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ABSTRACT Microarray data play a huge role in recognizing a proper cancer diagnosis and classification.
In most microarray data set consist of thousands of genes, but the majority number of genes are irrelevant
to the diseases. An efficient algorithm for gene selection becomes important to deal with large microarray
data. The main challenge is to analyze and select the relevant genes with maximum classification accuracy.
Various algorithms were proposed for gene classification in previous studies, however, limited success was
succeeded due to the selection of many genes in the high-dimensional microarray data. This study proposed
and developed a hybrid multi-objective cuckoo search with evolutionary operators for gene selection.
Evolutionary operators that are used in this article were double mutation and single crossover operators. The
motivation behind this research is to improve the dimensions’ values and explorative search abilities. Multi-
objective cuckoo search with evolutionary operators employed the selection of informative genes among
the high-dimensional cancer microarray data. Experiments were conducted on seven publicly available and
high-dimensional cancer microarray data sets. These microarray data sets consist of approximately 2000 to
15000 genes. The results from the experiments concluded that the developed algorithm, multi-objective
cuckoo search with evolutionary operators outperforms cuckoo search and multi-objective cuckoo search
algorithms with a smaller number of selected significant genes.

INDEX TERMS Gene selection, cancer microarray data, cuckoo search, multi-objective, evolutionary
operators.

I. INTRODUCTION
Cancer research is one of the active research fields in the
medical areas and it has been ongoing for centuries. Research
for cancer causes involves many different types of disci-
plines. Concerning the investigation of causes and potential
treatment purposes, many biological microarray experiments
have been conducted as an initial step solely to gain more
information. Prompt identification of cancer is crucial since
it is usually more complex to treat patients in later stages.
Accurate prediction of cancer is significant in contributing
effective treatment for the patients [1]. However, there are dif-
ficulties in detecting cancer because of a large amount of gene
expression levels in the human body. Gene expression levels
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are known to have important keys to inscribe the fundamental
problems related to the cure and prevention of diseases [2].

Microarray technology is introduced to define the global
view of the cellular function of a gene by gene approaches.
In addition to it, microarray technology is used to measure
the gene expression’s activity from the complete genome
into one experiment [3]. Through microarray experiments,
the investigation of genetic mechanisms of cancer leads
toward discovering advanced drug designs in the medical
industry [4]. In recent years, microarrays experiments have
become famous because they held thousands of spots of dif-
ferent deoxyribonucleic acid (DNA) sequences and interro-
gate each gene in an organism. Microarray technology makes
this experiment possible and the data generated from the
experiments are enormous. These enormous amounts of data
give representations and will provide information based on
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computational methods that able to derive meaningful and
significant results from the experiment [5]. The scientific
tasks in microarray experiments involved analyzing microar-
ray gene expression data which include the identification
of co-expressed genes and sample discovery with similar
expression patterns that are highly discriminative for dis-
cerned biological samples. Analyzing gene expression data
from microarray technology is the current challenge encoun-
tered by researchers.

The tools that are used by the researchers to analyze large
quantities of data were machine learning and data mining.
In machine learning and data mining, classification is an
important task that can classify an instance into the corre-
sponding classes [6]. Each instance is described by features
sets and class labels. The input sets of features are the key
factor that influences the quality of the performance of a
classification algorithm [7]. If the features are relevant to the
class labels, the classifier able to generate a strong relation-
ship between them. However, in most scenarios, the relevancy
of features is often unknown and usually, the input data sets
have issues such as irrelevancy and redundancy that are not
useful during the knowledge discovery process [8]. Thus, this
can hinder the process of producing a positive classification.
The majority of real-world classification problems require
knowledge on relevant features and reduction of irrelevant
and redundant features can drastically reduce the size of data
of the learning algorithms.

One of the prominent solutions for dimensionality reduc-
tion is feature selection or also known as gene selection under
the context of this research. Gene selection is a process to
reduce the dimensionality of data to enhance the recognition
outcome. There are three mains steps for feature selection;
search procedure, evaluation function, and stopping criterion.
Along with the gene selection algorithm, other algorithms are
required to reduce the complexity in gene space and also to
identify the highly distinctive genes [9]. Due to the prolifer-
ation of high-dimensional features and data, it is difficult to
extract the right information.

High-dimensional microarray data sets are difficult to
interpret and interpretation of data is very important for the
treatment of patient conditions. From the initial studies of
dimensionalities, [10] found that the best test error can be
attained through a limited number of features that directly
affect the accuracy rates. In a large feature space, it is common
to have irrelevant and redundant genes concerning the class
labels. Integrality constraints such as irrelevant and redundant
features can affect the classification performances. Therefore,
this research study developed a gene selection algorithm to
counter all the mentioned drawbacks. This is to produce an
optimal feature space with significant genes that can produce
better classification performance accuracy.

