Reliability Analysis Of Gate-All-Around Floating Gate (GAA-FG) With Variable Oxide Thickness For Flash Memory Cell

Farah Hamid¹, N. Ezaila Alias¹, Afiq Hamzah¹, Zaharah Johari¹, M. L. Peng Tan¹, Razali Ismail¹ and Norhayati Soin²

¹School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Malaysia

²Department of Electrical Engineering, Faculty of Engineering, University Malaya, Malaysia

ezaila@utm.my

Abstract

In this work, a concept of tunnel barrier engineering using Variable Oxide Thickness (VARIOT) of lowk/high-k stack is implemented in Gate-All-Around Floating Gate (GAA-FG) memory cell to reduce P/E operational voltage, improve the efficiency of data retention after 10 years and endurance after 10⁴ of P/E cycles. This work begins with the VARIOT optimization of five high-k dielectric materials which are ZrO₂, HfO₂, La₂O₃, Y₂O₃ and Al₂O₃ in which these high-k dielectrics can be embedded onto low-k dielectric layer which is SiO₂. The impact of the proposed structure on the device characteristic is analyzed through simulated transient performances of the GAA-FG memory cell with optimized parameters are accessed to offset the trade-off between P/E characteristics and the device reliability including data retention and endurance.

(Keywords: High-k, P/E, Retention, Endurance, Flash memory)

Introduction

3-D floating gate flash NAND technology has been extensively manufactured in which offers bigger data storage [1]. One of it is vertical stack of GAA-FG structure. The GAA-FG has been downscaled for better P/E process and transient performance [2]. However, there have been some reports suggest that the device scaling faced severe challenges due to the reliability concerns and practical physical limitations such as capacitive coupling of FGs along the string line of conventional-FG (C-FG) 3-D NAND which affected the P/E operational voltage and speed degradations [3]. Thus, the floating gate potential is reduced by the same factor the C-FG cell needs higher P/E voltages to yield wide memory window [1]. To overcome this limitation, the tunnel barrier engineering (TBE) is incorporated in GAA-FG memory cell for high tunneling current which led to the faster P/E operation. VARIOT stack technology has high field sensitivity than single SiO₂ layer resulted in low P/E voltage, shorter P/E operation time and less leakage in long-term retention time [4]. Although the effect of incorporating the high-k

dielectric material into the tunnel oxide layer is proven better; serious attention has been paid to the optimization of high-k dielectric materials based on their characteristics and suitability [5]. An attempt has been made to reduce P/E voltages by using triangular GAA structure [6]. To offset the P/E and reliability characteristics, a validation study is conducted between fabricated triangular GAA-FG [6] and cylindrical GAA-FG [3] memory cell to compare the transfer characteristic and transient performances of both GAA-FG memory cell. Therefore, in this paper, an optimization work has been done to determine the best stacking layer between low-k/high-k, which focused on the memory performances of the cylindrical GAA-FG memory cell. Also, the device and transient performances of GAA-FG memory cell are investigated by examining the tunneling current, P/E operation and device reliability included data retention and endurance.

Simulation Details

The simulation of GAA-FG memory cell is carried out by using 3-D ATLAS Simulator. By implementing the engineered tunnel stack of SiO₂ embedded with high-k materials of ZrO₂, HfO₂, La_2O_3 , Y_2O_3 and Al_2O_3 to the GAA-FG memory cell, the device and transient performances are accessed. The simulation flow work is divided into two parts; 1) VARIOT optimization and 2) variability test of the low-k SiO₂ tunnel layer. The purpose of VARIOT optimization is to find the best combination of lowk/high-k stack and extract the Fowler-Nordheim (F-N) coefficients. Table 1 lists the dielectric parameters need to be defined in the Technology Computer Aided-Design (TCAD) Silvaco ATLAS for VARIOT optimization work. Then, to determine flash memory constraints. The memory constraints are needed to a domain down-selection in determining the optimum EOT and low-k SiO₂ tunnel layer. Then, the best lowk/high-k combination is determined based on the gate voltage during program, read-disturb and retention conditions as given in Table 2. After these two things are clarified, the simulation of 3-D of GAA-FG

device structure was conducted for simplicity only to study the electrical behavior of the asymmetric VARIOT stacks of different high-k dielectric materials. For fair comparison of P/E efficiency and reliability characteristics (data retention and data endurance), the simulation of GAA-FG with the best stacking layer which is SiO₂/La₂O₃ tunnel barrier is performed and plotted. The structure of GAA-FG with SiO₂/La₂O₃ tunnel stack is shown in Fig.1 meanwhile its device parameters are stated in Table 3. From the table, the physical thickness of the low-k and high-k oxide thickness can be calculated using Eq. (1).

