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ABSTRACT A few decades ago, the idea of a car driving without human assistance was something
inconceivable. With the advent of deep learning-based machine learning in artificial intelligence, this
imaginary idea has become part of our life. Like in other fields, these technological revolutions have brought
drastic changes to the field of automated driving systems. The autonomous vehicle is in the transition state
between level 3 and level 4 of automation, but many mysteries are still waiting to be solved. Understanding
the environment as precisely as a human driver is still far in the future. To attain human perception requires
the capturing of extensive surrounding information that depends on the onboard sensors installed on the
vehicle. Because the recent autonomous vehicle is equipped with several sensors, it captures surrounding
information in diverse forms. Combining these multi-domain data with sensor fusion is the open area of
research that is considered in this paper. Along with sensor fusion, another area of prime importance that is
necessary to be explored is the prediction of pedestrian intentions. Though the study of the prediction of a
pedestrian’s intentions started approximately fifteen years ago, most of the research is based on detection
rather than intention. Furthermore, this paper also discusses related research in the field of prediction of the
pedestrian’s intentions. At the end of the article, this review paper includes open questions, challenges, and
proposed solutions.

INDEX TERMS Advanced driver assistance system, deep learning, pedestrian intention prediction, sensor,
sensor fusion.

NOMENCLATURE
ACC Adaptive cruise control
ADAS Advanced driver-assistance systems
ADS Automated driving systems
AEB Automatic emergency braking
AI Artificial Intelligence
AP everywhere Autopilot on everywhere
AP Highway Autopilot on highway
AV Autonomous vehicle
CNN Convolutional neural network
DARPA Defence advanced research projects agency
DL Deep learning

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Chen.

DM Driver monitoring
DMM Dynamical motion modelling
DMM Dynamical motion modelling
GNSS Global navigation satellite system
HOG Histogram of oriented gradients tutorial
IMU Inertial measurement unit
IRTAD International traffic safety data and analysis

group
IRTAD international traffic safety data and analysis

group
SAE Society of automotive engineers
LDWS Lane departure warning system
LIDAR Light detection and ranging
LKA Lane keep assistance
LRR Long-range radars
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PA Park assistance
PBM Planning-based models
PDM Balanced Gaussian process dynamical models
PIP Pedestrian intention predication
RADAR Radio detection and ranging
SLDS Switching linear dynamic system
SRR Short-range radars
SVM Space vector machine
TJA Traffic jam assistance
V2I Vehicle to Infrastructure
V2V Vehicle to vehicle
VRU Vulnerable road user

I. INTRODUCTION
According to the 2019 annual report [1] of the Interna-
tional Traffic Safety Data and Analysis Group (IRTAD),
over 1.3 million people die annually and ten million
people are seriously injured due to accidents. More than
fifty percent of those injured are pedestrians, cyclists,
and motorcycle users [2]. These statistics indicate that
strong measures are required to control such accidents.
In the context of autonomous vehicle technology, minimizing
these accident rates is one of the prime objectives. How-
ever, there are many challenges in making this technology
acceptable globally. The impact of technology advancement
brought investors and automobile manufacturers into the
field of autonomous vehicles. Current investment indicates
that by 2050, the autonomous vehicle industry will reach
$800 billion. Due to this expected growth, others in addition
to automobile manufacturers, government agencies, univer-
sities, and academic research centres are devoting their full
resources. Kettering University, North Carolina A&TUniver-
sity, Michigan State University, and the University of Toronto
are preparing for an upcoming competition that will be held
in the coming years [3]. Targets of this competition involve
navigation of the automated driving mode in a dense urban
environment.