Inspired by previous researchers, metaheuristics algo-
rithms are more suitable to optimize large and complex data.
Techniques comprised of meta-heuristic optimization has a
broad range from the process of a local search to learn-
ing processes. Metaheuristic by conducting them over the

search space thereby bringing out its best capabilities able to
obtain the best of best solutions [11]. Besides, metaheuris-
tic algorithms include an evolutionary algorithm (EA) and
swarm intelligence (SI) algorithms that becoming powerful
and strong methods for solving many tough problems. Thus,
this article is motivated to focus on the cuckoo search (CS)
as the metaheuristic algorithm in solving the existing bot-
tlenecks in a gene selection process. This is because CS is
known for its efficiency as a swarm-intelligence based algo-
rithm and instead of building a new metaheuristic algorithm,
improvising the existing algorithm allows the efficiency of an
algorithm to be enhanced.

The remainder of this article is organized as follows:
Section II, related works based on gene selection using
microarray data sets are discussed. The researchmethodology
is provided in Section III. Section IV described the details of
the gene selection algorithm, while Section V discussed the
experimental design, following Section V1 until IX discusses
the results and findings in-detailed. Finally, Section X pre-
sented the conclusion.

II. RELATED WORKS
Recently metaheuristic algorithms are famous in handling
gene selection problems and the performance of the proposed
techniques has been proved to show better performances.
Even though there are many methods have been proposed for
gene selection, however, most of them suffer from stagnation
issues in local optima and high computational cost, thus,
this cannot guarantee the optimality and relevancy of the
identified genes from the use of metaheuristic algorithms in
large search space [12], [13].

The authors in [14] present a qualitative mutual informa-
tion (QMI) method for feature selection. Random forest’s
importance score is calculated in QMI, whereby these scores
separate the correlated features and reduce the redundancies
between genes. Nevertheless, to segregate the genes in the
data which are irrelevant, the class label mutual information
(MI) is utilized. MI helps to gain of each feature with the
class variable. However, using a random forest to calculate
the preference score is time-consuming and over-fitting. The
developed method by [14] will be biased to certain features
due to existing noise in the data.

Next, in [15] proposed an enhanced cuckoo search (ECS)
and compared it with cuckoo search and harmony search for
the classification of mammogram image-based breast can-
cer data sets. ECS is based on egg-laying behavior and the
existence of multiple eggs in the nest. ECS handles a single
constraint by enhancing the number of eggs as solutions in
the scenario. However, there are more than one constraint
need to be improved in cuckoo search so that the algorithm
functions more effectively. But, the article [15] showed the
credibility of the cuckoo search only as a feature algorithm
with minimum features, it has performed with an average
accuracy of 99.13% of the data using a kNN classifier.

The most popular and common algorithm for feature
selection is particle swarm optimization (PSO) and recently,
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it has been proposed by [16]–[18] for microarray data. Refer-
ence [16] used PSO to gain best-fit features. PSO explores
the feature space and the reduced number of features to
select significant features in breast cancer data. While [19]
used Pearson’s correlation coefficient (PCC) integrated with
binary particle swarm optimization (BPSO) and compared
with PCC and genetic algorithm (GA). Reference [17] proved
BPSO has a better performance compared to GA for feature
selection. Here, BPSO is introduced for that research in order
to handle discrete variables.

While the authors in [18] used multi-population particle
swarm optimization (MPSO) for feature selection to identify
significant genes for two publicly available microarray data
sets. MPSO is developed to enhance the search compared to
general PSO. This is due to the drawback in PSO that tends
to fall into local optima trap and incapability to explore for
more assorted solutions.

Other than PSO, [19] proposed a multi-objective artificial
bee colony algorithm to select the best genes for continuous
optimization problems in a binary solution space. An artificial
bee colony (ABC) imitates the bees’ behavior and the bees are
to maximize the number of nectar sources, while, minimizing
the distance of the sources. As discussed by [19], feature
selection is defined as amulti-objective optimization problem
and increases the accuracy rates through multi-objective opti-
mization. From [20] comparing ABC and integrated cuckoo
search (CS) and ABC (CS-ABC), CS-ABC outperformed
ABC with better accuracy results. The disadvantage in ABC
is it suffers from premature convergence, thus, CS assist
ABC to replace the not-so-good solutions into good solutions.
Other than that, [21] has used two archive guided multi-
objective artificial bee colony algorithm for cost-sensitive
feature selection. Two archives which are leader and external
archives are utilized to enhance the search capability of the
algorithm. However, comparing to CS from this research with
a bee colony, CS has a larger search ability due to its nature
itself by focusing on the survival of best eggs or solutions.
Thus, by having two archives using the bee colony computa-
tionally it will be a complex task.