$$EOT = T_{ox} + (3.9/\varepsilon_{hk})T_{hk}$$

(1)

As for P/E process, low operational voltage is applied (10/-12V) to compare the operational speed and memory window of the P/E characteristics. Then, data retention simulation is performed by applying gate stress 3V/-3V for program/erase state for 10^4 times then the data is extrapolated by using Power's Law model until 10 years. Meanwhile, the data endurance is done by simulation of the GAA-FG memory cell device up to 10^4 of P/E cycles. Finally, a comparative analysis is made between GAA-FG cell with SiO₂/La₂O₃ tunnel barrier and single barrier, SiO₂ for the device and transient performances.

Results and Discussion

For the VARIOT optimization result, any value of T_{ox} that can endure V_g>3.6V during read-disturb and V_g>|-1.5V| during retention are extracted. Based on the dashed-lines, two permissible ranges of Tox that satisfies both constraints (read-disturb and retention) are found and combined with Vg-Tox of program constraint, the minimum EOT for each VARIOT combinations are determined. Under the retention constraint, all the VARIOT combinations under study have satisfied the retention constraint EOT=4nm as shown in Fig. 2(a). However, under a more restrictive constraint of the read-disturb (refer Fig. 2(b), only SiO₂/La₂O₃ able to retain its minimum EOT at 4nm and as the rest are at 5nm (SiO₂/Al₂O₃), 6nm $(SiO_2/HfO_2and SiO_2/ZrO_2)$ and $8nm (SiO_2/Y_2O_3)$. Referring to their minimum EOT, it was found that the combination of SiO2/La2O3 and SiO2/Al2O3 have the thinnest $T_{ox} = 1$ nm. However, SiO₂/La₂O₃ has the upper hand due to its lowest EOT. Therefore, the F-N coefficients are extracted by plotting the F-N plot $(J_g/E^2 \text{ versus } 1/E).$

Further investigation on the memory performance, a set of simulation to analyze the data retention and endurability of the proposed device structure have been done. Fig. 3 shows the comparison of P/E characteristics for GAA-FG with SiO₂/La₂O₃ tunnel stack and experimental data of GAA-FG cell for P/E operational time of 10ms. It shows that GAA-FG with SiO₂/La₂O₃ tunnel stack has wider memory window. It shows that engineered tunnel stack gives significant impact in improving the P/E efficiency and more electrons can be stored in that memory cell. Retention characteristic of GAA-FG cell is shown in Fig. 4 under gate stress (3/-3V). Engineered tunnel stack (SiO_2/La_2O_3) achieved larger V_{th} shift compared to single stack, SiO₂. Wider memory window can be obtained after 10 years of extrapolation although SiO₂/La₂O₃ tunnel stack steeper threshold shift compared to single layer, SiO₂. In addition, the endurance of the GAA-FG cell is shown in Fig. 5 where it is performed by applying constant P/E cycle, which indicated by the plotting of V_{th} shift versus P/E cycles. In the figure both stacks show obvious degradation after 10^3 cycles. It is a sign that stress still affected in both stacks as there is an obvious shift after 10^3 of P/E cycles.

Conclusion

In summary, this paper presents the optimized lowk/high-k stacking layer which focused on the memory performances of the cylindrical GAA-FG memory cell. The characterization of GAA-FG with engineered tunnel stack (SiO₂/La₂O₃). As compared to the GAA-FG without tunnel barrier engineering (TBE), the proposed device exhibits faster P/E operational speed which required lower operational voltage to yield wider threshold voltage shift. In addition, the retention and endurance of GAA-FG with SiO₂/La₂O₃ tunnel stack shows 5% and 16% of data loss indicating that SiO₂/La₂O₃ tunnel barrier has become a promising candidate to improve P/E efficiency and device reliability.