The journey of autonomous vehicles (AVs) has continued
for approximately thirty years now. In 1986, a project named
PROMETHEUS, considered the first-ever autonomous vehi-
cle project, started. Thirteen automobile vehicle manufactur-
ers as well as nineteen universities and academic research
centres were involved in this project [4]. In the US, the first
AV-based project was started in 1988 under the name Navlab
Thorpe [5] by Carnegie Mellon University. Following this
project, in 1996, Japan formed the Advanced Cruise-Assist
Highway System Research Association. Among the compe-
titions, the most prominent is the DARPA Grand Challenge
starting in 2004. The first competition was held in 2004,
and the completion prize money offered was $1 million for
the team that first finished a 150-mile route and crossed the
California-Nevada border. In 2005, the second round of the
DARPA competition was organized. Five vehicles completed
the route. After two years, the third competition challenge,

popularly known as the Urban Challenge, was held in Cali-
fornia. The competition route was 96 km.

Recent autonomous vehicle competitions include the Auto
Drive challenge competition, specially targeted for aca-
demics, which began in 2018 [3]. Starting in 2018, two
successful competitions have been completed. Future com-
petitions are planned for October 2020. The focus will be
on urban driving conditions to improve vision and sensing
algorithms.

Automobile giants have revised their budgets, trained their
employees and formed alliances with software computing
companies. More than 40 companies have been listed as
developing autonomous vehicles [6]. BMW together with
Daimler has allied with Intel Corporation. They are planning
to build BMW iNEXT, which will be an open standard-based
platform, by 2021. Audi, considered the first company to
deploy hands-free autonomous vehicles, already has planned
to spend $16B to put autonomous vehicles on the road
by 2023.

The autonomous vehicle is also called an intelligent vehicle
because of its capability to perceive the surrounding envi-
ronment and, based on this perception, to take appropriate
action. This sensing of environmental conditions is one of
the prime steps in the field of automated driving systems that
are needed to observe all possible aspects of human brains
to reach this perception level. The typical framework of the
autonomous vehicle consists of five components: Perception,
Localization and Mapping, Path Planning, Decision Making,
and Vehicle Controlling. Perception plays a role exactly like
human sensing from eyes tomonitor the environment and per-
ceive data from the sensor. For these sensing purposes, several
sensors are required to collect surrounding data. Based on the
data received, localization of vehicles locally and globally
is the second step that is designated the Localization and
Mapping step. Path Planning is the third step to determine a
route based on data received from the sensors. The fourth step
(DecisionMaking) calculates the best possible route based on
environmental data, current vehicle conditions, and all possi-
ble available paths. In the end, Vehicle Control is responsible
for implementing this decision generated from the Decision
Making block that can be a change of lane action, slowing
down near a pedestrian crosswalk, stopping on a red signal,
etc. Figure 1 portrays the framework of an intelligent vehicle
portfolio. AV perceives surrounding information, and based
on the perceived data and local position, further actions will
be determined.

Environmental perception is considered the first and fore-
most component in the involvement of autonomous vehi-
cles and includes road structure, lane on the road, traffic
signs, traffic signals, Vehicle-to-Vehicle (V2V) communi-
cation, infrastructure presence, observations of a vulnerable
road user, etc.

Figure 2 indicates potential research in these areas [7].
Several research studies and algorithms have been proposed
in areas such as localization and mapping and lane and road
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FIGURE 1. A typical framework of an autonomous vehicle process.

FIGURE 2. The number of publications in the Web of Science database.

detection, but areas such as sensor fusion and prediction of
pedestrian intentions are still being explored.

Methods and algorithms that have been proposed pre-
viously are still limited to factors such as specific areas
or within certain premises and campuses, under uniform
weather conditions because algorithms are trained and tested
in only sunny weather, etc. Factors such as regional climate
variations, the impact of social variation, and cultural norms
are not considered or not given enough importance in stud-
ies. The implementation of robust algorithms is not possible
without considering these elements.