The next recent research that focused on multi-objective
criteria for feature selection was research by [22]. Ref-
erence [22] has proposed a binary differential evolution
algorithm with a self-learning strategy to solve multi-
objective feature selection problems. One of the research
ideas by [22] is implementing three operators for multi-
objective feature selection which were mutation operator,
one-bit purifying search operator (OPS), and non-dominated
sorting operator using binary differential evolution with self-
learning. However, a non-dominated sorting operator is an
element in Pareto archive to handle crowding distance which
is also utilized in this research. Therefore, a drawback in [22]
is required implementation of Pareto optimal and it does not
require an additional operator such as OPS. While OPS is an
operator with self-learning capability is a great advantage for
future work in feature selection methods.

The advantage of CS is due to its global search using Lévy
flights rather than standard randomwalks. Nevertheless, Lévy
flights have infinite mean and variances whereby CS able to
explore the search space more efficiently compared to other
algorithms. The reason CS is implemented in different fields
is due to its simple structure. Many researchers attempted to
improve their efficiency to obtain a better solution to different
problems. Reference [23] inspired to utilize multi-objective
cuckoo search for gene selection instead only for optimiza-
tion. This research would like to choose multi-objective opti-
mization with cuckoo search (MOCS) because this research
article has more than one objective to be achieved during the
selection of best genes in cancer microarray data.

Furthermore, the idea of using evolutionary operators (EO)
for gene selection with a metaheuristic algorithm emerged
based on researches [24], [25]. These researches have high-
lighted the benefits of the classic operators that can assist in
classification processes. EO such as crossover and mutation
operators are the basis of the genetic algorithm’s evolution.
Crossover probabilistic selects two chromosomes from the
current population-based on fitness values and combines to
produce offspring [26]. While mutation operator ensures the
population against permanent fixation by flipping the value
of the bits of selected chromosomes in randomly selection
positions [26]. The application of such operators in a search
space able to improve the classification accuracy rates and
speed up the process of searching [24]. Therefore, the capa-
bility of EO is an element that is unavoidable because it can
boost the advantages in MOCS and can select the best genes.
The functionalities of mutation and crossover operators are
discussed as follows [27]:

(a) Mutation operator: Creates a new solution through one
and only one evolving population member in each
mutation event. The mutation operator randomly mod-
ifies one or more genes of a chromosome with a given
probability with increasing the structural diversity of
the diversity.

(b) Crossover operator: Involves more than one evolving
member (parents) in creating a new solution (child)
in each crossover event. The crossover combines the
genes of two or more parents to produce a better child.
This idea is based on the exchange of information
between good chromosomes will generate even better
child.

III. PROBLEM FORMULATION
Metaheuristic algorithms are nature-inspired and act as a
strong tool in solving various problems. Cuckoo search (CS)
is developed based on cuckoo birds’ reproduction. Basi-
cally, the cuckoo breeding behavior is based on brood par-
asitism whereby the cuckoo lay one or many eggs in other
birds’ or hosts’ nests. The aim of these cuckoo birds to do
so is to ensure the continuity of their generation by leaving
the host birds guided by their natural instinct of breed, hatch,
and provide food to the baby cuckoos [28]. Cuckoos are smart
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because to increase the chance of survival of its eggs, it gob-
bles an egg in the host’s nests. Unfortunately, if the host of the
nest identified that there is an alien egg in the nest, the host
might throw these alien eggs or abandon the current nest and
build a new nest [29], [30]. Hence, this imitation reduces
the probability of cuckoo’s eggs being thrown or abandoned.
This might increase the survival and reproductive capacity of
cuckoo birds. There are three idealized rules for CS [31]:

(a) A cuckoo lays one egg at a time and dumps its egg
randomly chosen nest.

(b) The best nest with the high quality of eggs will carry
over to the next generations.

(c) The availability number of host nests is secured and the
egg laid by the cuckoo is detected with the probability,
pa ∈ [1, 0]. While the host bird either throw the
egg or abandon the nest and build a new nest. The
final assumption can be approximated by the fraction
pa of the n nests are replaced with new nests with
randomized results.

The final rule can be approximated by replacing a fraction
pa of n hosts nests with new random nests (solutions). The
fitness of a solution can be proportional to the values of
objective functions. The simple representation of CS for this
research, eggs in a nest acts as the solution and the cuckoo
eggs represent the new solution. Furthermore, the objective
here is to utilize the new and better solutions (cuckoo’s eggs)
to replace the poor solution in the nests. The algorithm might
be complicated if a nest has different eggs represent a set of
results. Algorithm 1 shows the basic procedures of CS [31]:

There are two main important elements have been imple-
mented in the development of CS which are as follows:

(a) The brood parasitism of cuckoo.
(b) The breeding behavior of cuckoos with the Lévy

flights’ characteristics.
The typical behavior of Lévy flights was demonstrated

by many researchers, for example, Lévy flights have been
used in the firefly algorithm [32], particle swarm optimization
(PSO) [33], and movement of hunters [30]. Lévy flight plays
an important role in CS due to the pattern of free search. Dur-
ing the generation of new solutions, x t+1 and cuckoo i, a Lévy
flight is performed [34]:

x(t+1)i = xti+ ∝ ⊕Levy(λ) (1)

where α > 0 is related to the scales of interest’s problems
and ⊕ is the entrywise multiplication. In most of the cases,
the researcher suggested using, α = 1.
Equation (1) is essential for a random walk and it is a

Markov Chain product that depicts the next location depends
on the current location [35]. ⊕ is the product of entrywise
whereby more efficient in exploring the search space (step
length longer in the long run) via the Lévy flight. The random
walk is provided by the Lévy flight while the length of
random steps is drawn from a Lévy distribution [29], [36].
However, there are bottlenecks in CS. Therefore, the draw-
back in CS has been presented in Figure 1 adapted from [30].

