
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Towards Multi Robot Task Allocation and
Navigation using Deep Reinforcement Learning
To cite this article: A Elfakharany et al 2020 J. Phys.: Conf. Ser. 1447 012045

View the article online for updates and enhancements.

You may also like
Multi-robot Simultaneous Localization and
Mapping based on Pose Graphs Fusion
Guangchuan Yin, Zhenping Sun and Wei
Wang

-

Agent-based modelling of multi-robot
systems
M Oprea

-

Multi-robot Task Allocation for Search and
Rescue Missions
Ahmed Hussein, Mohamed Adel,
Mohamed Bakr et al.

-

Recent citations
Multi-Robot Coordination Analysis,
Taxonomy, Challenges and Future Scope
Janardan Kumar Verma and Virender
Ranga

-

This content was downloaded from IP address 161.139.222.42 on 22/11/2021 at 00:23

https://doi.org/10.1088/1742-6596/1447/1/012045
/article/10.1088/1755-1315/170/4/042167
/article/10.1088/1755-1315/170/4/042167
/article/10.1088/1757-899X/444/5/052026
/article/10.1088/1757-899X/444/5/052026
/article/10.1088/1742-6596/570/5/052006
/article/10.1088/1742-6596/570/5/052006
https://doi.org/10.1007/s10846-021-01378-2
https://doi.org/10.1007/s10846-021-01378-2
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvLk0fVuXNlQpwGk4ljSDVn1Ax1DTV8gGJOygzXnOQix_6wVDY7razTaCMo6MpHEPYiR2_Lbyc4lPQBSm2JsazX41Q30HI_yQdcrxjvjJQevEbCsg_trfjo8_lPYBek8rfecfiYiAsDeGP-IIPhfxtsqNVTietoLCPLw-2zvSMVSe5Ndc9O9xjkzbhlzU7t9qOJ9YLRu5621CfWSZldXnhOgby1cXcN1WCjon3k9XuQ1wggv0J_lSn12p9KtC1aI2VTon2UuqoWDqBRloA3sOx59S_dTr8DVac&sig=Cg0ArKJSzG6PuxJxEqg2&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

1

Towards Multi Robot Task Allocation and Navigation using

Deep Reinforcement Learning

A Elfakharany1, R Yusof and Z Ismail

Center for Artificial Intelligence & Robotics, Malaysia Japan International Institute of

Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala

Lumpur, Malaysia

E-mails: efahmed@graduate.utm.my, rubiyah.kl@utm.my and zool@utm.my

Abstract. Developing algorithms for multi robot systems to reach target positions and navigate

safely in the environment is an open field of research. Most systems treat Multi Robot Task

Allocation (MRTA) and Multi Robot Path Planning (MRPP) as two separate steps each with its

own set of algorithms in which the MRTA algorithm assigns each robot to a task and the MRPP

algorithm guides each robot through the environment towards the assigned goal position while

avoiding both static and dynamic obstacles. In this paper, we present a method that combines

both steps by using a deep reinforcement learning model. The model consists of a decentralized

sensor level policy which outputs the robot’s velocity to guide it through the environment

towards the selected goal position and avoiding collisions. The model was trained in a simulation

environment and all the robots are homogenous differential drive robots. The objective is to

ensure that each robot reaches a unique goal position with the number of goal positions is equal

to the number of robots. The results of training the policy in an environment is presented with

both static and dynamic obstacles with four robots and four goal positions.

1. Introduction

Multi Robot Task Allocation (MRTA) and Multi Robot Path Planning (MRPP) are two fields of interest

for robotics and artificial intelligence researchers. Both fields have applications ranging from search and

rescue operations to warehouse automation. MRTA is the process of assigning robots to tasks in a multi

robot system in order to decrease the probability of collisions between the robots and decrease the total

cost expended by the robot [1], make it be: time, energy or distance. While MRPP is concerned with

finding an optimal path between the start position and the end position that avoids collisions with other

robots and obstacles [2]. Most multi robot systems treat MRTA and MRPP as two different steps [3].

However, one of the main problems that occur due to the decoupling of both MRTA and MRPP is that

most MRTA algorithms is the lack of incorporation of any dynamic changes in the path’s cost due to

the existence of dynamic obstacles [4] or due to partial observability.

