
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Knowledge Sharing Framework for Modern Code
Review to Diminish Software Engineering Waste

Nargis Fatima1, Sumaira Nazir2, Suriayati Chuprat3
Razak Faculty of Technology and Informatics

University Technology Malaysia (UTM), Kuala Lumpur, Malaysia1, 2, 3
Faculty of Engineering and Computer Science

National University of Modern Languages (NUML), Islamabad, Pakistan1, 2

Abstract—Modern Code Review (MCR) is a quality assurance
technique that involves massive interactions between team
members of MCR. Presently team members of MCR are
confronting with the problem of waiting waste production, which
results in their psychological distress and project delays.
Therefore, the MCR team needs to have effective knowledge
sharing during MCR activities, to avoid the circumstances that
lead the team members to the waiting state. The objective of this
study is to develop the knowledge sharing framework for MCR
team to reduce waiting waste. The research methodology used for
this study is the Delphi survey. The conducted Delphi survey
intended to produce the finalized list of knowledge sharing
factors and to recognize and prioritize the most influencing
knowledge sharing factor for MCR activities. The study results
reported 22 knowledge sharing factors, 135 sub-factor, and 5
categories. Grounded on the results of the Delphi survey the
knowledge sharing framework for MCR has been developed. The
study is beneficial for software engineering researchers to
outspread the research. It can also help the MCR team members
to consider the designed framework to increase knowledge
sharing and diminish waiting waste.

Keywords—Knowledge sharing; modern code review; software
engineering wastes; waiting waste; lean software development

I. INTRODUCTION
Software engineering is known as a systematic application

of engineering approaches to the development of software [1].
It highly involves social interaction among stakeholders for the
development of cost-effective software [2]. It includes sub-
activities such as software requirement recognition, software
modeling, software testing, inspections, and Modern Code
Review (MCR) [3]. These activities yield wastes for instance
rework, defect, needless composite solution, waiting, extra or
erroneous feature, and mental distress [3], [4]. The various
perception of wastes available in the literature are given in
Table I.

MCR, a lightweight software engineering activity, has its
origin from Fagan’s review process [5], [6] and is largely
known since 2013 [5], [7]. Fagan’s review process is a
heavyweight code inspection that requires face to face
communications between team members [8]. While MCR is
informal, easy-going, and supported through review tools [5],
[9]. MCR aims to improve software quality through the
improvement of source code quality [5], [10], [11]. It is being
practiced by numerous organizations, for instance, Microsoft,
Google, etc. [9], [12].

Though MCR has overcome the inadequacies of Fagan’s
review process [16] and is aimed to enhance the source code
quality through widespread knowledge sharing between team
members of MCR [5], [9], [12], [10], however, the MCR
produces waiting waste due to lack of knowledge sharing [4],
[9], [17], [18], [19], [20].

Even though the existing research has paid attention to
knowledge sharing concerning software engineering activities
[21], [22], [23] however, knowledge sharing in the context of
MCR warrants attention from the researchers [9], [10], [12],
[24], regarding explorations of knowledge sharing factors for
MCR activities [25]. No, schematized inquiries are available
about that knowledge sharing facet concerning MCR to
decrease waiting waste. Thus, to minimize waiting waste, this
study aims to develop a knowledge sharing framework for
MCR.

This study is the an extension of our previous work that
involved the identification of knowledge sharing factors for
MCR through Systematic Literature Review (SLR) and expert
review [25]. The result of SLR and expert review are reported
in [24], [25]. In our previous studies, the SLR [24], [25] was
performed to identify the knowledge sharing factors from the
literature and the expert review [25] has been performed to
validate the identified list of knowledge sharing factor. In this
study, the Delphi survey has been conducted with experts from
the industry to finalize the list of knowledge sharing factors,
sub-factors and categories for their practicality concerning the
industry, to identify and prioritize the most influential
knowledge sharing factors for MCR activities, to get
suggestion about naming conventions, grouping, and sub-
grouping of provided knowledge sharing factors, sub-factors,
and categories, to recognize new industry-based knowledge
sharing factors, with their associated sub-factors, and
categories in the context of MCR. The results of the Delphi
survey have been utilized to develop Knowledge sharing
framework for MCR to minimize waiting waste.

The remaining paper is organized as Section II describes
the research background. The research methodology is
discussed in Section III while Section IV introduces the results
of the Delphi study. Section V highlights the study conclusion.
Section VI highlights future work suggestions. Section VII
highpoints the study contribution.