Algorithm 1 Original Cuckoo Search Algorithm
Begin
Objective function f(x), x = (xi, . . . ,xd)T

Generate an initial population of n
host nests, xi(i = 1,2, . . . ,n)
while (t < MaxGeneration) or
(stop criterion)
Get a cuckoo randomly by Lévy
flights
Evaluate its quality/fitness Fi
Choose a nest among n (say j)
randomly
if (Fi > Fj)
ith the new solution
end if
A fraction (pa) of worse nests
are abandoned and new
are built;
Keep the nests with best
quality solutions;
Rank the solution and find
the current best;

end while
Post process results and
visualization

End

FIGURE 1. Drawbacks in cuckoo search.

The drawbacks in CS are easily trapped in local optima and
difficult to obtain ideal search results because hard to adapt
based on the case study [37]. Trapping in local optimum is
falling into an extreme point in the iterative search process
and in sudden it ends the operation. While the adaptability
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issues are due to fixed parameter values which might lower
the chance to get an optimal solution. In order to overcome the
drawbacks, the next section discussed the proposed solution
for gene selection.

IV. HYBRID MULTI-OBJECTIVE CUCKOO
SEARCH-EVOLUTIONARY OPERATORS (MOCS-EO)
In this section, this article will present the details of the
algorithms. A single objective CS would like to improve per-
formance measures such as accuracy rates, however, in this
research, two main contradict objectives to be achieved using
cuckoo search. The multi-objectives that being achieved
through the cuckoo search were as follows:

(a) Maximize the classification measures to improve the
decision-making using cancer microarray data.

(b) Minimize the number of genes to improve the rele-
vancy and reduce the redundancy of cancer microarray
data.

Gene selection (GS) is the possible set of genes in a data
and ψ is the set of objective functions that are required for
multi-objective optimization. While optimal refers to either
maximum or minimum needs that depend on the objective’s
nature.

Optimize ψ(GS) = Optimal|g_1(GS), g_2(GS) . . . ,

g_N (GS)| (2)

Thus, the following equations refer to objectives that deal
with maximization and minimization problems,

Maximize ψ(GS) = Max|g1(GS),g2(GS) . . . ,gN (GS)| (3)

Minimize ψ(GS) = Min|g1(GS),g2(GS) . . . ,gN (GS)| (4)

It is difficult to optimize one objective without affecting
the other objective. Therefore, Pareto optimal solution is used
as the set of the optimum solution with varying degrees
of objective values. The aim here is to identify the Pareto
optimal that able to include all solutions in the search space
and also comprises the non-dominating solutions within the
search space. In this scenario, the stated two objectives are
considered equally important even though it contradict each
other.

Multi-objective cuckoo search (MOCS) is required to
sort the population based on the ascending level of non-
domination. This non-domination process repeats until all
solutions that are chosen are best and sorted. The crowding
distance metric is an important component of this algorithm.
The aim behind using the crowding distance metric is to bring
a set of diverse solutions. Crowding distance is the density
estimator for the solutions in a population. The crowding
distance of a solution is formulated based on i+ 1 and i-1 (the
average distance of each solution along with each objective).

To deal with multi-objective optimization, the first step is
the parameter settings. ForMOCS, there are twomain param-
eters to be initialized which are population size, N , and a
fraction, pa of the worst nests to replaces or might be rejected.
In the second step, a swarm of N host nests denotes as the

possible solutions. Thus to provide good initial solutions,
this research utilized Pareto optimal. The complete algorithm
of multi-objective cuckoo search with evolutionary operators
(MOCS-EO) algorithms is as shown in Algorithm 2.