This paper provides a comprehensive literature review in
two areas of AV and discusses sensor technology, the output
forms, algorithms, and research related to sensor fusion. This
paper also covers one of the most important aspects of AV,
which is the interaction of AVs with pedestrians. To minimize
road accidents by AVs, intelligent algorithms must reach the
extent of human understanding capabilities. Special consid-
eration is given to recent studies undertaken in the estimation
of pedestrian intentions based on state-of-the-art techniques,
especially research work in deep learning (DL). Finally,
areas of improvement, unexplored and less explored areas are
dug out, and their proposed remedial solution is suggested.

This paper no doubt will provide a comprehensive review
with upcoming trends and provide a quick guide to
researchers working in the field of sensor fusion and pedes-
trian intention.

For a fast insight, the paper is segmented into the following
sections: Section II covers smart sensors currently used in
AVs, their strengths, limitations and data forms. Section III
describes sensor fusion techniques. Section IV gives cover-
age to intelligent algorithms related to pedestrian intentions.
Finally, the paper is concluded in Section V.

II. SENSORS IN AV
Sensors function as a source of data collection from the
surrounding environment in an AV. These data are then sent
for further intensive processing using installed computing
devices. If data are representing a true and accurate represen-
tation of the surroundings, then correct action is possible [8].
Errors or missing measurements in collecting data may lead
to an irremediable loss. Driver assistance facilities depend
wholly upon sensors that have been installed on the AV.
Table 1 shows the level of automation with a sensor installed
and driving assistance facilities. Each sensor extracts sur-
rounding information that can be used for exploring environ-
mental perception in different domains of the study, and this
information is summarized in Table 2. Therefore, automobile
manufacturers have been applying combinations of sensors.
A brief historical application of sensors in commercial and
research vehicles can be seen in Table 3. The coming section
features elaborate application of these sensors in the field of
AVs, as well as their limitations and drawbacks.

A. CAMERA
A camera is one of the basic sensors used in an autonomous
vehicle, to accurately identify positions of objects around
it. A variety of technologies in cameras can be classified
based on coordinate systems or brightness level variation.
For the operation of an autonomous vehicle under dynamic
conditions, it is required to deploy several types of cameras as
shown in Table 2. For example, under low visibility, cameras
with dynamic brightness levels work more efficiently than
other cameras. In recent AV technology, several different
types of cameras are installed. In the subsection, some com-
mon types of cameras used in current autonomous vehicles
are briefly discussed.

1) MONOCULAR CAMERA/MC
The 2D-camera produces the target object image effectively
as a flat two-dimensional plane view. The 2D-image does
not provide any height information at all - there are X
and Y data, but no Z-axis depth of field data. Images pro-
duced with different viewpoints create completely differ-
ent contours, causing a machine vision to have confined
class in applications where information about the shape is
critical to performing a task. Currently, in the advanced
driver assistance system (ADAS), the monocular camera is
used for blind spots, sideways motion, parking assistance,
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TABLE 1. Levels of automation in possible sensors, driving facility [9].

lane recognition for keeping in the lane and crosswalk
recognition. 2D-cameras are smaller, cheaper, and easier
to install, and calibration can be performed easily. Precise
object detection and incorrect vertical distance are among
the major problems encountered when using a monocular
camera.

2) STEREO CAMERA/SC
Contrary to the 2D-camera, the 3D-camera no longer pro-
duces a flat picture. In three-dimensional point clouds of
precise coordinates, the position of every pixel in space

is known. The 3D-camera simultaneously provides X-, Y-
and Z-plane data as well as the respective rotational informa-
tion. Three-dimensional recognition of the running environ-
ment of the vehicle is becoming important to recognize the
environment. Therefore, the knowledge of the depth informa-
tion of the object is required. The 3D-camera can extract in-
depth information. Static Object Detection such as a traffic
sign, traffic light, and lane detection together with dynamic
information can be obtained accurately. A difficult calibration
process and computationally complex algorithms are required
for object detection and recognition.
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TABLE 2. Sensor performance invariant fields [10], [11].

3) INFRARED CAMERA/IR
The infrared camera provides the complete and reliable cov-
erage needed to make AVs safe and functional in any envi-
ronment at any time in day or night. The IR camera senses
radiated signals generated from target objects. As it scans
above visible light, the IR camera may detect objects that
may not be perceptible to any Camera, Radar, or Lidar.
Veoneer, the Swedish autonomous vehicle manufacturer, has
been awarded a contract to design the first IR camera for level
automation [30].

4) EVENT CAMERA/EC
Event cameras are sensors that are bio-inspired and operate
drastically differently from traditional cameras. Rather than
capturing images at a fixed rate, they asynchronously mea-
sure changes in brightness per pixel, leading to a stream of
events encoding the time, location, and sign of the changes in
brightness. Event cameras have exceptional properties when
compared with traditional cameras: very high dynamic range,
low power consumption, and high time resolution. However,
since the output consists of a series of asynchronous events
rather than individual intensity images, a conventional vision
algorithm cannot be applied, so new deep learning-based
dynamic algorithms are needed [31].

B. RADIO DETECTION AND RANGING/RADAR
Radar-based radio wave detection systems have been used
for decades to accurately calculate the location, speed,

and direction of aircraft, warships, and other objects in
motion. In the field of AVs, advanced cruise control (ACC)
and automatic emergency braking (AEB) are the appli-
cation areas of radar. Radar works efficiently in dark,
rainy, or even foggy weather and is nearly impervious
to adverse weather conditions [32]. Figure 3 shows a
clear picture of pedestrian recognition while using radio
beams [33].

• RADAR GRADING

To fully reach human perception, multiple types of radar are
required to be deployed in an autonomous vehicle. The com-
bination of these multiple types of radar provides precious
statistics for superior driver assistance structures occurrence
range versus long-range radar coverage [34].

• Short-Range Radar/SRR

SRRs use the 24-GHz frequency and are used for short-
range applications such as blind-spot identification, park-
ing assistance, or detection of obstacles and avoidance of
collisions. With an operating range of up to 30 metres,
the radar sensor can be used to warn against unidentified
threats.

• Long-Range Radar/LRR

LRRs that use the 77-GHz (76-81-GHz) band provide
better accuracy and resolution in a smaller packet. They are
used to measure distance, speed of other vehicles and object
detection within a wider field of view such as cross-traffic
alert systems. Long-range applications require antennas that
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TABLE 3. Emergent progress in AV with intelligent sensors.

provide a higher resolution within a more limited range of
scanning. Long-range radar (LRR) systems provide ranges
between 80 m and 200 m or greater.

C. LIGHT DETECTION AND RANGING/LIDAR
Lidar uses invisible laser light to determine the distance to
objects. In autonomous vehicle technology, Lidar provides
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FIGURE 3. Pedestrian Detection using radio wave detection [33].

FIGURE 4. Comparison of SSR vs LRR [34].

the highest possible understanding of the traffic, road users
and potential hazards surrounding the vehicle. Lidar can
measure up to 100 m distance with an accuracy of 2 cm.
Lidar is also unaffected by adverse weather conditions such
as wind, rain, and snow, and could even be used in heavy snow
conditions to map inaccessible areas [35]. For understanding,
the images generated by Lidar, particularly for urban areas,
are displayed in Figure 5.

FIGURE 5. Typical Urban Area view generated by Lidar Sensor [36].

D. ULTRASONIC SENSORS/US
Ultrasonic sensors emit short high-frequency sound pulses.
These propagate at the speed of sound in the air. If they hit
an object, they are reflected as echo signals to the sensor,
which itself determines the distance to the target based on the
timespan between the signal being emitted and the echo being
received. In the ADAS, the ultrasonic sensor is commonly
used for parking in small parking spaces and emergency
braking at the low speed [37]. Figure 6 shows the workings
of an ultrasonic sensor in different electromagnetic spectrum
bands [38].

FIGURE 6. Ultrasonic sensor pulse generation [38].

The introduction summarized above specifies the appli-
cation of these sensors in capturing surrounding data. After
obtaining this large amount of data, combining these multiple
domain data to extract desired information is the next process,
designated as sensor fusion, explained next.

III. SENSOR FUSION
According to a report from theNational Transportation Safety
Board about an Uber crash [39], the vehicle detected the
pedestrian six seconds before the accident. The autonomous
driving system classified the pedestrian as an unidentified
object, first as a car and then as a bicycle. In other words,
the vehicle sensors detected the victim, but the software
wrongly determined that it was not in danger and that no
evasive action was required. The aforementioned case study
reveals that there are still areas of improvement in the per-
ception of the environment under different conditions, road
users and surroundings. The potential area includes more
accurate and precise sensors for a better understanding of
the surroundings and, importantly, combining these different
multidomain data obtained from various sensors is the evo-
lution of sensor fusion. Figure 7 portrays multiple domain
data generated from sensors on the AV that are processed
using AI-based algorithms and perceiving the environment.
This whole process is like human perception using the human
sensory system.

FIGURE 7. Sensor fusion process cycle.

Sensor fusion is a critical element in developing the
‘‘brain’’ of an autonomous vehicle, ensuring intelligent,
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accurate and timely decisions based on the actions of other
participants in traffic.

A. PREVIOUS STUDIES
A remarkable model was presented in the Grand Cooperative
Driving Challenge [40]. The vehicle had installed cameras
and radar. The fusion of these sensors and the algorithm
generates an accurate path and trajectory planning. Strong
Vehicle toVehicle (V2V) communication and collision avoid-
ance was achieved by a sensor fusion algorithm. Li [41]
presented a model in which camera and Lidar fusion were
used. Fusion results in a real-time drivable region under
different road conditions. Lane detection for a structured
road was obtained successfully. However, the application was
not utilized in the densely urban region. In the paper by
Omar et al. [42], the authors applied the fusion model, using
Cameras, Radar and Lidar. The fusion algorithm was applied
in detection, classification, and tracking in urban areas and
highways. However, from fusion, the algorithm obtained bet-
ter results than the conventional operation in classification
models, but misclassification was still considerably high.
Adverse weather conditions constitute a big challenge even
in the transition state of level II and level III automation.
Lee [43] presented a simple model that can detect road and
lane in adverse weather conditions. The sensing system con-
sists of Cameras and Lidar. The model’s weakness includes
the detection of curves and sometimes lane detection issues.
Chen [44] used a Lidar point cloud and RGB images. The
proposed model is based on detecting 3D objects in road
scenes. The results were compared with thestate of art 2D
algorithm, which obtained accurate 3D locations, size, and
orientation of objects.

De Silva [45] discussed issues related to fusion in his
research. The proposed method applied a Gaussian process
regression algorithm on Lidar with wide-angle camera data,
achieving better accuracy and precision in comparison with
resolution-matching algorithms. In another research paper,
the robust and precise localization algorithm model was pre-
sented byWan et al. [46]. They obtained an average accuracy
between 5-10 cm in location. The authors used GNSS, Lidar,
and IMU in their proposed model, and a Kalman filter was
applied to calculate uncertainty estimation. Caltagirone [47]
used fully convolutional neural networks in fusing Lidar
points of cloud and RGB images. The area of interest was
road detection in an urban area. Caltagirone obtained an accu-
racy of 96.03% in the urban road category. The results were
tested and evaluated on the KITTI road benchmark, though
the research was limited to specific road types. Shahian [48]
presented his model based on Fully Convolutional Neural
Network (FCNx), and a traditional Extended Kalman Fil-
ter (EKF) used the nonlinear state estimator method. The
model worked efficiently in environmental perception areas
such as obstacle detection, road segmentation, and tracking.
The researchers used a combination of camera, Lidar, and
radar. Table 4 summarizes the potential research in the field
of sensor fusion.

B. BARRIERS AND IMPEDIMENTS OF SENSOR FUSION
The overall research indicates achievements in the perception
of the environment, but reaching human perception is still far
away. Some of the challenges in sensor fusion include

• Multimodal sensor nature: Every sensor has its data
format, physical units, and differences in spatiotemporal
alignment. Processing and extracting desired informa-
tion from multimodal data is one of the open challenges.

• Data source uncertainty includes challenges such as
quantitation errors, noise filtering, calibration errors,
or loss of precision, inconsistent data, and missing val-
ues and differences in data source reliability.

• Cost reduction: For designing low-cost vehicles, it is
necessary to design reduced fusion boxes for easy place-
ment in the vehicle, which applies a limitation on the
fusion electronics board and proper cooling design con-
siderations.

• GPS spoofing attacks are also a continuous threat due to
the presence of smart sensors.

• The design of less complicated, low computational
power and more robust algorithms is still an open chal-
lenge in sensor fusion technology.

IV. PEDESTRIAN INTENTION PREDICTION/PIP
Knowing the intention of pedestrians is one of the criti-
cal aspects of the autonomous vehicle system. Even after
tremendous achievements in deep learning algorithms, pedes-
trian intention behaviour still has a big space for improve-
ment [51]–[54]. Understanding pedestrian activities and
behavioural prediction require that several factors be consid-
ered. Beyond human nature, factors such as demographics,
environmental conditions, cultural attributes and spatiotem-
poral factors play an important part in determining intention,
as displayed in Figure 8. To study pedestrian behaviour,
numerous approaches such as using observation of pedes-
trians [55], video recording [56], [57], image sensing [58],
simulations [59], [60], questionnaires [58], literature sur-
veys [59], [61] and conducting interviews [62] have been
adopted. Studies based on pedestrian behaviour can be clas-
sified into two broad stages: the first stage can be called
general pedestrian studies, and the other stage is in the context
of autonomous vehicle studies. General pedestrian studies
started in the first twenty years of the 20th century [63]. The
research was based on studies of pedestrian factors such as
the difference between pedestrian behaviour when walking
alone or in a group [64], pedestrian demographics [65], road
structure and pedestrian speed [63]. Summarizing, pedestrian
research in the early phase can be classified based on pedes-
trian and environmental factors. However, interaction with
vehicles was not extensively addressed during that period.
With an increase in the number of vehicles, accident rates
began to grow, and researchers and law enforcement analysts
started thinking about factors to minimize accident rates [63].
In the second era of pedestrian studies in the context of
the autonomous vehicle, researchers highlighted factors that
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TABLE 4. Literature survey in sensor fusion.

involve pedestrian intentions as in the general pedestrian
era [67]. The scholar Rothenbücher et al. [57] highly empha-
sized the importance of communication between pedestrians
and vehicles. Before pedestrian intention prediction, the ini-
tial research was based on the detection of pedestrians, which
can be assumed to be the primary stage of prediction of inten-
tions. After detecting pedestrians, tracking the pedestrian
by its pose or other means is necessary to avoid accidents.
Deep learning has been used and has obtained significant
results in estimation of pedestrian intentions. Two other
approaches, namely, dynamic motion modelling (DMM) and
Planning-basedModels (PBM), have been used for predicting
pedestrian intentions. A discussion of these approaches can
be found in the next subsection.