442 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE I. DEFINATION OF OF WASTES FROM LITERATURE

Definition Reference

“All activities and work products that do not contribute to
customer value” or “Everything that is not consider
valuable” or “Non- efficient way of working” or
“Everything that does not make it to the release i.e.
product feature/qualities not delivered and were a waste
of time to investigate and or develop”

[2]

“Activities that absorb resources and increase cost
without adding value”. [13]

“Any Bottlenecks” or “Waste is anything that does not
add value to a product, value as perceived by the
customer”.

[2], [14]

“Something happens against the flow”. [2], [15]

II. BACKGROUND
Software engineering is a well-disciplined approach to

develop quality software [26]. It is social as well as a technical
activity that integrates additional activities [3], [27] such as
software requirement recognition, software modeling, software
testing, inspections, and MCR. These activities generate
several wastes [2], [3], [4]. Waste may lead to mental distress,
project delays, and software failure. The research on waste
recognition and reduction has been started in the 1980s when
Toyota revolutionized the automobile industry with a “Lean
Manufacturing” [4], [14]. In the year 2000, the lean
manufacturing concept was shifted from manufacturing to
software engineering domain [28] and was named as lean
software development. Since then numerous researches have
been reported in the software engineering domain focusing on
waste recognition and reduction [2], [3], [4].

In the software engineering domain several wastes have
been identified for instance extra or erroneous features, “task
switching, defects, “relearning and handoff”, needless
composite solutions, rework, “extraneous cognitive load, and
waiting [2], [3], [4]. Though each software engineering activity
includes different software engineering actions, therefore, each
activity can generate various distinct wastes [3]. MCR is a
critical software engineering activity to improve code quality
[5], [29], [30]. In this activity, the reviewer reviews the source
code, prior to sending it to the code repository. MCR is
supported with the aid of review tools, for instance, Code flow,
such as Gerrit, Review board, Phabricator, etc. [5], [9], [10],
[12], [31]. Fig. 1 represents the MCR process overview.

It is claimed that waste such as extra or erroneous features,
defects, needless composite solutions, rework, and waiting are
generated during MCR [2], [3], [4]. It is also conveyed that if
the organization needs to minimize one waste, then the
organization must emphasize waiting waste [2], [15], [28].
Waiting waste deals with delay between two consecutive
activities [3], [4]. For instance, in the case of MCR time delay
between source code submission for review by the author and
receiving feedback from the reviewer [9], [10]. It is stated that
one of the reasons behind waiting waste in MCR is a lack of
knowledge sharing [4], [9], [18], [19], [32]. The waiting waste
affects the efficiency and productivity of the developers [2],
[3], [9], [18], [19], [32], and it also leads to project delays [2].

Fig. 1. MCR Process Overview [10].

To diminish the waiting waste it is mandatory to focus on
knowledge sharing [2], [3], [4], [33] in MCR. It is reported that
knowledge sharing among team members can be augmented by
recognizing the factors that can influence knowledge sharing
[9], [10], [12], [24]. Considering those factors can aid in
knowledge sharing among MCR team members.

Limited researches have been performed concerning
knowledge sharing in MCR highlighting the significance of
knowledge sharing [10], [12], [34]. For instance, Sadowski et
al., (2018), quantify knowledge sharing by looking at
comments and files edited or reviewed. They reported that
developers build experience through knowledge sharing while
working at Google [12]. Similarly, Bosu et al., (2017), stated
that code review allows senior developers to mentor
newcomers. They conveyed that experienced developers can
also enhance their skills while sharing knowledge [10].
Likewise, Rigby and Bird (2013) have explored knowledge
sharing facet in code review. They measure the amount of
knowledge shared among the MCR team through the number
of files known to the developer before and after the source
code review [34]. The literature shows that, although existing
studies [10], [12], [34] have provided attention towards
knowledge sharing in MCR, however, no framework or
guidelines are available for effective knowledge sharing in
MCR that can help MCR team to reduce software engineering
waiting waste. Therefore, this study aims to develop the
knowledge sharing framework for MCR to reduce software
engineering waiting waste.

443 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

III. RESEARCH METHODOLOGY
Delphi survey has been performed as a research

methodology for this study. This methodology is a less costly
and relatively competent way to get consensus from the
opinions of the experts [35]. It typically involves iterative
questionnaires directed to individual experts in such a way that
their anonymity is preserved. Feedback received in the Delphi
survey after each questionnaire iteration continues until
consensus is achieved. The Delphi output is the consensus
among the experts along with their observations on the
questionnaire items.

A. Objective of Delphi Survey Conduction
A two-round Delphi study has been performed 1) to

evaluate the practicality of the identified knowledge sharing
factors, sub-factors and their categories in the context of MCR
with industry 2) to recognize and prioritize the most influential
knowledge sharing factors concerning MCR activities 3) to get
suggestion about naming conventions, grouping, and sub-
grouping of provided knowledge sharing factors, sub-factors
and categories 4) to recognize new industry-based knowledge
sharing factors, with their associated sub-factors, and
categories in the context of MCR. Delphi survey was
conducted based on the guidelines given by [36]. The steps
involved in the Delphi survey are detailed in subsections.

B. Delphi Experts’ Selection
 The selection of the experts to participate in the Delphi

study is a very important and critical aspect as the output of the
Delphi survey relies on the experts’ opinions [36]. Based on
the experts’ selection requirement conveyed in literature [36],
in this study, the experts were selected based on the criteria
such as (1) Expert have experience of more than 8 years in the
software industry, (2) Expert should have experience in MCR,
(3) Expert should have knowledge of wastes in context of
software engineering and knowledge sharing. Other selection
criteria involve their willingness to participate in the survey as
well as enough time to provide feedback [36].

C. Delphi Panel Size
Panel size deals with the number of experts to participate in

the study. The panel size varies from a few to hundreds of
experts [36]. The size of the panel for the Delphi study is
variable. It is conveyed that with a homogenous group of
people, ten to fifteen experts might be enough [37]. We
requested fifteen experts to participate in the survey. Ten
experts showed their interests and willingness to participate.

D. Delphi Rounds
The conducted Delphi survey involved two rounds. The

expert’s input was collected through questionnaires. The
experts were explained each provided knowledge sharing
factor, sub-factor, and category to make sure that all of the
experts have a shared understanding of knowledge sharing
factors. It is conveyed that in the Delphi study, most
convergence of panel responses occurs between round one and
two [38]. In this study, the consensus among the experts was
achieved in two rounds.

E. Delphi Questionnaire Plan
The questionnaire for Round 1 involved four sections.

Section A aimed to collect demographic information from the
experts. Section B of the questionnaire was composed of a list
of knowledge sharing factors, related sub-factors, and
categories generated as a result of our previous study based on
SLR and expert review [24], [25]. In Section B the experts
were also questioned to score the knowledge sharing factors for
their practicality and level of influence for MCR activities.
Section C was designed to obtain new knowledge sharing
factors, sub-factors or categories that should be included in the
list. Section C also aimed to collect suggestions about naming
conventions, grouping, and sub-grouping of the provided
knowledge sharing factors, related sub-factors, or categories.
Section D aimed to obtain information about recent real project
examples for which the experts had performed MCR activities
and experienced the factors influencing knowledge sharing.
This section was specifically designed for generating the
scenario that was later used in the experiment to validate the
developed knowledge sharing framework.

The questionnaire for Round 2 involved three Sections.
Section A aimed to evaluate the practicality of knowledge
sharing factors finalized after Delphi survey Round 1. The
finalized list contains the changes made based on the
recommended suggestion of the experts in Round 1. This
Section also aimed to evaluate the influence level of listed
factors for each MCR activity. Section B aimed to get any new
factors, related sub-factors, and categories that should be
included in the list. In Section B the experts were also
requested to mention the suggestions about the naming
conventions grouping and sub-grouping of the provided
knowledge sharing factors, sub-factors, and categories. Section
C aimed to obtain information about recent real project
examples for which the experts had performed MCR activities
and experienced the factors influencing knowledge sharing.

F. Pilot Study
 The questionnaires were evaluated by five software

engineering researchers for their understanding and clarity as it
is conveyed that if the questionnaires are used in research, then
they should be pretested for length, clarity, and overall
adequacy [39]. In the pilot test of this study, the received
response was positive and no changes were suggested.

G. Data Analaysis Procedure
Descriptive statistics have been performed in this study as it

is a rudimentary analytical approach. These give a basic
quantitative strategy for examination and produce a general
overview of the outcomes [40].

To score the practicality of knowledge sharing factors and
to evaluate the level of influence of knowledge sharing factors
for each MCR activity, a five-point Likert scale that is from 1
to 5 (Very High- 5, High - 4, Moderate - 3, Low- 2, Very Low
– 1) was provided. For calculating the practicality of
knowledge sharing factors and to recognize the most influential
Knowledge sharing factors for MCR activities, the mean values
were grouped into the discrete categories as shown in Table II
for MCR activities.

444 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE II. GROUPING OF MEAN VALUES TO MEASURE PRACTICALITY

Mean Score =X Practicality Level Influence Level

4.0≤X≤ 5.0 Very High Most Influential

3.0≤X< 4.0 High Influential

2.0≤X< 3.0 Moderate Moderate

1.0≤X< 2.0 Low Weakly Influential

0≤X< 1.0 Very Low Not Influential

The mean practicality and mean influential values of sub-
factors were premeditated initially and then the found mean
values were further transformed into a single composite mean
value showing composite mean practicality and composite
mean influence value for the associated knowledge sharing
factors.

To get the consensus of the practicality and the influential
values of knowledge sharing factors we used the standard
deviation as shown in Table III. Initially, we calculated the
standard deviation of the sub-factors that were further
transformed into a single composite standard deviation for the
associated knowledge sharing factor. Based on the obtained
composite standard deviation of the knowledge sharing factors
we come up with the consensus level among the experts. We
formulated equation (1) based on guidelines given by [41] [41]
to calculate the composite standard deviation of knowledge
sharing factors.

 (1)

Where ‘SD’ denotes to standard deviation, ‘KSF’ refers to
knowledge sharing factor. ‘SbF’ refers to the sub-factor of the
associated knowledge sharing factor and it ranges from 1 to k,
‘k’ refers to the total number of sub-factors for associated
knowledge sharing factors.

Table III represents the level of consensus used in this
study. A standard deviation between ‘0’ and ‘1’ shows that the
experts scoring is very close to each other, whereas a higher
standard deviation showed that the experts’ scoring was spread
out over a large range [35].

H. Data Collection and Analaysis Methods
This section presents the data collected from Delphi experts

and the analysis of the data collected depending on the analysis
procedure defined in sub-section ‘G’. The performed Delphi
study involved two rounds. The details concerning data
collection are discussed in the following sub-sections.

TABLE III. DECISION CRITERIA FOR THE LEVEL OF CONSENSUS

Standard Deviation (SD=X) Level of Consensus

0 ≤ X <1 High

1 ≤ X <1.5 Fair Level

1.5 ≤ X <2 Low Level

2 < X No Consensus

I. Delphi Round 1
In the Delphi Round 1, the questionnaire was given to the

experts. They were given one week to complete the
questionnaire. The phone calls were made to make sure that all
experts were aware of the feedback submission date and time
for Round 1. Round 1 of the Delphi survey was completed in
two weeks. Round 1 aimed to collect demographic information
from the experts. It also aimed to evaluate the list of provided
knowledge sharing factors, related sub-factors, and categories
for their naming convention, grouping, and sub-grouping
which was generated as a result of our previous study based on
SLR and expert review [24], [25], [42]. Round 1 involves the
evaluation of the knowledge sharing factors for their
practicality for the complete MCR process as well as their
influence level for each MCR activity. In Round 1, the experts
were also enquired to state any new industry-based knowledge
sharing factors, related sub-factors, and categories that should
be included in the list. The scale used to score the practicality
and influence level is given in sub-section ‘G’. The details
about the Round 1 questionnaire is provided in sub-section ‘E’.
In Delphi Round 1 some recommendations were suggested by
the expert so we need to conduct another Delphi round to have
consensus on the suggested changes among the experts.

J. Delphi Round 2
In Round 2, the experts were given the summary of results

obtained in Round 1. In Delphi Round 2 the experts were
enquired to evaluate the level of practicality as well as the level
of influence of subsequent knowledge sharing factors finalized
after Round 1 for each MCR activity. In Round 2, the analysis
method and the scoring scale was similar as in the case of
Round 1. The details about the Round 2 questionnaire is
provided in sub-section ‘E’. Round 2 also took 2 weeks to be
completed. In Round 2 the consensus was obtained for all the
knowledge sharing factors therefore we stopped at the Delphi
Round 2.

IV. RESULTS
This section presents the results obtained in the two Rounds

of Delphi study. The results were then analyzed, and composite
mean values of knowledge sharing factors were calculated
based upon the mean values of their associated sub-factors.
Similarly, the mean influential values of knowledge sharing
factors were calculated based upon the mean influential values
of their associated sub-factors. The practicality level of each
knowledge sharing factors along with the standard deviation
for Delphi Round 1 and Delphi Round 2 are shown in Fig. 2
and Fig. 3. Fig. 2 shows that all the provided knowledge
sharing factors in both rounds were perceived as practical by
the experts as the composite mean value of all the factors lies
between 3 and 5. Fig. 3 shows that the level of consensus was
increased in Round 2 for the practicality of the identified
knowledge sharing factors among the experts.

Table IV shows the ranking of knowledge sharing factors
for their level of practicality.

445 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Regarding the most influential knowledge sharing factors,
the mean influential values of sub-factors of each knowledge
sharing factor in final Delphi Round for; Source Code
Preparation values were from 1.4 to 5.0, Source Code
Submission values were from 1.4 to 5.0, Reviewer Selection
and Notification values were from 1.1 to 5.0, Source Code
Review ranges from 2.4 to 5.0, Source Code Approval values
were from 2.0 to 5.0. The most influential factors were
identified by calculating the composite mean influential value
of their connected sub-factors. The factors with composite
mean values equal to or above 4.00 were considered as the
most influential factors for particular MCR activity. The most
influential factors grounded on their composite mean values for
each MCR activity after the final Delphi Round are shown in
Tables V to IX along with the standard deviation.

Based on the Delphi survey results we formulated a
knowledge sharing framework for MCR to diminish waiting
waste. The developed framework constitutes knowledge
sharing factors, sub-factors, and categories as well as the most
influential knowledge sharing factors for each MCR activity.
The developed knowledge sharing framework is attached in
Appendix A.

Fig. 2. Composite mean Perceived Value of Practicality of Knowledge

Sharing Factors (Round 1 and Round 2).

Fig. 3. Consensus Level among the Panelists for mean Perceived Values of

Practicality of Knowledge Sharing Factors (Round 1 and Round 2).

TABLE IV. RANKING OF KNOWLEDGE SHARING FACTORS FOR PERCEIVED
LEVEL OF PRACTICALITY

Knowledge Sharing
Factors

Composite Mean
Practicality
Values

Standard
Deviation Rank

Source Code 4.9 0.146176337 1

Communication Support 4.88 0.298142397 2

Individual Historical
Aspects 4.825 0.353553391 3

Tool Support 4.78 0.253859104 4

Individual Load 4.725 0.263523138 5

Team Intensions 4.722 0.265274142 6

Team Drive 4.714 0.402373908 7

Individual Impartiality 4.7 0.483045892 8

Feedback 4.68 0.423515147 9

Individual Intensions 4.64 0.377123617 10

Team Culture 4.6 0.510990324 11

Project Support 4.53 0.512799145 12

Individual Emotions 4.5 0.483045892 13

Social Relational Aspects 4.475 0.411636301 14

Team Strategies 4.425 0.241522946 15

Social Structural Aspects 4.4167 0.382486988 16

Test Deliverables 4.411 0.443053379 17

Process Support 4.383 0.436738756 18

Individual Turnover 4.333 0.779363463 19

Team Organization 4.3 0.402768199 20

Organization Support 4.25 0.421637021 21

Individual Awareness 4.14 0.880656321 22

TABLE V. INFLUENTIAL LEVEL OF KNOWLEDGE SHARING FACTORS FOR
SOURCE CODE PREPARATION

Most influential
Knowledge Sharing
Factors

Composite Mean
Influential Value

Standard
Deviation Rank

Source Code 4.92 0.170469437 1

Tool Support 4.63 0.357460176 2

Individual Historical Aspects 4.6 0.349602949 3

Team Strategies 4.57 0.437797518 4

Team Drive 4.44 0.311167795 5

Team Organization 4.44 0.359010987 6

Organization Support 4.4 0.357460176 7

Individual Load 4.37 0.337474279 8

Project Support 4.33 0.434613494 9

Feedback 4.1 0.333333333 10

Test Deliverables 4.08 0.293972368 11

Process Support 4.06 0.380058475 12

Individual Intensions 4.06 0.418993503 13

Individual Awareness 4 0.837987006 14

446 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE VI. INFLUENTIAL LEVEL OF KNOWLEDGE SHARING FACTORS FOR
SOURCE CODE SUBMISSION

Most influential
Knowledge Sharing
Factors

Composite Mean
Influential Value

Standard
Deviation Rank

Tool Support 4.51 0.202758751 1

Source Code 4.47 0.395487366 2
Test Deliverables 4.45 0.472712164 3
Team Strategies 4.4 0.45338235 4

Process Support 4.25 0.275546595 5
Project Support 4.18 0.215165741 6

Organization Support 4.1 0.298142397 7
Individual Historical
Aspects 4 0.387298335 8

TABLE VII. INFLUENTIAL LEVEL OF KNOWLEDGE SHARING FACTORS FOR
REVIEWER SELECTION AND NOTIFICATION

Most influential
Knowledge Sharing
Factors

Composite Mean
Influential Value

Standard
Deviation Rank

Individual Historical Aspects 4.88 0.300462606 1

Social Structural Aspects 4.83 0.36004115 2
Social Relational Aspects 4.77 0.411636301 3
Individual Impartiality 4.7 0.471404521 4

Tool Support 4.52 0.194365063 5
Team Strategies 4.47 0.418330013 6

Team Culture 4.4 0.45338235 7
Organization Support 4.3 0.223606798 8

Project Support 4.15 0.129099445 9
Source Code 4.13 0.359248979 10
Process Support 4.1 0.403686714 11

TABLE VIII. INFLUENTIAL LEVEL OF KNOWLEDGE SHARING FACTORS FOR
SOURCE CODE REVIEW

Most influential
Knowledge Sharing
Factors

Composite Mean
Influential Value

Standard
Deviation Rank

Source Code 4.961 0.191708468 1

Individual Load 4.925 0.263523138 2

Test Deliverables 4.822 0.3022549 3

Communication Support 4.76 0.4163332 4

Individual Intensions 4.7 0.27080128 5

Tool Support 4.7 0.266666667 6

Feedback 4.68 0.191070501 7

Individual Impartiality 4.65 0.5 8

Team Intensions 4.53 0.210818511 9

Process Support 4.43 0.370185139 10

Individual Emotions 4.35 0.341565026 11

Individual Historical Aspects 4.3 0.278886676 12

Project Support 4.2 0.344265186 13

Organization Support 4.175 0.383695481 14

Team Strategies 4.1 0.25819889 15

Team Drive 4 0.338061702 16

TABLE IX. INFLUENTIAL LEVEL OF KNOWLEDGE SHARING FACTORS FOR
SOURCE CODE APPROVAL

Most influential
Knowledge Sharing
Factors

Composite Mean
Influential Value

Standard
Deviation Rank

Source Code 4.884 0.269535847 1
Individual Historical
Aspects 4.75 0.353553391 2

Team Strategies 4.65 0.5 3

Tool Support 4.6 0.274873708 4
Project Support 4.53 0.327730693 5
Process Support 4.5 0.36004115 6

Organization Support 4.4 0.45338235 7
Team Culture 4.2 0.414996653 8

Individual Impartiality 4 0.459468292 9

V. CONCLUSION
Knowledge sharing plays a significant role in the

minimization of waiting waste. This study involves statistical
analysis of knowledge sharing factors to identify the list of
most influential knowledge sharing factors for MCR activities.
The study results reported 22 knowledge sharing factors, 135
sub-factor, and 5 categories. The obtained results were
expressed as a knowledge sharing framework for MCR to
diminish software engineering waste. This framework will
guide the software engineers involved in MCR activities to
effectively share knowledge and reduce the production of
waiting waste.

VI. FUTURE WORK DIRECTIONS
This developed knowledge sharing framework is specific to

the MCR activity of Software Engineering to diminish waiting
waste. The study can be further extended to other software
engineering activities to minimize waiting waste in other
software engineering activities for instance requirement
engineering, modeling, and testing. This research study
delivers a list of factors influencing knowledge sharing in
MCR to diminish waiting waste. Our ongoing research
activities are 1) to validate the developed knowledge sharing
framework regarding minimization of waiting waste through
experiment, 2) to develop a web-based knowledge sharing
framework for MCR to have an electronic knowledge sharing
guideline for software engineers involved in MCR activities to
minimize waiting waste.

VII. CONTRIBUTION
The investigation contributed to software engineering body

of knowledge (SWEBOK), knowledge base software
engineering (KBSE), and green software engineering (GREEN
SE) by stressing the significance of knowledge sharing, most
influencing knowledge sharing factors, and by providing the
knowledge sharing framework for MCR to diminish waiting
waste. The work can guide software engineers to effectively
share knowledge by managing the undesirable facets of
identified factors.

REFERENCES
[1] DeFranco and P. A. Laplante, “Review and Analysis of Software

Development... - Google Scholar,” IEEE Trans. Prof. Commun., vol. 00,
no. 00, pp. 1–18, 2017.

447 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[2] H. Alahyari, T. Gorschek, and R. Berntsson Svensson, “An exploratory
study of waste in software development organizations using agile or lean
approaches: A multiple case study at 14 organizations,” Inf. Softw.
Technol., vol. 105, no. August 2018, pp. 78–94, 2019.

[3] T. Sedano and P. Ralph, “Software Development Waste,” in Proc.
IEEE/ACM 39th International Conference on Software Engineering,
2017.

[4] N. Fatima, S. Nazir, and S. Chuprat, “Software engineering wastes-A
perspective of modern code review,” ACM Int. Conf. Proceeding Ser.,
pp. 93–99, 2020.

[5] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proc. International Conference on Software
Engineering, 2013, pp. 712–721.

[6] S. Nazir, N. Fatima, and S. Chuprat, “Situational factors affecting
Software Engineers Sustainability: A Vision of Modern Code Review,”
in 6th IEEE International Conference on Engineering Technologies and
Applied Sciences (ICETAS) , in press, 2019.

[7] S. Nazir, N. Fatima, and S. Chuprat, “Does Project Associated
Situational Factors have Impact on Sustainability of Modern Code
Review Workforce?,” in 6th IEEE International Conference on
Engineering Technologies and Applied Sciences (ICETAS) , in press,
2019, pp. 1–5.

[8] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 38, no. 2.3, pp. 258–287, 1999.

[9] L. MacLeod, M. Greiler, M. A. Storey, C. Bird, and J. Czerwonka,
“Code Reviewing in the Trenches: Challenges and Best Practices,” IEEE
Softw., vol. 35, no. 4, pp. 34–42, 2018.

[10] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
Aspects and Social Dynamics of Contemporary Code Review: Insights
from Open Source Development and Industrial Practice at Microsoft,”
IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 56–75, 2017.

[11] S. Nazir, N. Fatima, and S. Chuprat, “Modern code review benefits-
primary findings of a systematic literature review,” in ACM
International Conference Proceeding Series, 2020, pp. 210–215.

[12] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: : A Case Study at Google,” in Proc. ACM/IEEE
40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[13] M. V. P. Pessôa, W. Seering, and E. Rebentisch, “Understanding the
waste net: A method for waste elimination prioritization in product
development,” Proc. DETC ’08, vol. 55, no. 21, pp. 1–9, 2008.

[14] S. Mujtaba, R. Feldt, and K. Petersen, “Waste and lead time reduction in
a software product customization process with value stream maps,”
Proc. Aust. Softw. Eng. Conf. ASWEC, pp. 139–148, 2010.

[15] J. Urrego, R. Munoz, M. Mercado, and D. Correal, “Archinotes: A
global agile architecture design approach,” Lect. Notes Bus. Inf.
Process., vol. 179 LNBIP, pp. 302–311, 2014.

[16] S. Nazir, N. Fatima, and S. Malik, “Effective hybrid review process
(EHRP),” Proc. - Int. Conf. Comput. Sci. Softw. Eng. CSSE 2008, vol.
2, pp. 763–771, 2008.

[17] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development,” in Proc. 38th International
Conference on Software Engineering, 2016, pp. 285–296.

[18] E. W. dos Santos and I. Nunes, “Investigating the Effectiveness of Peer
Code Review in Distributed Software Development,” in Proc. 31st
Brazilian Symposium on Software Engineering, 2017, pp. 84–93.

[19] D. M. German, U. Rey, and J. Carlos, “‘ Was my contribution fairly
reviewed ?’ A Framework to Study the Perception of Fairness in Modern
Code Reviews,” in Proc. ACM/IEEE 40th International Conference on
Software Engineering Synthesizing, 2018, no. 2, pp. 523–534.

[20] L. Novikova, “Poor knowledge sharing is the second biggest challenge
for software development teams,” 2019. [Online]. Available:
https://blog.onebar.io/poor-knowledge-sharing-is-the-second-biggest-
challenge-for-software-development-teams-a4843f9b9aa. [Accessed:
10-Aug-2019].

[21] R. Anwar, M. Rehman, K. S. Wang, A. Amin, and R. Akbar,
“Conceptual framework for implementation of knowledge sharing in

global software development organizations,” ISCAIE 2017 - 2017 IEEE
Symp. Comput. Appl. Ind. Electron., pp. 174–178, 2017.

[22] X. Chen, Y. Zhou, D. Probert, and J. Su, “Managing knowledge sharing
in distributed innovation from the perspective of developers: empirical
study of open source software projects in China,” Technol. Anal.
Strateg. Manag., vol. 29, no. 1, pp. 1–22, 2017.

[23] N. S. Safa and R. Von Solms, “An information security knowledge
sharing model in organizations,” Comput. Human Behav., vol. 57, pp.
442–451, 2016.

[24] N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing, a key
sustainable practice is on risk: An insight from Modern Code Review,”
in 2019 6th IEEE International Conference on Engineering Technologies
and Applied Sciences (ICETAS), 2019, pp. 1–6.

[25] N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing factors for
modern code review to minimize software engineering waste,” Int. J.
Adv. Comput. Sci. Appl., vol. 11, no. 1, pp. 490–497, 2020.

[26] P. Bourque and R. E. Fairley, Software Engineering - Body of
Knowledge. 2014.

[27] S. Nazir, N. Fatima, and S. Chuprat, “Individual Sustainability Barriers
and Mitigation Strategies: Systematic Literature Review Protocol,” in
2019 IEEE Conference on Open System, ICOS 2019, 2019, pp. 1–5.

[28] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit. 2003.

[29] N. Fatima, S. Nazir, and S. Chuprat, “Individual, Social and Personnel
Factors Influencing Modern Code Review Process,” 2019 IEEE Conf.
Open Syst. ICOS 2019, pp. 40–45, 2019.

[30] S. Nazir, N. Fatima, and S. Chuprat, “Situational factors for modern
code review to support software engineers’ sustainability,” Int. J. Adv.
Comput. Sci. Appl., vol. 11, no. 1, pp. 498–504, 2020.

[31] N. Fatima, S. Chuprat, and S. Nazir, “Challenges and Benefits of
Modern Code Review-Systematic Literature Review Protocol,” in Proc.
International Conference on Smart Computing and Electronic
Enterprise, 2018, pp. 1–5.

[32] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code Review Quality:
How Developers See It,” in Proc. International Conference on Software
Engineering, 2016, pp. 1028–1038.

[33] A. Ram, Achyudh ; Sawant, Anand; Castelluccio, Marco; Bacchelli,
“What Makes a Code Change Easier to Review? An Empirical
Investigation on Code Change Reviewability,” in Proc. ESEC/FSE,
2018.

[34] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer
Review Practices Categories and Subject Descriptors,” in Proc.
ESEC/FSE, 2013, pp. 202–212.

[35] H. A. von der Gracht, “Consensus measurement in Delphi studies.
Review and implications for future quality assurance,” Technol.
Forecast. Soc. Change, vol. 79, no. 8, pp. 1525–1536, 2012.

[36] G. J. Skulmoski, F. T. Hartman, and Jennifer Krahn, “The Delphi
Method for Graduate Research,” J. Inf. Technol. Educ., vol. 6, 2007.

[37] T. Hatcher and S. Colton, “Using the internet to improve HRD research:
The case of the web-based Delphi research technique to achieve content
validity of an HRD-oriented measurement,” J. Eur. Ind. Train., vol. 31,
no. 7, pp. 570–587, 2007.

[38] H. W. Lanford, Technological forecasting methodologies; a synthesis.
New York: American Management Association, 1972.

[39] D. F. Polit and C. T. Beck, Nursing research: generating and assessing
evidence for nursing practice. Lippincott Williams and Wilkins,
Philadelphia, 9th ed. LWW, 2011.

[40] S. G. Naoum, Dissertation research and writing for construction
students, Second Edition, 2nd ed. Oxford : Butterworth-Heinemann,
2012.

[41] J. Cohen, Statistical power analysis for the behavioral science, 2nd ed.
New: Lawrence Erlbaum Associates, 1988.

[42] N. Fatima, S. Nazir, and S. Chuprat, “Understanding the Impact of
Feedback on Knowledge Sharing in Modern Code Review,” in 6th IEEE
International Conference on Engineering Technologies and Applied
Sciences (ICETAS) , In Press, 2019, pp. 1–5.

448 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

APPENDIX A

KNOWLEDGE SHARING FRAMEWORK FOR MODERN CODE REVIEW

449 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

450 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background
	III. Research Methodology
	A. Objective of Delphi Survey Conduction
	B. Delphi Experts’ Selection
	C. Delphi Panel Size
	D. Delphi Rounds
	E. Delphi Questionnaire Plan
	F. Pilot Study
	G. Data Analaysis Procedure
	H. Data Collection and Analaysis Methods
	I. Delphi Round 1
	J. Delphi Round 2

	IV. Results
	V. Conclusion
	VI. Future Work Directions
	VII. Contribution