Algorithm 2 Proposed MOCS-EO Algorithm
INPUT: Multi-objective Cuckoo Search
Parameters
OUTPUT: Selected significant genes
Begin
Objective function f(x), x = x1, . . . ,xd)T

Generate initial population of n host
nests with m eggs using mutation
operator (Pm)
while (t < MaxGeneration) or (stop the
criterion)

for each nest
Get a cuckoo randomly (assume i)
by Lévy flights
Check the eggs
if eggs = cuckoo_eggs
Create eggs using crossover
(Pc) with the best eggs in
the nest and choose the
best

else
if eggs = cuckoo_eggs,
host_eggs
Create eggs with mutation
operator (Pm2) for any
cuckoo eggs in the nest and
choose the best one among
them

else
Create eggs randomly

end if
Construct the Pareto optimal
Initialize the cuckoo (assume i)
randomly by Lévy flights
Evaluate the fitness, Fi
Choose an egg with the worst
solution in the nest (assume,j)
if (Fi > Fj)

Replace j by the new
solution i

end if
Abandon or kill the pa of worst
nests
Update the Pareto archive
Build new nests at new locations
using Lévy flights
Evaluate the new population

Repeat Until
Obtain best solutions

End
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Algorithm 3 Pareto Optimal Archive
INPUT: previousPopulation, list with
eggs as the genes from gene ranking
OUTPUT: newPopulation, list with
updated position of genes
Begin
N = sizeof(previousPopulation)
Fitness, F(xi) and Crowding distance,
C(xi) for N, host nests,
xi = (i = 1,2, . . . ,N)
previousPopulation towards
newPopulation
for i = 1: N do
for j = 1: N do
if (F(xi) > F(xj))
Move gene i toward gene j by
updating its’ position in all the
dimensions

else if (F(xi) = F(xj))
if (C(xi) > C(xj))
Update the position of gene j
towards gene i in all dimensions
end if

end if
end for

end for
Return newPopulation

End

The pseudo-code to construct the proposed Pareto opti-
mal in cuckoo search is elaborated in Algorithm 3. Pareto
optimal archived the concept of non-dominated sorting by
comparing two solutions with multi-objectives and identify
the one with a better process. Therefore, it is much possible
to identify a set of solutions using a non-dominated set of
solutions. In this approach, each solution is compared with
every other solution in the population to check whether it gets
dominated by other solutions. The developed non-dominated
sorting and crowding distance in the proposed MOCS-EO is
to identify the Pareto optimal solution alignedmulti-objective
constraint.

Another important component in the development of
MOCS-EO is the evolutionary operators. In this case,
the operators that will be utilized are double mutation and
single crossover operators. The idea behind the use of these
operators is to select the best eggs (eggs represent as genes).
Usually, the eggs are created with random solutions. Thus,
the following are the functionalities of operators in this
research:

(a) First mutation operator: To generate a new solution by
helping the cuckoo to imitate the host bird’s eggs with
uniform value, 0.01 [38].

(b) Crossover operator: Used to create cuckoo eggs in the
nest and choose the best one among them.

FIGURE 2. Before and after mutation.

(c) Second mutation operator: Used to create cuckoo eggs
using crossover with mutation operator and choose the
best egg among them using dynamic values.

To begin with, the first mutation operator is introduced in
the initialization stage. This is to pre-search for the optimal
genes to be used in the next stage of the process. It is an
extra credit for the cancerous genes (highlighted G3) to be
identified after mutation as shown in Figure 2.

Next crossover operator, the probability of crossover is
to give freedom for the genes to be selected or not during
the extreme selection process. It explains more about the
reproduction process whereby makes clones of best genes but
does create new genes with its formulation. While the second
mutation operator defined the possible changes between the
genes measurement of upper bound and lower bound which
affect the performance during Pareto optimal. The upcoming
section discusses the output from the implementation of the
developed gene selection algorithm.

V. EXPERIMENTAL DESIGN
This section discusses the experimental design to prove the
proposed gene selection algorithm’s credibility. Table 1 shows
seven publicly available microarray data sets used in this
study [39]–[44]. However, assume all the data sets had
undergone normalization under the range one to zero, gene
clustering, and ranking.

The comparison between the MOCS-EO algorithm with
theMOCS and CS algorithmwill be presented in this section.
Due to the limited number of samples present in the data,
10 cross-validation will be conducted for all data sets to deter-
mine the significant genes by the algorithms. Table 2 shows
the control parameters for the CS algorithm used in upcoming
experiments. The parameters involved in CS are the itera-
tions, Lévy exponent discovery rate of alien solutions, and
nest sizes.

Each experiment is carried out using a different combi-
nation of CS parameters. Usually, the parameters of cuckoo
search are kept constant in all research, this might lead to
decreasing the efficiency of the CS algorithm [45]. Smaller
iterations such as 10, 20, and 30 with the combination of
smaller nest sizes of 5, 10, 20, and 30were focused and tested.
These parameters were self-tuned to obtain the significant
genes from the microarray data set.

Furthermore, focusing on the parameter of EO operators,
the value of the initial mutation operator (Pm) is 0.01. The
value of crossover (Pc) and mutation (Pm2) operators are
fixed as 0 and 1. The performances are evaluated based on
accuracy, sensitivity, and F-measure.
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TABLE 1. Number of genes, samples and classes in cancer microarray data.

TABLE 2. Parameters for cuckoo search.

The formula used as follows [46], [47]:

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (5)

Precision = (TN )/(FP+ TN ) (6)

Recall = (TP)/(TP+ FN ) (7)

F-measure = (2 ∗ Precision ∗ Recall)/(Precision+ Recall)

(8)

where, TP = true positive, TN = true negative, FP = false
positive, and FN = false negative.