Acknowledgments

The authors gratefully acknowledge the Ministry of Higher Education (MOHE), Malaysia for the financial support under the University Grant project number Q.J130000.2651.16J19. Besides, thanks to the Research Management Center (RMC) of University Teknologi Malaysia (UTM) for accommodating an excellent research environment to accomplish this work.

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on November 22,2021 at 00:36:49 UTC from IEEE Xplore. Restrictions apply.

References

- [1] Parat Krishna and Chuck Dennison, International Electron Devices Meeting, IEDM, pp. 3.3.1-3.3.4, 2016.
- [2] Sarves Verma, PhD Thesis, Stanford University May 2010.
- [3] A. Hamzah, N. E. Alias, and R. Ismail, JJAP, Vol. 57, No. 6S3, pp. 1-20, 2018.
- [4] S. Verma et al., IEEE Electron Device Letters. Vol. 29, pp. 252-254, 2008.
- [5] S. Verma et al., 65th Annual Device Research Conference, Vol. 24, pp. 85-86 2007.
- [6] K. H. Lee et al., Applied Physics Letters, Vol. 103, No. 15, pp. 1-5, 2013.

Table 1: Dielectric parameters need in the simulation for different materials

Dielectric Parameters	HfO ₂	ZrO ₂	Al_2O_3	La ₂ O ₃	Y_2O_3	SiO ₂
Barrier Height, $\Phi_B(eV)$	1.5	1.4	2.8	2.3	1.6	3.2
Dielectric Constant, ϵ_r	19	25	9.6	27	25	3.9
Electron Affinity, χ (eV)	2.7	2.8	1.3	1.9	2.4	1.0
Band Gap, E_G (eV)	6.0	5.8	8.8	6.0	6.0	9.0
Effective Mass, $m * / m_0$	0.2	0.2	0.3	0.25	0.25	0.5

Fig. 1. Cross-section of 3-D GAA-FG with SiO_2/La_2O_3 tunnel stack. The physical thickness for tunnel stack is 22nm where SiO_2 layer is 1nm.

Flash Memory Constraints	Dimension		
Tolerable read-disturb current density (A/cm ²)	< ~ 4 x 10 ⁻¹¹ at around 3.6V		
Tolerable retention current density(A/cm ²)	< 10 ⁻¹⁶ at around -1.5V		
Tolerable programming current density(A/cm ²)	3 x 10 ⁻²		
Endurance	> 10 ⁴ P/E cycles		

Table 3: GAA-FG parameters used in the simulation

•					
Dev	Dimension				
Area width, A	1.2 x 10 ⁻¹²				
Area gate, A _G	1.55 x 10 ⁻¹⁰				
Gate Length,	400				
Blocking Oxi	20				
FG thickness,	25				
Body Doping	1 x 10 ¹⁹				
S/D Doping (1 x 10 ¹⁹				
Oxide Charge	-3.6 x 10 ¹²				
Opti	Dimension				
Tunnel	The low-k oxide layer, $T_{\mbox{\scriptsize ox}}$	1			
Oxide,T _{tun}	The high-k oxide layer,	21			
(nm)	T _{hk}				

Fig. 2. Program Voltage, Vprog for each EOT of all VARIOT stack (a) Retention constraint > |-1.5V| (b) Read Disturb Constraint > 3.6V

2020 IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on November 22,2021 at 00:36:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Threshold voltage shift of GAA-FG for 10/-12V operational voltage. Engineered tunnel stack reduced the P/E operational speed for a fixed P/E voltage and time. As shown in the figure, the FG is charged earlier at $\sim 10^{-6}$ s for SiO₂/La₂O₃ stack and led a wider memory window than experimental data

Fig. 4. 10 years approximation of data retention under positive (erase state) and negative(program state) gate stress 3/-3V. For a given P/E operational time, engineered tunnel stack shows steeper slope and wider memory window compared to experimental data.

Fig. 5. Comparison of data endurance after 10^4 of P/E cycles between GAA-FG with SiO₂/La₂O₃ and single stack, SiO₂. Wider threshold shift can be observed for SiO₂/La₂O₃ stack resulting to a better endurance (16% data loss) compared to the single stack (46% data loss).

2020 IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers