, and temperature, are increased in magnitude. However,  

 

G1 

 

G2 
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in case of children with ASD, they suffer from autonomic dysregulation, therefore they have atypical ANS 

response. Similar case is highlighted in this research that the obtained samples of EDA response shown in 

Figure 9 depict that the EDA response of G2 is either blunt or decreases in the presence of a stressor as 

compared to G1. Such EDA response reflects that the children with ASD have atypical ANS response. 

 

 

 
 

Figure 9. Comparison of ten EDA responses of G1 and G2 

 

 

3.3.  Discussion 

The SCW test caused a significant increase of tonic and phasic EDA levels in G1, and this effect is 

in accordance with the regular ANS response to a stressor. This also proves the applicability of the SCW test 
for inducing stress. However, there were minimal changes in phasic and tonic EDA responses of G2.  

The obtained results show that children with ASD suffer from autonomic dysregulation. Hence, they depict 

an atypical ANS response in the presence of stressors. Moreover, the values are shown in Table 1, and the 

box plots are shown in Figures 6 and 7 also support this as the dispersion of EDA values over time is 

minimal in case of children with ASD. However, a higher range of values can be witnessed in the EDA 

values of normal children. Furthermore, the results also support the research [19], stating that the EDA 

response of children with ASD is blunt or lower as compared to the EDA response of normal children. 

Hence, resolving the conflict between the two researchers [18, 19] mentioned earlier in Section 1. Finally, the 

LF kernel of the SVM classifier provided better classification accuracy as compared to the RBF kernel. 

 

 

4. CONCLUSION 

This study was aimed at developing an understanding of the sympathetic response of children with 

ASD in the presence of a stressor. The EDA response datasets were acquired from two groups G1 and G2, 

where, G1 included 55 normal children and G2 included 35 children with ASD. The obtained results of this 

study highlight that EDA response is a significant indicator of distress in the case of G1. However, in the 

case of G2, the results show an atypical ANS response in the presence of a stressor, hence, making the EDA 

response an insignificant distress marker for children with ASD. This study found a hypoactive sympathetic 

response of G2 as opposed to the hyperactive response, which was suggested in previous research.  

In addition to that, the SVM classifier used for classifying EDA response signals of both groups highlighted 

that the LF kernel is more suitable for physiological applications when compared to the RBF function as 

better accuracy of 75% was achieved by LF. Further research is required to be conducted in this area with a 

wider dataset. Moreover, along with the EDA response signal, other physiological signals such as heart rate,  
and temperature also need to be scrutinized. Also, more complex classification algorithms need to be used for 

achieving better accuracy. 
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