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Abstract: The present theoretical work endeavors to solve the Sutterby nanofluid flow and heat
transfer problem over a permeable moving sheet, together with the presence of thermal radiation and
magnetohydrodynamics (MHD). The fluid flow and heat transfer features near the stagnation region
are considered. A new form of similarity transformations is introduced through scaling group analysis
to simplify the governing boundary layer equations, which then eases the computational process
in the MATLAB bvp4c function. The variation in the values of the governing parameters yields
two different numerical solutions. One of the solutions is stable and physically reliable, while the
other solution is unstable and is associated with flow separation. An increased effect of the thermal
radiation improves the rate of convective heat transfer past the permeable shrinking sheet.

Keywords: scaling group analysis; Sutterby fluid; nanofluid; magnetohydrodynamics (MHD);
stability analysis

1. Introduction

The viscoelastic fluid is a type of non-Newtonian fluid that manifests the viscous and elasticity
features under deformation. Sutterby fluid is an example of the viscoelastic fluid, and it well portrays
the dilute polymer solutions [1,2]. Specifically, the Sutterby model fluid resembles the shear thinning
and shear thickening aspects in high polymer aqueous solutions such as carboxymethyl cellulose
(CMC), hydroxyethyl cellulose (HEC) and methyl cellulose (MC) [3]. The dilute polymer solutions
have a wide range of functions in industrial practice, for instance, spray applications of agricultural
chemicals [4], drag reducers in pipe flows [5], and production of domestic cleaning products [6].
The work of Fujii et al. [7] is one of the earliest studies to address the natural convection boundary
layer flow in a Sutterby fluid past a vertical motionless isothermal plane and achieved an excellent
comparison with the experimental results. Fujii et al. [8] revisited their work in [7] to investigate the
impact of uniform heat flux under the same settings. However, the Sutterby model fluid received
less attention from the boundary layer researchers at that time. Later, a new type of heat conductive
fluid was introduced by Choi [9] named nanofluid. Nanofluid was also claimed to be a brilliant
fluid due to its excellent heat transfer performance in engineering applications such as cooling
of electronic appliances, and systems of solar water heating [10]. Nanofluid has now attracted
significant interest from researchers, and boundary layer models have been studied under various
settings [11–13]. After a long discontinuity in the theoretical works of the Sutterby boundary layer fluid
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flow, some numerical investigations of the Sutterby fluid under the Cattaneo–Christov heat flux [14,15],
Soret and Dufour effect [16], peristaltic flow [17–19], squeezed flow [20], Joule heating effect [21],
homogeneous–heterogeneous reactions [22], and hybrid nanoparticles [23] have been reported recently.

Magnetohydrodynamics (MHD) is another technological conception that is widespread in engineering
practice. Electromagnetic casting [24], plasma confinement, and MHD power generation [25] are examples
of notable applications. Thermal radiation is a type of energy that works in conjunction with the
MHD effect. Thermal radiation emits and absorbs energy in the form of waves or molecules
through a non-scattering medium. The successful combination of thermal radiation and MHD in
an electrically conducting fluid has significant applications in solar power technology and electrical
power generation [26]. Acknowledging these applications, researchers began to examine thermal
radiation and MHD effects in the boundary layer flow past a stretching/shrinking surface, and many
theoretical works have been reported. Recently, Sabir et al. [27] explored the stagnation-point flow of a
Sutterby fluid with the effects of an inclined magnetic field and thermal radiation past a stretching
surface, and observed the declining trend of the convective heat transfer with the stronger influence of
thermal radiation. Bilal et al. [28] examined the ohmically dissipated Darcy–Forchheimer slip flow of
an MHD Sutterby fluid past a radiating stretching sheet and found a decrement in the convective heat
transfer with increasing slip effects.

By comparison, the boundary layer equations, which were proposed by Prandtl [29], disclosed
many invariant closed-form solutions. Prandtl’s boundary layer equations can be reduced to a less
complicated form that is in a system of ordinary differential equations. These boundary layer equations
also allow many different types of symmetry groups, of which the Lie group analysis is prominent.
Lie group analysis helps to identify the transformation point that represents the given boundary
layer equations [30]. In Lie group analysis, the group-invariant solutions are the similarity solutions,
and these similarity solutions are used to reduce the independent variables in a fluid flow problem [31].
A special form of the Lie group analysis exists, namely, the scaling group of transformation, and this
has been employed by researchers in valuable contributions, for instance, see [32,33].

Regarding studies of stagnation-point flow in a Sutterby fluid, Azhar et al. [34] investigated the
effect of entropy generation on the stagnation-point flow of a Sutterby nanofluid past a stretching sheet.
Azhar et al. [35] reconsidered the work of [34] by incorporating the Cattaneo–Christov heat flux model
and omitting the nanoparticles. Both of the studies of [34,35] solved the flow problem numerically and
presented unique solutions. A number of considerable research gaps were found in the theoretical
works available in the stagnation-point flow and heat transfer in a Sutterby nanofluid, for instance:
inspecting fluid flow behavior and heat transfer characteristics past a shrinking sheet together with
the suction effect; conducting scaling group analysis; obtaining dual solutions; and performing
stability analysis. Thus, the present work is devoted to numerically solving the problem of boundary
layer Sutterby nanofluid flow and heat transfer near the stagnation region over a permeable moving
(stretching/shrinking) sheet. The fluid flow and heat transfer characteristics under the magnetic and
thermal radiation effects are observed. Scaling group analysis is employed to obtain the apt similarity
transformations so that the complex governing boundary layer equations can be brought to a soluble
form. The simplified form of the mathematical model is then solved numerically in the boundary
value problem solver or bvp4c function in MATLAB. Two different numerical solutions are identified
with the governing parameters’ variation. Further, stability analysis is undertaken in the present work
to justify the presence of dual solutions. These contributions are essentially original, and all numerical
results are presented and discussed in detail.