The classifiers used in this research is a deep neural net-
work (DNN). The network will be initialized by ReLu and
the chosen optimizer for DNN is SGD (learning rate = 0.01,
momentum = 0.9). To prove the significance of the obtained
results from the classifier, Wilcoxon signed rank-test will be
performed.Wilcoxon test is a test used to compare two related
samples, matched samples, or frequent measurements. This is
a powerful test that can be used to identify the differentially
expressed genes. The rule for this test is ‘‘if the p-value is less
than 0.05, then the result produced is significant’’.

VI. RESULTS AND FINDINGS
In this section, this research applied MOCS-EO for gene
selection on seven microarray data sets. The performances of
the algorithmwill be compared in terms of accuracy, the num-
ber of selected genes, and F-measure. Nevertheless, the DNN
classifier is used to evaluate the number of selected genes
for CS, MOCS, and MOCS-EO with different parameter
settings as mentioned in Table 2. There are three sets of data
evaluated before any implementation of the gene selection
approach. In addition to it, to verify the obtained results
were significant for the proposed gene selection algorithm,
a statistical test has been conducted. The intention to use

small iterations is to summarize the variation of results and
strength of CS,MOCS, andMOCS-EO for cancer microarray
data sets.

A. RESULTS FROM CS, MOCS, MOCS-EO
ALGORITHM - 10 ITERATIONS
Table 3 summarizes the accuracy rate and F-measure obtained
using different combinations of nest sizes and 10 iterations.
DNN classifier used ten-fold cross-validations to evaluate the
selected genes from CS, MOCS, and MOCS-EO algorithm.
The best results for each data set are shown in bold. In
Table 3, it can be seen that using 10 iterations for MOCS-EO
algorithm, 89.29% of the data sets with different nest sizes
able to produce the highest accuracy rates and F-measures
rates compared to CS and MOCS algorithms (25 out of 28
showed high rates). Through oary cancer data, the high-
est performance measure is 97.5% for both accuracy and
F-measure rates.

For lung cancer data with 5 nest sizes, the highest perfor-
mance measures are achieved by the CS algorithm. However,
compared between the nest sizes for 10 iterations in Lung
cancer data is 93.7% (MOCS-EO algorithm). While for
SRBCT data, the highest performance measure is acquired
with the parameter settings of 10 nest sizes with the perfor-
mance measures, 100% (MOCS-EO algorithm). Similar to
other cancer microarray data sets, CNS, DLBCL, prostate
cancer, and leukemia achieved the highest performance mea-
sures under 10 iterations using the proposed algorithm,
MOCS-EO.

The highest performance measures achieved for accuracy
and F-measure respectively are CNS, 73.7% and 73.3%
(10 nest sizes), DLBCL is 94.5% (5 nest sizes), prostate
cancer is 92.2% (20 nest sizes) and leukemia is 98.6% (5 nest
sizes). It can be summarized fromTable 3 using the parameter
setting of 10 iterations with 5, 10, 20, 30 nest sizes, the data
plays an important role in influencing the number of genes
selected and performance results.

B. RESULTS FROM CS, MOCS, MOCS-EO
ALGORITHM - 20 ITERATIONS
Table 4 summarizes the accuracy rate and F-measure obtained
using a different combination of nest sizes and 20 iterations
as the parameter settings for CS, MOCS, and MOCS-EO
algorithms. From Table 4, approximately 85.71% of all
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TABLE 3. Number of selected genes and performance measure results for 10 iterations.

data shows that MOCS-EO algorithm able to produce the
highest performance measures (24 out of 28 data with
high rates). Nevertheless, the obtained highest accuracy rate
and F-measure for SRBCT is 100% from 10 iteration and
10 nest sizes based on Table 4. Looking within the results
of Table 4 for each cancer microarray data, ovary cancer
data of 20 iterations achieved 97.8% of accuracy rates, and
F-measures with 20 nest sizes via MOCS-EO algorithm.

While for lung cancer data, 95.2% is the highest perfor-
mance measure rates achieved through 20 nest sizes and 20
iterations. For the CNS data set, MOCS-EO achieved 67.1%
as the highest rate with 5 nest sizes compared to other data
using different nest sizes. Similar to other microarray data
sets, the highest performancemeasure rates achieved are from
the MOCS-EO algorithm. Following nest size produced the
highest performance measure rates are, 94.7% for DLBCL
(5 nest sizes), 92.2% prostate cancer (10 nest sizes), and
98.6% for all nest sizes in leukemia.

C. RESULTS FROM CS, MOCS, MOCS-EO
ALGORITHM - 30 ITERATIONS
Table 5 summarizes the accuracy rate and F-measure obtained
using different combinations of nest sizes and 30 iterations.

Similar to 20 iterations, approximately 85.71% of all data
shows that the MOCS-EO algorithm able to produce the
highest performance measures except for the SRBCT data
set which is 97.6% with 83 selected genes. In Table 5,
theMOCS-EO algorithm shows promising accuracy rates and
F-measure for ovary cancer which is 97.5% (30 nest sizes).
For lung cancer, MOCS-EO algorithm with 10 nest sizes
produced the highest performance measure rates with 93.7%
and 4014 selected genes.

Looking at the CNS data set, the highest performance
measures were obtained by the MOCS-EO algorithm under
20 nest sizes with 76.3%.With the DLBCL data set, the high-
est accuracy and F-measure rates obtained are 95.6% with
5 nest sizes. While for prostate cancer, 93.3% has been
achieved as the highest accuracy and F-measures rates with
30 iterations and 10 nest sizes. Besides, for leukemia, 10, 20,
and 30 nest sizes showed similar and highest accuracy and
F-measure rates which were 95.8%.

D. DISCUSSION
Summarizing the results obtained from the parameter setting
of 10, 20, and 30 iterations and 5, 10, 20, and 30 nest sizes
for the listed microarray data sets using DNN showcased
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TABLE 4. Number of selected genes and performance measure results for 20 iterations.

FIGURE 3. Ratio of selected genes.

that the parameters are very important and influence the
performance measure results. Table 6 shows the highest per-
formance measures obtained from 10, 20, and 30 iterations
from the MOCS-EO algorithm. It can be concluded that out
of seven data sets, three data sets able to produce the highest
performance measures with 20 iterations. Nevertheless, every
cancer microarray data sets require different nest sizes which
might influence the number of selected genes that consist of
informative genes.

Furthermore, Figure 3 shows the ratio of selected genes
with the highest performancemeasures for all cancermicroar-
ray data sets using the proposed algorithm. The selected genes

using the MOCS-EO algorithm are believed to be significant
and can assist in decision-making using the genes. Whilst,
the ratio of selected genes able to depict that the number of
informative genes in the cancer microarray data is lesser than
50% of the genes. For example, as can be seen in Figure 3, for
ovary cancer data, only 9.5% of genes were significant genes.
Thus, 90.5% of genes are non-significant and cause noise in
order to make good decision-making. Therefore, identifying
the genes requires an algorithm that able to handle these data
and select the best genes.

VII. ANALYSIS ON RESULTS
In this research, the MOCS-EO algorithm was used for gene
selection with the parameter settings of 10, 20, and 30 iter-
ations with 5, 10, 20, and 30 nest sizes. Each finding from
the parameter settings results in different fitness values. The
higher the fitness values due to its information, the higher
chances of the genes being selected.

To look upon each data in Table 6, MOCS-EO showcased
the highest accuracy rates compared to other algorithms.
Discussing the MOCS-EO algorithm, the highest parameter
settings for ovary cancer is 20 iterations and 20 nest sizes,
the highest accuracy rates is 97.8% (selected 1440 genes).
Next, the lung cancer data, the MOCS-EO algorithm has
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TABLE 5. Number of selected genes and performance measure results for 30 iterations.

achieved the highest accuracy rates using 20 iterations,
20 nest sizes (3282 genes) attained 95.2%. While for SRBCT
data, the parameter settings of the highest performance mea-
sure achieved are 10 iterations, 10 nest sizes with 216 selected
genes attaining 100.0% accuracy rate. Furthermore, CNS data
obtained the highest performance measure, 76.3% accuracy
rates using the settings of 30 iterations, and 20 nest sizes (952
selected genes). For DLBCL data, the highest performance
measure, 96.3% accuracy rate achieved with the parameter
setting of 20 iterations and 5 nest sizes with 334 selected
genes. Prostate cancer attained high performance which is
93.3%, accuracy rate using 30 iterations, and 10 nest sizes
with 75 selected genes.

Finally, for the leukemia data set, MOCS-EO displayed a
higher accuracy rate compared to other algorithms. Leukemia
data achieved 98.6% accuracy rate with 10 iterations and
5 nest sizes with 5624 selected genes. Concluding Table 6,
it can be seen that, 20 iterations and 20 nest sizes exhibit
the highest performance measures for two cancer microarray
data sets, while 30 iterations were shown best for two cancer
microarray data sets which is CNS and prostate cancer with
different selected nest sizes, 20 and 10 respectively.

Everymicroarray data attained high performancemeasures
with different parameter settings. Therefore, it is evident

TABLE 6. Summary of highest performance measures.

that every cancer microarray data consists of its parameter
setting requirements to process the data rigorously to iden-
tify the genes that can contribute toward the cancer classes.
Nevertheless, all cancer microarray data had reduced its
dimensionalities and identified the informative genes for its
classes through the developed MOCS-EO as gene selection
algorithm.