A. DYNAMIC MOTION MODELLING/DMM
DMM is the general approach for the future location of
pedestrians based on motion trajectory. Position measure-
ments are obtained using a vision-based pedestrian detector.
Schneider [68] used a Bayesian filter, a type of extended
Kalman filter for predicting pedestrian trajectory. The results
were tested for four different pedestrian dynamics (namely,
starting, stopping, bending and crossing). Special care was
given to optimization parameters and sensormodelling. Quin-
tero [69] applied Balanced Gaussian Process Dynamic Mod-
els (B-GPDMs) and a Naïve-Bayes classifier to predict and
pose pedestrian locations and classify intentions within only
one second. Both classifiers were combined to increase
the accuracy of the action hierarchy. An accurate path
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FIGURE 8. Factors involving a pedestrian and pedestrian-to-vehicle
communication.

prediction with a mean error of 24.4 cm for walking trajec-
tories was obtained, with 26.67 cm and 37.36 cm for stop-
ping and starting trajectories. Flohr [70] proposed a model
that integrates the pedestrian situational awareness, situation
criticality and spatial structure of the area as latent states with
a switching linear dynamic system (SLDS) to predict changes
in pedestrian dynamics. By using pedestrian head orientation,
situational awareness is determined. The expected point of
closest approach and spatial layout is considered for estimat-
ing situation criticality.

B. PLANNING-BASED MODELS/PBMS
In the planning-based model, the pedestrian’s future move-
ments are not based explicitly on the intentions of the targets.
Instead, they assume that the target (i.e., the pedestrian) has
the intention of reaching a specific destination. Kitani [71]
proposed future prediction- and forecasting-based applica-
tion of optimal inverse control over computer vision. The
proposed model also considered factors such as continu-
ous activity analysis for improving and obtaining a more
accurate result. Ziebart [72] proposed a model. Results
were obtained from testing the model in a close environ-
ment by using a maximum entropy inverse optimal con-
trol method for goal-directed trajectories of pedestrians.
This approach proved to be successful in obstacle-sensitive
areas. The Karasev [73] model was based on jump-Markov
processes to model pedestrian behaviour and predict pedes-
trian long-term planning trajectories by presuming pedes-
trian status using a Rao-Blackwellized filter and planning
accordingly to a stochastic strategy that represents individual
preferences to achieve the same destination. Quintero [74]
used three-dimensional body actions and behaviour to predict
the destination path of the pedestrian. The authors proposed
Gaussian Process Dynamic-based models for this purpose
and obtained accuracy up to 7 cm for path prediction, 20 cm
in walking trajectories. Angelova [75] applied a deep convo-
lutional neural network (CNN) and used proxy labels during

the training process. He found that proxy label-based learning
gave more accuracy and stability in results. The output is
defined by stop/go logic for pedestrian or cyclist behaviour.

C. DEEP LEARNING APPROACH/DL
A data-driven approach has proved itself a more efficient
and best-estimating intention approach for a pedestrian when
applied and tested with datasets. The data-driven approach
evaluates by using different performance matrices such as
bounding box misses, accident rates, and trajectory error.
Based on the impressive outcomes, presenting an in-depth
literature review of pedestrian intention estimation and pre-
dictions in upcoming lines is summarized in Table 5 for a
quick overview.

D. PREVIOUS CONTRIBUTIONS
Fang [76] proposed CNN pose-based estimation and a Sup-
port Vector Machine (SVM) for classification purposes. The
authors proposed that pose estimation can be used to deter-
mine the intention of a pedestrian with simple monocular
images without using exhaustive algorithms and datasets.
A modelled human 2D skeleton structure under different
body poses such as bending or turning to stop is under-
studied. Sebastian [77] proposed a model that generates
silhouette-form vehicles equipped with cameras used to
detect pedestrian intentions applied to a Motion Contour
Image-based HOG-like descriptor (MCHOG) with an SVM
classifier for image detection and classification. The authors
obtained stopping intentions from 125 - 500 ms before stand-
ing with an accuracy range of 80% to 100%. Völz1 [78]
proposed Lidar-based images and applied Long-Short-
Term-Memory network-based algorithms. The approaches
were validated with real-world trajectories and obtained
10-20% accuracy compared with previous methods. Pedes-
trian prediction analyzed and predicted near crosswalks was
noticed. Rehder [79] proposed that instead of complete
body part evaluation, even head orientation can be applied
to predict intention. Head Detection is performed by the
HOG/SVM cascade classifier while orientation is performed
by the logistic regression model. Datasets were built for
training and testing purposes. Saleh [80] suggested a novel
end-to-end data- a data-driven method for the long-term pre-
diction of VRUs, such as pedestrians in urban traffic, based
solely on their trajectories.