2. Problem Formulation

Contemplate an incompressible two-dimensional stagnation-point flow of a Sutterby nanofluid
across a stretching/shrinking sheet as shown in Figure 1, where x and y are the Cartesian coordinates
with the x-axis positioned in the horizontal direction, and the y-coordinate is normal to the x-coordinate.
The free stream velocity is denoted by ue, and uw signifies the velocity of the moving sheet, where uw > 0
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infers the state of the stretching sheet, uw < 0 the embodies shrinking sheet, and uw = 0 typifies the
stationary sheet. The moving (stretching or shrinking) sheet is penetrable and there is a uniform
surface mass flux, of velocity vw, with vw > 0 to imply the injection situation and vw < 0 for the suction
state. The free stream temperature and the wall temperature are denoted by T∞ and Tw, respectively.

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 18 

 

coordinate. The free stream velocity is denoted by ,eu  and wu  signifies the velocity of the moving 

sheet, where 0wu   infers the state of the stretching sheet, 0wu   the embodies shrinking sheet, 

and 0wu   typifies the stationary sheet. The moving (stretching or shrinking) sheet is penetrable 

and there is a uniform surface mass flux, of velocity ,wv  with 0wv   to imply the injection situation 

and 0wv   for the suction state. The free stream temperature and the wall temperature are denoted 

by T  and ,wT  respectively.  

 

Figure 1. Schematic diagram of the present problem: (a) shrinking sheet  0wu  ; (b) stretching sheet 

 0 .wu   

Sutterby [1,2] introduced the constitutive law for the Sutterby fluid by expressing the Cauchy 

stress tensor  T  as: 

,p  T I S  (1) 

where p  is the pressure, I  is the identity vector, and S  is the extra stress tensor which can be 

defined as follows [21]: 

 

 

1

0 1

sinh
.

m

E

E






 
  

 
S A  (2) 

Here, 0  is the viscosity at low shear rates, E  is the material time constant,  
2

1tr 2  A  is 

the second invariant strain tensor, 1A  is the first order Rivlin–Erickson tensor or deformation rate 

tensor which is defined as    
T

1 ,   A V V  and m  is the power-law index. The Sutterby model 

in Equation (2) is a versatile model when the value of m  changes. For instance, when 0,m   the 

Sutterby model imitates the Newtonian fluid behavior, when 1,m   the model is reduced to the 

Eyring model, and this model also predicts specifically the pseudo-plastic (shear thinning) and 

dilatant (shear thickening) fluid properties when 0m   and 0,m   respectively. By taking the 

velocity field as    , , , ,u x y v x y   V  and under the assumptions mentioned earlier, the governing 

boundary layer equations in the dimensional form can be formed as follows [36]: 

0,
u v

x y

 
 

 
 (3) 

 
2 22 2 2

0

2 2
,

2

nf nf ee
e

nf nf nf

B u uduu u u mE u u
u v u

x y y dxy y

  

  

     
     

    
 (4) 

Figure 1. Schematic diagram of the present problem: (a) shrinking sheet (uw < 0); (b) stretching sheet
(uw > 0).

Sutterby [1,2] introduced the constitutive law for the Sutterby fluid by expressing the Cauchy
stress tensor (T) as:

T = −pI + S, (1)

where p is the pressure, I is the identity vector, and S is the extra stress tensor which can be defined as
follows [21]:

S = µ0

sinh−1
(
E

.
γ
)(

E
.
γ
) 

m

A1. (2)

Here, µ0 is the viscosity at low shear rates, E is the material time constant,
.
γ =

√
tr(A1)

2/2
is the second invariant strain tensor, A1 is the first order Rivlin–Erickson tensor or deformation
rate tensor which is defined as A1 = (∇V) + (∇V)T, and m is the power-law index. The Sutterby
model in Equation (2) is a versatile model when the value of m changes. For instance, when m = 0,
the Sutterby model imitates the Newtonian fluid behavior, when m = 1, the model is reduced to the
Eyring model, and this model also predicts specifically the pseudo-plastic (shear thinning) and dilatant
(shear thickening) fluid properties when m > 0 and m < 0, respectively. By taking the velocity field
as V = [u(x, y), v(x, y)], and under the assumptions mentioned earlier, the governing boundary layer
equations in the dimensional form can be formed as follows [36]:

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u

∂y2 +
µn f

ρn f

mE2

2

(
∂u
∂y

)2
∂2u

∂y2 + ue
due

dx
−
σB2

0(ue − u)

ρn f
, (4)

u
∂T
∂x

+ v
∂T
∂y

=
kn f(
ρCp

)
n f

∂2T

∂y2 +
16 σ1T3

∞

3
(
ρCp

)
n f

k1

∂2T

∂y2 , (5)
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along with the respective boundary conditions:

u = uw, v = vw, T = Tw(x) at y = 0.
u = ue, ∂u

∂y → 0, T→ T∞ as y→∞, (6)

where u and v denote velocity components in the x and y directions, respectively, µn f is the dynamic
viscosity of the nanofluid, σ is the electrical conductivity, B0 is the magnetic field strength, ρn f is the
density of the nanofluid, σ1 is the Stefan Boltzmann constant, k1 is the Rosseland mean absorption
coefficient, kn f is the thermal conductivity of the nanofluid, and

(
Cp

)
n f

is the specific heat capacity

of the nanofluid. The detailed definitions of the nanofluid parameters are given by the following
expressions, which are valid when the nanoparticles are of spherical shape or similar to a spherical
shape [37]:

µn f =
µb f

(1−φ)2.5 , αn f =
kn f

(ρCp)n f
,

(
ρCp

)
n f

= (1−φ)
(
ρCp

)
b f
+ φ

(
ρCp

)
s
,

ρn f = (1−φ) ρb f + φρs,
kn f
kb f

=
(ks+2 kb f )−2φ (kb f−ks)
(ks+2 kb f )+φ(kb f−ks)

,
(7)

where φ denotes the nanoparticle volume fraction, µb f denotes the dynamic viscosity of the base fluid,
αn f denotes the thermal diffusivity of the nanofluid, kb f is the thermal conductivity of the base fluid,
ks is the thermal conductivity of the solid fractions, Cp is the specific heat capacity, and ρb f and ρs are
the densities of the base fluid and solid fractions, respectively. The Sutterby model reflects the dilute
polymer solution where the polymer is diluted in the appropriate solvent. Hence, for the present study,
n-Hexane is chosen as the base fluid (solvent). Table 1 displays the specific values for the respective
thermophysical features of n-Hexane and magnetite nanofluid [38].

Table 1. The thermo physical characteristics of the essential fluid and nanoparticles.

Physical Properties Fluid Phase
(n-Hexane /CH3(CH2)4CH3)

Solid Phase
Magnetite (Fe3O4)

Cp(kJ/kg ·K) 2.78 670
ρ
(
kg/m3

)
551 5180

k(W/mK) 82 9.7
Pr 4.36 −

3. Non-Dimensionalization of the Governing Equations

Considering the following the non-dimensional variables:

x = ax
u0

, y =
√

a
νb f

y, u = u
u0

, uw = uw
u0

, v = v√
aνb f

,

vw = vw√
aνb f

, ue =
ue
u0

, θ = T−T∞
T0

,
(8)

where u0 is the characteristic velocity and introducing the stream function ψ, which can be defined by
u =

∂ψ
∂y and v = −

∂ψ
∂x , Equations (4) and (5) become:

∂ψ

∂y
∂2ψ

∂x∂y
−
∂ψ

∂x
∂2ψ

∂y2 =
A1

A2

∂3ψ

∂y3 +
A1

A2

mDe
2

(
∂2ψ

∂y2

)2
∂3ψ

∂y3 + ue
due

dx
−
σB2

o
ρb f a

1
A2

(
ue −

∂ψ

∂y

)
, (9)

∂ψ

∂y
∂θ
∂x
−
∂ψ

∂x
∂θ
∂y

=
A4

A3

1
Pr
∂2θ

∂y2 +
1

A3

4
3

Rd
Pr
∂2θ

∂y2 , (10)
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with the corresponding boundary conditions:

∂ψ
∂y = uw, ∂ψ

∂x = −vw, θT0 = Tw(x) at y = 0,
∂ψ
∂y → ue,

∂2ψ
∂y2 → 0, θ→ 0 as y→∞,

(11)

while satisfying the continuity equation of Equation (3). In Equations (9) and (11), M =
σB2

0
ρb f a is the

magnetic parameter, Rd =
4σ1T3

∞

k1kb f
is the radiation parameter, Pr =

µb f (cp)b f
kb f

is the Prandtl number,

De =
u2

0aE2

νb f
is the Deborah number, φ is the nanoparticle volume fraction, and terms A1, A2, A3, and A4

are expressed as:

A1 = 1
(1−φ)2.5 , A2 = 1−φ+ φ

ρs
ρb f

, A3 = 1−φ+ φ
(ρcp)s

(ρcp)b f
,

A4 =
kn f
k f

=
ks+2kb f−2φ(kb f−ks)
kb f +2kb f +φ(kb f−ks)

.
(12)

The functions uw, vw and Tw(x) are assumed to be in the following form to ensure that similarity
solution exists:

uw =
u1

u0
x

2
5 , vw =

v1
√a νb f

x−
2
5 , Tw(x) = T0 x

2
5 , (13)

where u1 is the reference velocity, v1 is the normal reference velocity, and T0 is the reference temperature.