In this paper, we present a decentralized sensor level deep reinforcement learning policy that performs

both tasks in a single step. The inputs to the policy are the positions of the goals, the positions of the

other robots and the laser scanner readings. The output of the policy are the velocities of the robot it’s

running on. The output of the network should drive the robot towards a unique goal that none of the

other robots are moving towards while avoiding obstacles.

1 To whom any correspondence should be addressed.

mailto:rubiyah.kl@utm.my

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

2

2. Problem formulation

The problem of multi-robot task allocation and navigation is defined in the context of a differential drive

mobile robot moving in a 2D plane with both static and dynamic obstacles and other moving robots (all

robots are homogenous). The goal locations are laid out in the environment, the number of goal locations

equals the number of robots.

Each robot (i) at time step (t) receives an observation (𝑂𝑖
𝑡) and calculates the output command (𝑎𝑖

𝑡)

which drives the robot from the start position (𝑃𝑖) towards the goal position (𝐺𝑖). The observation for

each robot is composed of four parts: 𝑂𝑖
𝑡 = [𝑂𝑐

𝑡 , 𝑂𝑜
𝑡 , 𝑂𝑙

𝑡 , 𝑂𝑡
𝑡], where 𝑂𝑐

𝑡 is the relative positions and

velocities of all the goals in the robot’s local polar coordinates (the goals locations are static but the

relative positions changes as the robot moves), 𝑂𝑜
𝑡 is the relative positions and velocities of all the goals

in the other moving robots’ local polar coordinates, 𝑂𝑙
𝑡 is the 2D laser scanner measurements and its

time derivative, while 𝑂𝑡
𝑡 is the current time of the robot starting from the beginning of the robot’s

motion. The observation only provides partial information about the robot’s state and the other robots’

states, which leads the robot to predict the other robots’ intent.

Given the observation, each robot calculates its action independently. The action is composed of two

parts: 𝑎𝑖
𝑡 = [𝑣𝑙

𝑡 , 𝑣𝑟
𝑡], where 𝑣𝑙

𝑡 is the robot’s linear velocity and 𝑣𝑟
𝑡 is the robot’s rotational velocity. The

actions are sampled from two distributions produced by a policy (π) which is copied across all the robots:

 𝑎𝑖
𝑡 ~ 𝜋𝜃 (𝑎𝑖

𝑡 | 𝑂𝑖
𝑡) (1)

where θ denotes the parameters of the policy. The output action guides the robot towards the goal which

the policy selected while avoiding obstacles on the way to the goal within the time limit between two

observations. The target allocation is done in a way that the policy doesn’t explicitly select one of the

goals, but outputs the actions that drive the robot towards the selected goal position.

The problem is formulated as Partially Observable Markov Decision Process (POMDP) [5], in which a

sequence of observations and actions made by each robot forming a trajectory (𝑙𝑖) from its start position

(𝑃𝑖) till the goal position chosen by the policy (𝐺𝑖), where (𝑡𝑖
𝑔

) is the travelled time.

The main objective is to find an optimal policy that minimizes the expectation of the total arrival time

of all robots to their goals successfully, defined as:

𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝜃

 𝐸[𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝑡𝑖
𝑔
|𝜋𝜃] (2)

3. Methodology

During this section we will describe the simulation environment, then we will describe the reinforcement

learning setup that we are using, finally we will describe the neural networks architecture.

Figure 1. Simulation layout. Figure 2. Model training block diagram.

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

3

3.1. Simulation environment

The simulation environment used to train the robots was built using the Gazebo simulator [6]. The area

of the simulation environment is (5m x 5m) which contains four TurtleBot3 Waffle Pi robots [7], four

goal positions, two dynamic obstacles and multiple static obstacles as shown in Figure 1. At the

beginning of training the robots and goals are spawned at random positions, the number of goals is the

same as the number of robots. During training, when all the robots reach all the goal positions the goals

positions are respawned at random positions.

3.2. Deep reinforcement learning setup

In our study we focus on learning a policy that is capable of controlling a robot within a multi robot

system. The policy selects one goal position within multiple ones and produces a series of actions that

gets the robot to the goal position while avoiding obstacles. Inherently the policy should learn the intents

of other robots and which goal position each of the other robots is going towards and aim for a different

goal position.

Algorithm 1. PPO with multi-robot system

For our deep reinforcement learning algorithm we are using Proximal Policy Optimization (PPO)

method [8] shown in Algorithm 1, we are adapting the centralized learning, decentralized execution

paradigm [9] in which each robot has a copy of the policy network, each robot collects its data

(𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡) from the environment and after each episode it sends the rollouts of data over to a centralized

copy of the policy. The gradients are then calculated on the centralized policy and the centralized policy

is updated. After the update, each robot receives a copy of the updated policy weights to start collecting

a new batch of data as shown in Figure 2. The episode ends either by one of the robots having a collision

or all the robots reaching all the goals positions successfully or the episode duration is exhausted.

1. Initialize policy network 𝜋𝜃 old policy network 𝜋𝜃𝑜𝑙𝑑 and value network 𝑉𝜑 using hyperparameters in

Table 1.

2. For iteration = 1,2,… do

3. //data collection

4. For robot i = 1,2,3,…N do

5. Run Policy 𝜋𝜃 for 𝑇𝑖 time steps, collecting (𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡) , where 𝑎𝑖

𝑡 = [𝑣𝑙
𝑡 , 𝑣𝑟

𝑡]

6. Calculate Advantage 𝐴𝑖
𝑡 = ∑ 𝛾𝑡𝑟𝑖

𝑡𝑇𝑖
𝑡=0 − 𝑉𝜑(𝑂𝑖

𝑡)

7. Break if 𝑇𝑖 >= 𝑇𝑚𝑎𝑥

8. End for

9. //Update Policy & value

10. For j = 1,2,…. Epochs do

11. //policy loss

12. 𝐿𝑐𝑙𝑖𝑝 = ∑ min (
𝜋𝜃 (𝑎𝑖

𝑡
|𝑂𝑖
𝑡
)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑖
𝑡
|𝑂𝑖
𝑡
)
∗ 𝐴𝑖

𝑡 , 𝑐𝑙𝑖𝑝 (
𝜋𝜃 (𝑎𝑖

𝑡
|𝑂𝑖
𝑡
)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑖
𝑡
|𝑂𝑖
𝑡
)
, 1 − 𝜖, 1 + 𝜖) ∗ 𝐴𝑖

𝑡)𝑇𝑖
𝑡=0 /𝑇𝑖

13. //value loss

14. 𝐿𝑣 = −𝑐1 ∗ ∑ (𝐴𝑖
𝑡)𝑇𝑖

𝑡=0 /𝑇𝑖

15. //entropy loss

16. 𝐿𝑒 = −𝑐2 ∗ ∑ (𝑎𝑖
𝑡 ∗ log (𝑎𝑖

𝑡))𝑇𝑖
𝑡=0 /𝑇𝑖

17. //total loss

18. 𝐿 = 𝐿𝑐𝑙𝑖𝑝 + 𝐿𝑣 + 𝐿𝑒

19. Update 𝜃, 𝜑 with Adam optimizer [10] w.r.t L

20. End for

21. 𝜋𝜃𝑜𝑙𝑑 ← 𝜋𝜃

22. End for

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

4

Both the actor and critic networks share the parameters of their first layers as shown in Figure 3. The

actions produced by 2 heads each has softmax categorical activation, the discrete output of each head is

converted to a continuous value for each action in the range [-1,1].

Table 1. Hyperparameters used in Algorithm 1

Parameter Value

𝛾 0.95

𝑇𝑚𝑎𝑥 120 seconds

Epochs 5

𝜖 0.2

𝑐1 0.5

𝑐2 0.01

Batch size 4096

Learning rate 1e-5

Learning rate decay 0.96

Learning rate decay steps 1000

The observation space (𝑂𝑖
𝑡) is –as mentioned in Section 2.0- consisted of: (𝑂𝑐

𝑡 , 𝑂𝑜
𝑡 , 𝑂𝑙

𝑡 , 𝑂𝑡
𝑡). 𝑂𝑐

𝑡 is the

relative goals positions and velocities in the current robot’s polar coordinates, the 𝑂𝑐
𝑡 is a 3D tensor

(𝑂𝑐
𝑡 ∈ ℝ75×4×4). The first dimension represents the past 75 consecutive values of this observation. The

second dimension represents the goal’s distance from the robot, the goal’s heading from the robot, the

time derivative of the goals distance and the time derivative of the goals heading. The third dimension

represents each of the goals in the environment. Since 𝑂𝑐
𝑡 encompasses the information of all the goals

relative to the current robot, it enables the robot to choose which goal position to aim towards. While

𝑂𝑜
𝑡 is the relative goals positions and velocities in the other robots polar coordinates, it’s as 4D tensor

(𝑂𝑜
𝑡 ∈ ℝ75×3×4×4), the third dimension represents each of the other robots while the first, third and

fourth are the same as 𝑂𝑐
𝑡. Since 𝑂𝑜

𝑡 encompasses the information of all the goals relative to the other

robots, it enables the current robot to predict the intents of other robots and which robot is aiming

towards which goal, this aids the current robot to choose a unique goal position to aim towards. 𝑂𝑙
𝑡 is

the 360° laser data, it’s a 3D tensor (𝑂𝑙
𝑡 ∈ ℝ75×2×360), the first dimension represents the previous 75

frames of measurements, the second dimension represents the raw laser readings and the time derivative

of the raw laser readings. The third dimension represents all 360 distance values. 𝑂𝑙
𝑡 enables the robot

to detect bot static and dynamic obstacles and helps the robot to navigate without collisions. Finally 𝑂𝑡
𝑡

is a scalar representing the time spent since the robot started to move. Since the robots are required to

train to minimize the expectation of the total arrival time of all robots to their goals successfully, each

robot requires an input that informs it of the time-state 𝑂𝑡
𝑡. The action space 𝑎𝑖

𝑡 is consisted of two parts:

the robot’s linear velocity 𝑣𝑙
𝑡 and the robot’s rotational velocity 𝑣𝑟

𝑡, the network outputs each of them in

a 17 category discretised softmax distribution, the category with the highest probability is converted to

a continuous value within the range [-1,1] for each action.

The reward function is designed to incentivise each robot to choose and move towards a unique goal

position. It penalizes getting near to obstacles and colliding with them, multiple robots reaching the

same goal position and consuming long amounts of time to reach the goal:

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

5

𝑟𝑖
𝑡 =

{

(𝑟𝑑)𝑖

𝑡 + (𝑟ℎ)𝑖
𝑡 + (𝑟𝑜𝑏)𝑖

𝑡 + (𝑟𝑜)𝑖
𝑡 + (𝑟𝑡)𝑖

𝑡 , 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛

100, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑜𝑎𝑙
0, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑔𝑜𝑎𝑙 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑏𝑜𝑡

−100, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 (3)

while the robots are moving, the reward by robot i at time step t is a sum five terms as shown in (3),

(𝑟𝑑)𝑖
𝑡 is a reward that increases in value when the robot move towards the nearest goal:

 (𝑟𝑑)𝑖
𝑡 = 7 ∗ 0.05𝑑

𝑡/𝑑0 (4)

where 𝑑𝑡 is the robot’s current distance from the nearest goal while 𝑑0 is the initial distance between

the robot and the same goal. (𝑟ℎ)𝑖
𝑡 is a reward that increases in value when the robot is heading towards

the goal:

 (𝑟ℎ)𝑖
𝑡 = {

0.5 −
0.7|ℎ𝑒𝑎𝑑𝑖𝑛𝑔|

𝜋
, 𝑖𝑓 |ℎ𝑒𝑎𝑑𝑖𝑛𝑔| ≤

𝜋

2

−0.3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

where heading is the bearing of the nearest goal position relative to the robot. While (𝑟𝑜𝑏)𝑖
𝑡 is the reward

that penalizes the robot getting near to an obstacle:

 (𝑟𝑜𝑏)𝑖
𝑡 = 2.46 𝑙𝑜𝑔10(𝑚𝑖𝑛(𝑂𝑙

𝑡[0,0])) + 0.76 (6)

(𝑟𝑜)𝑖
𝑡 is the reward that penalizes the robot in case of it is moving towards a goal position which another

robot is moving towards:

 (𝑟𝑜)𝑖
𝑡 = 𝑚𝑎𝑥(0.5 𝑙𝑜𝑔10 (

𝑛𝑑𝑡

𝑛𝑑0
) , −10) (7)

where 𝑛𝑑𝑡 is the instantaneous distance of the nearest of the other robots towards the nearest goal to the

robot, while 𝑛𝑑0 is the initial distance. (𝑟𝑡)𝑖
𝑡 is the reward that penalizes the time consumed to reach the

goal:

 (𝑟𝑡)𝑖
𝑡 = 𝑚𝑎𝑥 (−1 ∗

𝑡

120
, 0) (8)

where t is the time in seconds since the start of the robot’s motion.

3.3. Neural Network Architecture

Figure 3. Network architecture

The policy network π_θ and the value network V_φ share the parameters of the first few layers, the

activation function of the shared layers is ReLU [11]. For the value head, the activation used is tanh

except for the final layer whose activation is linear. For the policy head, tanh activation was used for all

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

6

the layers except the two output layers whose activation is softmax. The total number of parameters is

1,179,347.

4. Simulation results and discussion

The neural network was implemented using Tensorflow [12] and the network training were run on a

Nvidia DGX station. The training took about 24 hours 43 minutes which is 7331 episodes with 1,799,109

time steps. 6 of the episodes ended by all the robots reaching all the goals, 2 of the episodes ended by

ending the episode duration and the rest ended by collisions. The goal positions changed randomly

during training only when all the robots reach all the goals.

Table 2 shows some performance metrics of the network per robot during training, it shows the average

HZ which is the average number of times a second the network runs. It shows the average linear and

rotational velocities [𝑣𝑙
𝑡, 𝑣𝑟

𝑡]. The table also includes the number of collisions each robot had during

training and the average time spent from the start of the episode till the collision. The table shows the

number of times each robot reached a goal position and the average time spent from the start of the

episode till it reached the goal position. Figure 4 shows the mean rewards per episode per robot.

Table 2. Performance metrics of all 4 robots during training.

Average HZ Average 𝑣𝑙

𝑡 Average 𝑣𝑟
𝑡 Collisions Reach a goal

mean/std mean/std mean/std number of occurrences/

mean time since episode

start/ std time since

episode start

number of occurrences/

mean time since episode

start/ std time since episode

start

Robot 0 13.3/6.8 0.15/0.6 0.05/0.5 2566/10.9/11.96 206/10.3/3.4

Robot 1 15.4/6.5 -0.47/0.6 0.13/0.3 1785/9.2/15.5 2882/4.7/1.7

Robot 2 13.4/6.8 -0.26/0.6 0.09/0.5 1782/11.3/14.3 308/9.3/2.5

Robot 3 13.4/6.8 0.007/0.6 0.1/0.4 1189/9.2/6.3 324/10.6/3.5

For testing, the network is evaluated on the same environment but we change the goal positions

randomly every 5 episodes. The test ran for 12 hours and 50 minutes, making 7531 episodes. Figure 5

shows the mean rewards per episode per robot. Table 3 shows the testing performance metrics.

Table 3. Performance metrics of all 4 robots during testing.

Average HZ Average 𝑣𝑙

𝑡 Average 𝑣𝑟
𝑡 Collisions Reach a goal

mean/std mean/std mean/std number of occurrences/

mean time since episode

start/ std time since

episode start

number of occurrences/

mean time since episode

start/ std time since episode

start

Robot 0 15.7/5.7 0.007/0.47 0.28/0.6 2666/5.12/4.2 8/13.27/4.97

Robot 1 15.5/5.7 -0.09/0.57 -0.29/0.57 1143/8.14/3.74 127/7.94/5.36

Robot 2 15.3/5.7 -0.03/0.56 0.08/0.45 542/6.35/5.36 124/7.46/2.38

Robot 3 15.6/5.6 0.36/0.47 0.13/0.43 3184/7.62/3.4 176/8.01/2

The results show that the policy network hasn’t yet converged to an acceptable robust performance. One

of the reasons might be the inherit difficulty of combining two tasks together for the network to solve.

In that case using curriculum learning [13] in which the model is trained on a simpler version of the task

first then its trained on the required task can aid the network to learn both tasks. A second reason might

be the network requires more hyperparameters tuning.

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

7

Figure 4. Mean reward per episode for each robot

during training.

 Figure 5. Mean reward per episode for each

robot during testing.

Table 4 shows a comparison between our approach and work done by others, the comparison is done in

terms of which parts of the multi robot system was replaced by a neural network trained by deep

reinforcement learning. It shows that our approach has a deep end to end neural network that does both

MRTA and MRPP, while others’ related work only does one part of a multi robot system using a neural

network. It also reports the computational time required for the neural network to produce a single set

of actions when given a single set of states. Our computational time is slightly bigger and that is

attributed to the fact that our neural network is larger than the others’ related work, that is due to the

incorporation of both MRTA and MRPP.

Table 4. Comparison in terms of which parts of the multi

robot system were replaced by a neural network and

computational time.

 MRTA MRPP CPU Computational

time

Long et al. [9] × √ 3 ms

Chen et al. [14] × √ 62 ms

Zhu et al. [15] √ × N/A

Our approach √ √ 63.7 ms

5. Acknowledgement

The authors would like to express gratitude to Malaysia-Japan Institute of Technology, Universiti

Teknologi Malaysia for funding this research under vote number R.K130000.7343.4B317.

ICaTAS 2019

Journal of Physics: Conference Series 1447 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1447/1/012045

8

6. Conclusion

This paper presented a deep reinforcement learning model that performs decentralized task allocation

and navigation for a multi robot system. We presented the results of training the policy network in a

simulation environment. The results show the network hasn’t converged to an acceptable performance

and it is suggested further enhancement based on hyperparameters tuning as well as using curriculum

learning.

7. References

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-

robot systems,” Int. J. Rob. Res., vol. 23, no. 9, pp. 939–954, 2004.

[2] L. E. Parker, “Path Planning and Motion Coordination in Multiple Mobile Robot Teams,” in

Encyclopedia of Complexity and System Science, E.-C. Robert A. Meyers, Ed. Springer, 2009.

[3] A. Hussein, M. Adel, M. Bakr, O. M. Shehata, and A. Khamis, “Multi-robot Task Allocation for

Search and Rescue Missions,” J. Phys. Conf. Ser. OPEN ACCESS.

[4] B. Woosley and P. Dasgupta, “Multirobot Task Allocation with Real-Time Path Planning,” in

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society

Conference, 2013.

[5] M. T. J. Spaan, “Partially Observable Markov Decision Processes,” Springer, Berlin, Heidelberg,

2012, pp. 387–414.

[6] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot

simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2004, vol. 3, pp. 2149–2154.

[7] “TurtleBot 3 e-manual.” [Online]. Available:

http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. K. Openai, and O. Klimov, “Proximal Policy

Optimization Algorithms,” CoRR, vol. abs/1707.0, 2017.

[9] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards Optimally Decentralized Multi-

Robot Collision Avoidance via Deep Reinforcement Learning,” in International Conference on

Robotics and Automation (ICRA), 2018.

[10] D. P. Kingma and J. L. Ba, “ADAM: a method for stochastic optimization,” arXiv Prepr.

1412.6980v9, pp. 1–15, Dec. 2015.

[11] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,”

Proc. 27th Int. Conf. Mach. Learn., no. 3, pp. 807–814, 2010.

[12] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A

system for large-scale machine learning,” in Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’16). , 2016.

[13] Y. Bengio, Jérôme Louradour, R. Collobert, and J. Weston, “Curriculum Learning,” in

Proceedings of the 26 th International Conference on Machine Learning, 2009.

[14] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-communicating multiagent

collision avoidance with deep reinforcement learning,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2017, pp. 285–292.

[15] Q. Zhu and J. Oh, “Deep Reinforcement Learning for Fairness in Distributed Robotic Multi-type

Resource Allocation,” in 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), 2018, pp. 460–466.