The problem of intent prediction was conceived as a
problem of time series prediction by merely observing
a short-window sequence of pedestrian motion trajectory.
A forecast of their future lateral positions was made up to
4 seconds ahead. The authors obtained 1.72% more average
orientation similarity than other models. Ovidiu [81] pro-
posed a model that was based on Retina net-based detection
and classification of pedestrians.

The calculation of timing to cross a road is estimated by
a recurrent neural network (LSTM). The JAAD dataset is
used for testing and validation purposes. Pedestrian detection
performance was to be more accurate than action recognition
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TABLE 5. Representative work in pedestrian intention prediction.

in comparison with state of art methods. Karam [83] used a
depth camera and applied a convolution neural network to
classify different pedestrian orientations. Three body land-
marks (shoulder, neck, and face) are used to determine ori-
entation. Overall, 85% accuracy was claimed for different
pedestrian actions.

Although researchers are still currently applying these
three intention predictionmodels, DMMand PMMhave their
limitations such as that DMM assumes that all trajectories
will have similar dynamics, which is not always the case and
finally leads to lower accuracy, especially for long-term pre-
diction. PBM presumes a final destination, which is difficult
to predict based on current actions. However, DL proved to be
more robust than DMM and PMM techniques. DL algorithms
such as RNN + LSTM were found to be more effective and
accurate in real-time unseen situations.

E. REMEDIAL ACTIONS WITH FUTURE OUTLOOK
Understanding the intentions of pedestrians exactly like
human drivers and responding accordingly is still far from
achievement. Reaching this level needs several factors to be
improved.

• Comprehensive studies based on different scenarios and
conditions are required to face all possible pedestrian
actions. Factors such as social norms, pedestrian demo-
graphics, group size, and pedestrian distance cannot be
neglected for true detection.

• The mode of communication between vehicle and
pedestrian plays an important role, although different
approaches and mechanisms have been adopted for test-
ing purposes.

• Standardization and exploration of stress-free pedes-
trian communication must be set by automation
organizations.

• Most of the current algorithms are based on the dynam-
ics of pedestrians. To reach human perception, such
algorithms should be designed to also consider the sur-
roundings of pedestrians.

• To date, the dataset used for testing purposes is
extremely limited. Public testing and validation of
large-scale datasets under different weather conditions
in different scenarios are required.

• A means of providing high algorithms and data security
is required, and failure or partial malfunction should be
indicated promptly.
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• The application of a robust standard algorithm is still
required, and the application of this algorithm should be
followed globally.

V. CONCLUSION
Real-time visible data from the environment obtained via
sensors is the source for an autonomous vehicle to decide
its manoeuvre. Extracting accurate information in every cir-
cumstance is possible when the AV is fully equipped with
smart sensors. Due to the practical barriers indicated in this
paper, two areas of AVs are explored. These areas have been
less explored in the previous research and can be verified
for further examination from Table 1. This paper addressed
the sensor technology: its current deployment, the merits and
limitations, and sensor shortcomings in different scenarios,
and most importantly, combining these multidomain data
are discussed. Many sensor fusion approaches have been
designed, but accuracy and intelligent algorithms with less
complexity have not been achieved to date. CNN algorithms
proved to be the most effective in sensor fusion over two
years. Furthermore, the second subject, which is compara-
tively less investigated, is the estimation of pedestrian inten-
tions. Towards this aim, different practical approaches have
been highlighted in this paper.
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