4. Scaling Group Analysis

The governing boundary layer flow and heat transfer problem in the form of partial differential
equations (PDEs) is complex and hard to solve by means of mathematical software. Therefore, it needs
to be reduced to a simpler form so that it can be solved. Suitable similarity variables can facilitate the
transformation and, at this point, scaling group analysis is required to form the specified similarity
transformations for the present problem. The newly formed similarity variable will then transform the
PDEs to a system of ordinary differential equations (ODEs), and the model can be solved by the desired
mathematical software. Therefore, the following scaling group of transformations G is introduced:

G : x∗ = xGω1 , y∗ = yGω2 , ψ∗ = ψGω3 , σ∗ = σGω4 ,
θ∗ = θGω5 , u∗e = ueGω6 , u∗1 = u1Gω7 , m∗ = mGω8 ,

(14)

where ωi are constants to be determined in which i = 1, . . . 8. The transformation G is the
transformation point which transforms the (x, y,ψ, σ, θ, ue, u1, m,) coordinates to the new coordinates(
x∗, y∗,ψ∗, σ∗,θ∗, u∗e, u∗1, m∗

)
.

Next, the substitution of (14) into Equations (9)–(11) yields the following expressions:

A1
A2

G[2ω3−2ω2−ω1]
(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗ −
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

)
= G[ω3−3ω2]

(
∂3ψ∗

∂y∗3

)
+ A1

A2
De
2 G[ω8+3ω3−7ω2]

[
m∗

(
∂2ψ∗

∂y∗2

)2
∂3ψ∗

∂y∗3

]
+ G[2ω6−ω1] u∗e

du∗e
dx∗

−
B2

0
ρb f a

1
A2

[
G[ω3+ω4−ω2]

(
σ∗
∂ψ∗

∂y∗

)
−G[ω4+ω6](σ∗u∗e)

]
,

(15)

G[ω3+ω5−ω1−ω2]

(
∂ψ∗

∂y∗
∂θ∗

∂x∗
−
∂ψ∗

∂x∗
∂θ∗

∂y∗

)
=

1
Pr

G[ω5−2ω2]

(
∂2θ∗

∂y∗2

)
+

4
3

Rd
Pr

G[ω5−2ω2]

(
∂2θ∗

∂y∗2

)
, (16)
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along with the boundary conditions:

G[ω3−ω2]
(
∂ψ∗

∂y∗

)
= G[ω7+

2
5ω1]

(
u∗1
u0

x∗
2
5

)
,

G[ω3−ω1]
(
∂ψ∗

∂x∗

)
= −

v1√
aνb f

G[− 2
5ω1]x∗−

2
5 , G[ω5]θ∗ = G[ 2

5ω1]
(
x∗

2
5
)

at y = 0

G[ω3−ω2]
(
∂ψ∗

∂y∗

)
→ G[ω6](u∗e) as y→∞.

(17)

To retain the invariance of the system under G, the parameters defined in Equation (14),
the following relations must hold:

2ω3 − 2ω2 −ω1 = ω3 − 3ω2 = 3ω3 − 7ω2 +ω8 = 2ω6 −ω1 = ω3 −ω2 +ω4 = ω4 +ω6

= ω3 +ω5 −ω1 −ω2 = ω5 − 2ω2.
(18)

From the boundary conditions of Equations (17), we also obtain the following relations among
the parameters:

ω3 −ω2 = ω7 +
2
5
ω1, ω3 −ω1 = −

2
5
ω1, ω5 =

2
5
ω1, ω3 −ω2 = ω6. (19)

The absolute invariant can be determined by eliminating the parameter G of the group and hence
Equations (18) and (19) provide the following expressions:

ω2 = 2
5ω1, ω3 = 3

5ω1, ω4 = − 4
5ω1, ω5 = 2

5ω1,
ω6 = 1

5ω1, ω7 = − 1
5ω1, ω8 = 2

5ω1.
(20)

From Equations (13), (14), and (20), we achieve the absolute invariants under the group G similarity
transformations as follows:

η =
y

x
2
5

, ψ = x
3
5 f (η), σ = σ0 x−

4
5 , θ = θ0(η) x

2
5 ,

ue = (ue)0x
1
5 , u1 = (u1)0 x−

1
5 , m = m0 x

2
5 .

(21)

The similarity transformations in Equation (21) are new and, by employing them in the governing
boundary layer equations of Equations (9) and (11), the reduced version of the model in the form of
ordinary differential equations can be attained as follows while satisfying Equation (9):

A1

A2
f ′′′

[
1 +

m0De
2

( f ′′ )2
]
−

1
5
( f ′)2 +

3
5

f f ′′ +
1
5
−

M
A2

(1− f ′) = 0, (22)

(
A4 +

4
3

Rd
)
θ′′ −

2
5

A3Pr f ′ θ+
3
5

A3Pr f θ′ = 0, (23)

with the associated boundary conditions:

f (0) =
5
3

fw, f ′(0) = ε, θ(0) = 1, f ′(∞) = 1, θ(∞) = 0. (24)

Here ε = (u1)0/u0 is the stretching/shrinking parameter, where ε > 0 indicates the stretching sheet,
ε = 0 specifies the stationary sheet, and ε < 0 represents the state of shrinking sheet. Furthermore,
fw = −v1/√νb f a is the constant mass transfer parameter, and fw > 0 typifies the suction effect at
the surface of the moving sheet and fw < 0 epitomizes the injection state. For simplicity, we choose
(ue)0 = 1. The power-law index is denoted by m0; when m0 = 0, the reduced model imitates the
Newtonian fluid behavior. Moreover, when m0 = 1, the model is reduced to the Eyring model, whereas
the present model in Equations (22)–(24) also predicts specifically the pseudo-plastic (shear thinning)
and dilatant (shear thickening) fluid properties when m0 < 0 and m0 > 0, respectively.
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The physical quantities of interest in the present work are the local skin friction coefficient
(
C f x

)
and the local Nusselt number (Nux) which are defined as follows:

C f x =
τw

ρb f u2
e

, Nux =
xqw

kb f (Tw − T∞)
, (25)

where τw is the wall shear stress and qw is the heat flux at the surface of the sheet, and can be further
defined as [34]:

τw = µn f

1 +
mE2

6

2(∂u
∂x

)2

y=0
+

(
∂u
∂y

)
y=0



(
∂u
∂y

)
y=0

, qw = −kn f

(
∂T
∂y

)
y=0

. (26)

The reduced skin friction coefficient Re1/2
x C f xx1/5 and the local Nusselt number Re−1/2

x Nux x−1/5

can be obtained using the similarity transformations of Equation (21) and the expressions in Equations
(25) and (26) as follows:

C f xRe1/2
x

=
√

A1A2 f ′′ (0) + m0
6
√

A1A2
De[ f ′′ (0)]3,

Re−1/2
x

Nux x−2/5 = − 1
√

A1A2

(
1 + 1

A4
4
3 Rd

)
θ′(0)
θ(0) ,

(27)

where Rex = uex/νb f denotes the local Reynolds number.

5. Stability Analysis

Merkin [39,40] established an improved version of the stability analysis, which is prominent
among researchers for the examination of the stability of numerical solutions. Because we observed
dual solutions in the present work, we assess the solution’s stability to determine the flow behavior.
To initiate the linear stability analysis, the model equations in Equations (3)–(5) need to be considered
in the unsteady form as follows:

∂u
∂x

+
∂v
∂y

= 0, (28)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u

∂y2 +
µn f

ρn f

mE2

2

(
∂u
∂y

)2
∂2u

∂y2 + ue
due

dx
−
σB2

0(ue − u)

ρn f
, (29)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kn f(
ρCp

)
n f

∂2T

∂y2 +
16 σ1T3

∞

3
(
ρCp

)
n f

k1

∂2T

∂y2 , (30)

with the boundary conditions of Equation (6). Then, we introduce the dimensional time variable,
t with a new similarity variable

(
τ = τ0/x4/5

)
through scaling group analysis. The new similarity

transformation is given as:

η =
y

x
2
5

, ψ = x
3
5 f (η, τ), σ = σ0 x−

4
5 , θ = θ0(η, τ) x

2
5 ,

ue = (ue)0x
1
5 , u1 = (u1)0 x−

1
5 , m = m0 x

2
5 , τ = τ0

x
4
5

.
(31)

Employing (31) in the dimensionless form of Equations (28)–(30) and (6) gives the following
system of equations:

A1

A2

∂3 f
∂η3

1 + m0De
2

(
∂2 f
∂η2

)2− 1
5

(
∂ f
∂η

)2

+
3
5

f (η, τ)
∂2 f
∂η2 +

1
5
−

M
A2

(
1−

∂ f
∂η

)
−
∂2 f
∂η∂τ

= 0, (32)

(
A4 +

4
3

Rd
)
∂2θ

∂η2 −
2
5

A3Pr
∂ f
∂η
θ(η, τ) +

3
5

A3Pr f (η, τ)
∂θ
∂η
−
∂θ
∂τ

= 0, (33)
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with the boundary conditions:

f (0, τ) =
5
3

fw,
∂ f
∂η

(0, τ) = ε, θ(0, τ) = 1,
∂ f
∂η

(∞, τ) = 1, θ(∞, τ) = 0. (34)

It is assumed that the solutions of (32)–(34) are expressed by the formulas of Equation (35):

f (η, τ) = f0(η) + e−γτF(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (35)

where f (η) = f0(η) and θ(η) = θ0(η) are the solutions found in the previous section, in which the
disturbance is superimposed to determine their stability. Here, the unknown eigenvalue parameter is
denoted by γ, and F(η, τ) and G(η, τ) are relatively small compared to the steady state solutions ( f0(η)
and θ0(η)). The substitution of Equation (35) into Equations (32)–(34) gives the following system:

∂3F
∂η3

(
1 +

A1

A2

m0De
2

f ′′0
2
)
+
∂2F
∂η2

(3
5

f0 −
2
5

f ′0

)
+

3
5

f ′′0 F +
( M

A2
+ γ

)
∂F
∂η
−
∂2F
∂η∂τ

= 0, (36)

(
A4 +

4
3

Rd
)
∂2G
∂η2 +

3
5

A3Pr f0
∂G
∂η

+
3
5

A3PrFθ0 −
2
5

A3Pr f ′0G−
2
5

A3Prθ0
∂F
∂η

+ γG−
∂G
∂τ

= 0, (37)

subject to the boundary conditions:

F(0, τ) = 0,
∂F
∂η

(0, τ) = 0, G(0, τ) = 0,
∂F
∂η

(∞, τ) = 0, G(∞, τ) = 0. (38)

Referring to Merkin [39,40], τ→ 0 is fixed to examine the stability of the steady state boundary
layer flow. Thus, F = F0(η) and G = G0(η) in Equations (37)–(39), yielding the following linearized
eigenvalue problem:

F′′′0

(
1 +

A1

A2

m0De
2

(
f ′′0

)2
)
+ F′′0

(3
5

f0 −
2
5

f ′0

)
+

3
5

f ′′0 F0 +
( M

A2
+ γ

)
F′0 = 0, (39)

(
A4 +

4
3

Rd
)
G′′0 +

3
5

A3Pr f0G′0 +
3
5

A3PrF0θ0 −
2
5

A3Pr f ′0G0 −
2
5

A3Prθ0F′0 + γG0 = 0, (40)

with the boundary conditions:

F0(η) = 0, F′0(η) = 0, G0(η) = 0, at η = 0,
F′0(η) = 0, G0(η) = 0 as η→∞.

(41)

It is necessary to replace one of the outer boundary conditions with a normalizing boundary
condition to obtain the eigenvalues. Therefore, the boundary condition F′0(∞) = 0 is substituted
with F′′0 (0) = 1. The system of equations in Equations (38)–(40) with the new boundary condition
is solved by the MATLAB boundary value problem solver (bvp4c) to obtain the lowest eigenvalues
as the governing parameter varies. These lowest eigenvalues are classified according to their sign.
If the lowest eigenvalue falls in the positive range of values, then the respective numerical solution
is accepted as a stable solution. Meanwhile, the negative lowest eigenvalue suggests the numerical
solution is unstable. Further explanation about the stable and unstable solutions is provided in the
next section.

6. Results and Discussion

The mathematical model in Equations (23)–(25) was solved numerically by means of the boundary
value problem solver function bvp4c in the MATLAB software. The numerical results were derived
while limiting the relative tolerance to 1× 10−10. Some of the governing parameter values were fixed
throughout the computation process to align with the motivation of this study. For example, the Prandtl
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number (Pr) value was fixed at 4.36 because it represents the base fluid, n-hexane. The power-law
index (m0) was fixed at 1.5 to investigate the dilatant features of the Sutterby fluid. The obtained
non-uniqueness solutions were classified based on how early the solution converged asymptotically.
For example, the numerical solution that converged earlier asymptotically in the velocity/temperature
profiles was labelled the first solution. The other solution that converged later, asymptotically,
was labelled as the second solution. Before presenting the numerical results, we provide validation
of our numerical method by solving the model presented in [41] and compare the numerical results
with the results reported by [41]. Table 2 shows the comparison results, and there is a good agreement.
Bhattacharyya et al. [41] employed the shooting method to solve the model, and Table 2 confirms that
the bvp4c function is capable of precisely solving the boundary value problem.

Table 2. Numerical validation of f ′′ (0) when S = 0 in [41].

*c/a. Present Result Bhattacharyya et al. [41]
First Solution Second Solution First Solution Second Solution

−0.250 1.40224078 − 1.40224051 −

−0.500 1.49566974 − 1.49566972 −

−0.625 1.50715589 − 1.50715673 −

−0.750 1.48929822 − 1.48929811 −

−1.000 1.32881685 0 1.32881689 0
−1.150 1.08223113 0.11670214 1.08223164 0.11670230
−1.200 0.93247330 0.23364972 0.93247277 0.23364910
−1.2465 0.58429940 0.55429554 0.58429146 0.55428565

*c/a is the stretching/shrinking parameter in [41].

Figure 2 shows the influence of the suction parameter (s) on the reduced skin friction coefficient(
C f xRe1/2

x

)
and velocity profiles ( f ′(η)). Based on the first solution in Figure 2a, an increment in s

increases the values of C f xRe1/2
x

past a shrinking sheet. Primarily, an increment in s from 6 to 9
strengthens the impact of suction at the surface of the shrinking sheet. The act of suction encourages the
laminar flow by trapping the low speed fluid molecules in the boundary layer region. This then leads to
increasing of the fluid velocity past the shrinking sheet and is illuminated in Figure 2b. The increment
of the fluid velocity reduces the momentum boundary layer thickness and increases the wall shear
stress over the shrinking sheet. The high wall shear stress eventually increases the values of C f xRe1/2

x
as s increases. Interestingly, the second solution in Figure 2a shows the opposite trend to the first
solution, where an increment in s decreases the values of C f xRe1/2

x
. The state of suction, which was

interpreted as enhancing the fluid velocity, is now seen to decrease the fluid velocity and increase the
momentum boundary layer thickness (see Figure 2). The saturated state of the shrinking sheet may be
the cause of these consequences. Later, the reducing fluid velocity lowers the wall shear stress and
then decreases the values of C f xRe1/2

x
as s increases.

Figure 3 demonstrates the impact of the Deborah number (De) on C f xRe1/2
x

and velocity profiles.

Both solutions in Figure 3a convey that an increment in De augments the values of C f xRe1/2
x

as the
sheet is shrinking. The Deborah number is used to enlighten the viscoelastic feature of a material.
Here, an increment in De results in the increment of the shear thickening Sutterby fluid velocity.
The valuable work of Azhar et al. [34] also reported a similar trend. The increment of the fluid velocity
then enhances the wall shear stress past the shrinking sheet and increases the values of C f xRe1/2

x
.

The increment in s and De assist in delaying the flow separation significantly.
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profiles as De varies when Rd = 1.2, m0 = 1.5, Pr = 4.36, s = 7, M = 0.5, and φ = 0.02.

The first and second solutions in Figure 4a lead to a decrement in C f xRe1/2
x

when M increases from
0.5 to 1.0. The magnetic field presents in an electrically conducting fluid as an electromagnetic force in
the fluid flow region, which slows the fluid moving past the shrinking sheet. This is reflected by the
velocity profiles in Figure 4b, where the fluid velocity decreases when M increases. The decrement in
the fluid velocity then leads to an increase of the momentum boundary layer thickness and decreases
the wall shear stress past the permeable shrinking sheet. Thus, the values of C f xRe1/2

x
decrease with

the rising value of M. Unlike the shrinking case, different fluid flow behavior is perceived in the first
solution when the Sutterby nanofluid flows towards a permeable stretching sheet. When the magnetic
effect increases past a stretching sheet, the fluid velocity increases, although the increment is not
significant. This is agreeable because the fluid flow is in the same direction as the stretching sheet and
the action of the stretching sheet speeds up the fluid flow. The increment in fluid velocity reduces
the momentum boundary layer thickness, increases the wall shear stress, and enhances the value of
C f xRe1/2

x
. The negative values of C f xRe1/2

x
indicate that the stretching sheet imposes a drag force on

the fluid. Moreover, the reverse flow is observed through the second solution’s presence when the
permeable sheet is stretching in Figure 4a. The velocity profiles in Figure 4c support this by displaying
the velocity overshoot (see the second solution profiles) when M varies. Thus, it is clear that reverse
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flow does exist in the stretching sheet case, and this may be due to the state of the sheet where the
suction intensity is weak when the effect of M increases.Mathematics 2020, 8, x FOR PEER REVIEW 12 of 18 
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Figure 4. Impact of the magnetic parameter (M) on: (a) the reduced skin friction coefficient; (b) velocity
profiles as M varies past a shrinking sheet (ε = −4); (c) velocity profiles as M varies past a stretching
sheet (ε = 7) when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, and φ = 0.02.

Figure 5 portrays the effect of the nanoparticle volume fraction or φ on C f xRe1/2
x

and velocity

profiles. The increment in φ increases the values of C f xRe1/2
x

over a permeable shrinking sheet.
An increased ratio of φ in the base fluid increases fluid viscosity, which then enhances the fluid velocity
past the permeable shrinking sheet (see Figure 5b). These then affect the wall shear stress to increase
and, consequently, raise the values of C f xRe1/2

x
. Velocity overshoots in the boundary layer are apparent

in Figures 2b, 3b, 4b and 5b. These velocity overshoots near the permeable shrinking sheet indicate
that the fluid velocity is higher than the shrinking sheet’s velocity [42].

Table 3 exhibits the effect of the radiation parameter (Rd) on the reduced local Nusselt number(
Re−1/2

x
Nux x−2/5

)
over the permeable shrinking surface. Both solutions allude to the enhancement of

Re−1/2
x

Nux x−2/5 when the impact of radiation grows in the fluid flow region. An increment in Rd hints
at the release of energy in the form of heat from the fluid flow and decreases the fluid temperature profile.
Thus, the thermal boundary layer becomes thinner and the wall heat flux increases. The depreciation
in the thermal conductivity induces an increase in the rate of heat transfer or

(
Re−1/2

x
Nux x−2/5

)
.
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Furthermore, the magnetic parameter and the nanoparticle volume fraction have minimal effect in
delaying flow separation. This is evident by the critical values (ε0), as shown in Figures 4a and 5a.Mathematics 2020, 8, x FOR PEER REVIEW 13 of 18 
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Figure 5. Impact of the nanoparticle volume fraction (φ) on: (a) the reduced skin friction coefficient;
(b) velocity profiles as φ varies when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, M = 0.5,
and φ = 0.02.

Table 3. The effect of the radiation parameter (Rd) on the reduced local Nusselt number when
M = 0.5, m0 = 1.5, Pr = 4.36,φ = 0.02, s = 7, and De = 1.5 as ε varies.

ε Radiation Parameter (Rd)
Re−1/2

x Nuxx−1/5

First Solution Second Solution

−1.5 0.5 −1846.311663 −1846.31001
−3.5 −1845.804534 −1845.803095
−5.5 −1845.296838 −1845.296378
−6.5 −1845.042742 −1845.042486
−1.5 1.2 −1846.051576 −1846.046864
−3.5 −1845.195172 −1845.191067
−5.5 −1844.337149 −1844.335834
−6.5 −1843.907426 −1843.906694
−1.5 3.5 −1845.128211 −1845.099751
−3.5 −1844.064298 −1844.051593
−5.5 −1842.553219 −1842.549137
−6.5 −1841.795465 −1841.793188

The results of the stability analysis are presented in Table 4. The first solution achieves the
positive eigenvalues while the second solution attains the negative eigenvalues. Based on the signs of
eigenvalues, one can say that the positive eigenvalues specify the first solution as a stable solution;
the stable solution can be understood as feasible and able to overcome the growth of an initially
given disturbance. Furthermore, the negative eigenvalues reveal the second solution as an unstable
solution associated with flow separation. The second solution promotes the growth of an initially
given disturbance and hence achieves the negative eigenvalue. However, it is vital to identify and
verify the stability of non-unique solutions so that the variety of possibilities of fluid flow behavior can
be predicted.

Figure 6 depicts the streamlines of the Sutterby fluid under a number of settings. In particular,
Figure 6a shows the streamlines when the sheet is impermeable and stretching at the rate of 1.4,
while Figure 6b illustrates the streamlines when the sheet is impermeable and shrinking. The reverse
flow in Figure 6b is noticeable and proves that the shrinking sheet’s state instigates the reverse flow.
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Next, the streamlines for the fluid flow under the suction influence can be examined (see Figure 6c,d).
The reverse flow is now absent past the permeable shrinking sheet (Figure 6d). Thus, it is proved
that mass suction succeeds in sustaining the laminar boundary layer flow over a shrinking surface.
Figure 6e,f shows the behavior of fluid flow when the rate of stretching or shrinking increases; the fluid
pattern being pulled at the surface of the sheet is clear, and again the reverse flow is absent.

Table 4. Lowest eigenvalues (γ1) when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5, s = 7, M = 0.5,
and φ = 0.02 as ε varies.

ε
γ1

First Solution Second Solution

−6.8 0.5844 −0.4163
−6.82 0.2842 −0.1794
−6.822 0.2339 −0.1354
−6.8250 0.1128 −0.0237
−6.82520 0.0961 −0.0077
−6.825250 0.0911 −0.0028
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Nomenclature 

Roman letters 

a  dimensional positive constant 

A1 first order Rivlin–Erickson tensor 

0B  magnetic field strength 

pC  specific heat capacity 

Figure 6. Streamlines when Rd = 1.2, m0 = 1.5, Pr = 4.36, De = 1.5,φ = 0.02, M = 0.5; (a) s = 0, ε = 1.4;
(b) s = 0, ε = −1.4; (c) s = 7, ε = 1.4; (d) s = 7, ε = −1.4; (e) s = 7, ε = 4; (f) s = 7, ε = −4.
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7. Conclusions

The present numerical investigation aimed to reveal the Sutterby nanofluid fluid flow and heat
transfer over a permeable stretching/shrinking surface together with the effects of thermal radiation
and magnetohydrodynamics (MHD). The appropriate form of the similarity transformations for the
present flow problem was derived using scaling group analysis. The newly derived similarity variables
then transformed the mathematical model into a more straightforward form to solve the boundary
value problem utilizing the solver function bvp4c in the MATLAB software. The significant results are
summarized as follows:

• An increment in the suction parameter, the Deborah number, and the nanoparticle volume fraction
delay flow separation.

• The dominance of the magnetic parameter in the fluid flow regime accelerates flow separation.
• Non-unique solutions are observed when governing parameters, such as the suction parameter,

the Deborah number, the magnetic number, the radiation parameter, and the nanoparticle volume
fraction, vary.

• The increment in the radiation parameter slightly enhances the convective heat transfer rate past
a permeable shrinking sheet.

• Stability analysis elucidates the first solution as a stable solution, and the second solution as an
unstable solution.
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Nomenclature

Roman letters
a dimensional positive constant
A1 first order Rivlin–Erickson tensor
B0 magnetic field strength
Cp specific heat capacity
CH3(CH2)4CH3 n-Hexane
De Deborah number
E material time constant
Fe3O4 magnetite
fw constant mass transfer parameter
I identity tensor
k thermal conductivity
k1 Rosseland mean absorption coefficient
M magnetic parameter
m power-law index
p pressure
Rd radiation parameter
S extra stress tensor
Pr Prandtl number
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Roman letters
T Cauchy stress tensor
t dimensional time variable
Tw wall temperature
T∞ free stream temperature
T0 reference temperature
u dimensionless velocity
u dimensional velocity
u1 reference velocity
V velocity field
v1 normal reference velocity
vw dimensionless surface mass flux velocity
vw dimensional surface mass flux velocity
x, y dimensionless Cartesian coordinates
x, y dimensional Cartesian coordinates
Greek letters
α thermal diffusivity
.
γ second invariant strain tensor
γ1 smallest eigenvalue
ε stretching/shrinking parameter
ε0 critical value
η similarity variable
θ dimensionless temperature
µ0 viscosity at low shear rates
µ dynamic viscosity
ν kinematic viscosity
ρ density
σ electrical conductivity
σ1 Stefan Boltzmann constant
τ dimensionless time variable
φ nanoparticle volume fraction
ψ stream function
Subscripts
b f base fluid
e condition at the free stream
n f nanofluid
s solid fractions
w condition at the wall
Superscript
′ differentiation with respect to η
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