VIII. COMPUTATIONAL COMPLEXITY
Based on the total run time for gene selection using the
developed MOCS-EO algorithm for all cancer microarray
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FIGURE 4. Linear fitting of run time versus number of iterations for all cancer microarray data sets.

data sets used in this research, the algorithm runs in through
the fitted model by estimating the order of time. Following is
the MOCS-EO algorithm expressed through big-O notation
which able to express the growth rate of a function:

f (x) = p1x + p2x ⊕ p3x (9)

The time complexity represented by Equation (9) is O(n).
Therefore, the running time increases linearly corresponding
to the size of data.

Figure 4 shows the running time (in seconds) with the
number of iterations to predict the asymptotic behavior of the
run time of each data set. It is clear that based on the fitted
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TABLE 7. Summary of Wilcoxon verification test.

TABLE 8. Summary of t-test verification test.

model used to predict the asymptotic behavior of run time of
each dataset the MOCS-EO algorithm on each iteration runs
linearly from 5 until 30 nest sizes aligned with 10, 20, and
30 iterations. Nevertheless, 20 iterations show a better time
complexity compared to other iterations of nest sizes. Per-
forming time complexity analysis the MOCS-EO algorithm
determined that the performance of the algorithm in real-time
increases along with nest sizes.

IX. VERIFICATION AND VALIDATION OF RESULTS
The verification of final results is summarized in
Table 7 and 8. The obtained significance using Wilcoxon
and paired sample t-test for accuracy with the final results of
all cancer microarray data to prove and verify the credibility
of the developed MOCS-EO algorithm. The significance is
indicated as ‘‘∗’’. For both tests, p-values < 0.05 indicate the
significance of the results (95% confidence of results). Based
on Table 7 and 8, the original accuracy results compared to the
selected groups of experiments in Table 6. All results using
the Wilcoxon test shows the algorithm is significant with the
identified genes. Here, the Wilcoxon test is a test used to
compare two related samples, matched samples, or frequent
measurements. This test is a powerful test that can be used
with microarray data to identify the differentially expressed
genes.

While for t-test, all results using MOCS-EO were signifi-
cant except DLBCL and leukemia data. This is because both
data were repeated using a much larger sample size which
might decrease the width of the confidence interval for both
data sets as supported by [48]. Therefore, the obtained results
(selected genes) for leukemia and DLBCL has less impact on
the data due to the properties of its data sets. Here, the t-test

TABLE 9. Comparison of results with other research.

is conducted to verify the relationship between the selected
genes using the developed algorithm.

To validate the results obtained from the proposed
MOCS-EO algorithm, the microarray data used for this
research is compared with other recent research to showcase
the credibility of the developed algorithm for gene selection.
As shown in Table 9, MOCS-EO exhibits better accuracy
rates compared to other methods such as improved interaction
information guided incremental selection (IGIS), or meta-
heuristic methods namely firefly search and elephant search
using similar cancer microarray data sets. However, except
for ovary cancer data, the IGIS and elephant search show-
cased better gene selection. This might be due to lower
parameter settings used in cuckoo search.

To improvise the performancemeasures, the parameter set-
tings of MOCS-EO can be modified into larger settings. This
might be due to the larger sample size in ovary cancer data
that decrease the MOCS-EO capacity in searching the best
genes in the data. Therefore, higher iteration and higher nest
sizes for MOCS-EO might able to solve the problem in the
algorithm. From a larger perspective, it can be seen that there
are clear differences of values between the accuracy rates
obtained from other researchers and developed MOCS-EO
algorithm. This is because MOCS-EO has the advantage in
the algorithm such as multi-objective optimization, double
mutation, and crossover operators that able to search best
genes out of the large amount of data set.

X. CONCLUSION
Classification is a data mining task which is an important task
for gene selection. The main reason to propose a gene selec-
tion algorithm is to select significant genes from the large
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gene space that consists of noisy gene expression data. From
these experiments can be concluded that, in a gene selection
procedure, it is very important to build a good classifiermodel
to further the biological investigation. These experiments
confirmed the hypothesis that the proposed algorithm can
select the important genes compared to other genes based in
a class, however, the fallback is the classifier. The classifier
can predict only the correlations within the selected gene sets.
With the DNN classifier, the performance measure rates of
the proposed algorithm able to justify as DNN to analyze
the correlations between genes. For real-world biological
and clinical applications, these simulations conducted in this
research able to assist in identifying the genes that contribute
toward cancer diseases.

The limitation in MOCS-EO as a gene selection algorithm
is the algorithm bounded to self-tune the parameter, therefore,
parameter tuning of CS can be enhanced. Nevertheless, for
the contribution using the MOCS-EO algorithm as a feature
selection method, the use of a multi-objective approach aims
to minimize the number of genes and maximize the relevance
of the selected genes and the cancer classes.While EO such as
mutation and crossover enhances the responsibility to choose
the best out of best genes. This developed algorithm has
successfully chosen a smaller number of genes for decision-
making and better classification performance than using all
genes with different smaller parameter settings for all seven
cancer microarray data sets.
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