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Abstract: Vehicular ad hoc networks (VANETs) play an important role as enabling technology for
future cooperative intelligent transportation systems (CITSs). Vehicles in VANETs share real-time
information about their movement state, traffic situation, and road conditions. However, VANETs are
susceptible to the cyberattacks that create life threatening situations and/or cause road congestion.
Intrusion detection systems (IDSs) that rely on the cooperation between vehicles to detect intruders,
were the most suggested security solutions for VANET. Unfortunately, existing cooperative IDSs
(CIDSs) are vulnerable to the legitimate yet compromised collaborators that share misleading and
manipulated information and disrupt the IDSs’ normal operation. As such, this paper proposes
a misbehavior-aware on-demand collaborative intrusion detection system (MA-CIDS) based on
the concept of distributed ensemble learning. That is, vehicles individually use the random forest
algorithm to train local IDS classifiers and share their locally trained classifiers on-demand with the
vehicles in their vicinity, which reduces the communication overhead. Once received, the performance
of the classifiers is evaluated using the local testing dataset in the receiving vehicle. The evaluation
values are used as a trustworthiness factor and used to rank the received classifiers. The classifiers
that deviate much from the box-and-whisker plot lower boundary are excluded from the set of the
collaborators. Then, each vehicle constructs an ensemble of weighted random forest-based classifiers
that encompasses the locally and remotely trained classifiers. The outputs of the classifiers are
aggregated using a robust weighted voting scheme. Extensive simulations were conducted utilizing
the network security laboratory-knowledge discovery data mining (NSL-KDD) dataset to evaluate the
performance of the proposed MA-CIDS model. The obtained results show that MA-CIDS performs
better than the other existing models in terms of effectiveness and efficiency for VANET.

Keywords: misbehavior detection; vehicular ad hoc network; VANET; collaborative intrusion
detection system; distributed ensemble learning
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1. Introduction

Vehicular ad hoc networks (VANETs) are considered an enabling technology for the future
cooperative intelligent transportation systems (CITSs) that improves road safety and traffic efficiency
as well as provides passenger comfort [1,2]. With the enhanced development of the standards of
the Internet of things (IoT), there are different new applications, such as Internet of vehicles (IoV)
in which vehicles become the Internet carrier [3–5]. Vehicles in VANETs cooperate and share their
sensor information that are enabling a wide range of applications for making safer roads and efficient
transportation and providing cheaper internet connectivity [5–7]. However, the VANET environment is
highly dynamic with rapidly changing topology, in which the vehicles are varying in speeds and density,
which hinders the seamless exchange of the information among vehicles. The problem exacerbates
as vehicles run in harsh environment where the communication and sensing quality is adversely
affected by the surrounding dynamic and noisy environment. This harsh vehicular environment makes
monitoring user activities in VANETs a challenging task, which opens the door for many types of
attacks. Moreover, the decentralized nature of VANET makes it vulnerable to several types of attacks
such as active interfering, passive eavesdropping, and others [2,8–10]. Cybercriminals can disturb
VANET operations and launch many types of attacks that might lead to accidents, congestions, and
disruption of the network activities. Therefore, security is a major concern of VANET due to the
potential consequences on people lives and economical activities.

Many solutions have been proposed to protect vehicles from being a target of cyberattacks.
Cryptographic techniques such as digital signature, authentication, and encryption have been widely
used as a first line of defense to prevent many types of external attacks. However, these preventive
measures are inadequate for protection against the insider attacks. Due to the cooperative nature
of VANET, malicious nodes or intruders can still perform malicious activities such as denial of
service, vehicle hijacking, information leakage, manipulation of information, the sharing of misleading
information, etc. Therefore, intrusion detection systems have been proposed as the second line of
defense to detect and thwart the intrusion malicious vehicles [11–14]. However, due to inherent
features of VANETs and the harsh and dynamic environment, the traditional intrusion detection
systems (IDSs) that were designed for other wireless networks such as wireless LAN and WSN are
not directly applicable for VANETs [2,12–15]. The high mobility, varying density, and network size
introduce new vulnerabilities and challenges when applying IDSs on VANETs [11,16].

Recently, there have been several attempts to design IDSs for VANETs [11,17,18].
Different approaches of IDS solutions have been suggested for VANETs including anomaly,
signature-based, hybrid, etc. Different IDS architectures also have been proposed such as centralized,
cluster, decentralized, distributed, cooperative, and collaborative IDSs. However, due to the cooperative
nature of VANET, many of the recent proposed IDSs rely on the collaboration between vehicles to
detect the intruders [2,8,16]. In the cooperative IDS (CIDS), vehicles share knowledge related to
their detection experiences to help vehicles in the vicinity to detect the intruders more accurately.
For instance, authors in [2] found that distributed machine learning is an appropriate scalable method
for collaborative detection in VANETs and is used for improving the detection accuracy by sharing
knowledge and classifying adversarial behaviors using local datasets. In addition, authors in [8]
proposed a multi decision intelligent detection model that considers the wireless and mobile nature
of VANET to increase the detection accuracy and reduce the overhead. Although such a type of
cooperation can be effective for VANETs, it is vulnerable to the misbehaving vehicles that share false
or fake knowledge about known or unknown attacks. Vehicles may share misleading information
to degrade the detection efficacy. Therefore, a misbehavior-aware (MA) IDS solution is needed to
identify the misbehaving vehicles and exclude them from the set of the collaborators. Moreover,
existing CIDS models rely on a simple voting scheme (majority win scheme). Unfortunately, such a
scheme is vulnerable to colluding attacks such as botnet, where attackers collude to send misleading
information and disrupt the IDS system. Therefore, improving the detection performance of the CIDS
models and protecting VANETs from cybercrimes is an essential security requirement in VANETs.
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To this end, this paper proposes a misbehavior-aware on-demand collaborative IDS model
(MA-CIDS) using distributed ensemble learning. Each vehicle uses its local data to build a local IDS
classifier based on a distributed random forest algorithm. Then, on demand, each vehicle sends its
locally trained IDS to the vehicles in its vicinity. Unlike existing ensemble models, the final decision
of the proposed MA-CIDS model is taken using an improved and robust weighted voting scheme.
To design a robust weighted voting system, the performance measures in terms of precision and recall
of the locally trained IDS are shared among vehicles. These measures are obtained by testing the locally
trained IDS classifier based on a testing dataset in each vehicle. These measures are used as a belief
factor to weight the output of the classifier in the voting system. To reduce the contribution of the
suspicious vehicles in the voting and remove the misbehaving vehicles from the sets of collaborators,
each vehicle evaluates the performance of the IDS classifiers received from neighboring vehicles using
its testing dataset. The evaluation results are used to achieve two tasks. Firstly, they are used to
penalize the belief factor of the neighboring vehicle and adjust the contribution of the neighboring
vehicle in the voting system. Secondly, they are used as input features for the box-and-whisker plot
method to detect the misbehaving vehicles. Vehicles that deviate much from the lower boundary
of the box-and-whisker plot are excluded from the set of the collaborators. Finally, to construct the
MA-CIDS model, each vehicle constructs its own ensemble of weighted random forest-based classifiers,
which contains both the locally and remotely trained classifiers. The outputs of the classifiers are
aggregated using a robust weighted voting scheme.

The rest of the paper is organized as follows. The related work is reviewed in Section 2. The model
description is elaborated in Section 3. Section 4 explains the conducted experiments and provides the
results. The results are discussed and analyzed in Section 5. Finally, Section 6 concludes the study and
provides the future work.

2. Related Work

Securing VANETs has attracted great interest of many researchers during the last years [7,17,19–26].
VANET is vulnerable to many security issues that can disrupt the functionality of these applications.
The intrusion detection system for VANETs aims to detect internal as well as external attacks with
high accuracy [16,27,28]. According to the previous used methods, IDSs can be categorized into
signature-based IDS, anomaly-based IDS, and others [29]. Recently, several approaches have been
proposed, among which the machine learning-based approaches are the most promising [2,21,28,30].
However, most pure IDSs produce a large number of false positives and low detection accuracy. In the
literature, several researchers investigated the ability to use machine learning (ML) for intrusion
detection. ML has demonstrated promising results in the field of IDS. Several authors have applied
ML-based models to learn complex patterns and behavior from the collected data. Unlike rule-based
IDS [31–34] and expert system-based IDSs [35–38], which cannot detect emergence intrusions, ML-based
IDSs enable vehicles to extract distinct features either from new coming messages and intrusions.

Machine learning methods were applied widely to solve IDS issues in different networks.
For instance, an early study by [21] applied the random forest (RF) method to build automatically
patterns of intrusions. Then, intrusions were detected by matching the network activities against
the built patterns. To evaluate the performance of this model, the authors used the knowledge
discovery data mining (KDD)’99 dataset. To handle the problem of imbalanced data, both the
downsampling and oversampling methods were applied. After that, the experiment was carried out on
the WEKA environment using 66% samples as a training set and 34% as a testing set. The experimental
results showed that this approach achieved a high-detection rate of 94.7% with a low false-positive
rate of 2%. Similarly, authors in [2] applied an RF classifier to detect intrusion behaviors among
high-speed traffic data. The authors adapted RF to the Apache Spark distributed processing system.
The obtained results showed that the framework can enhance the real-time detection of network
intrusion with a large capacity and high speed. In [36], the combination of the k-nearest neighbor
(K-nn) method with a genetic algorithm was used. The author tested the model using a handmade
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dataset with 35 packet-based features. The training dataset contained well-balanced instances (600
normal instances and 600 attack instances), whereas the testing set contained 100 instances for both
class labels. Thirty random chromosomes were generated for the initial population and trained
using the training set. After training the model, all 35 features were fed into the k-nn algorithm.
According to the experiments, the best overall accuracy of known attack was 97.42% for which only
the top 19 features were considered and an accuracy of 78% with the top 28 features of unknown attack
was obtained. In addition, Al-Jarrah et al. [39] investigated the impact of feature selection techniques
on the performance of RF. For this purpose, they combined RF with forward and backward ranking
features’ selection techniques. In terms of the used dataset, they filtered out the original KDD’99 and
deleted the redundant data. Several preprocessing techniques including normalization, discretization,
and balancing techniques were applied. To find the most important features among the 41 features of
the original KDD’99 dataset, they applied forward selection ranking (FSR) and backward elimination
ranking (BER) algorithms with an RF classifier. The experimental results showed that the RF–FSR
technique was suitable for large-scale network IDSs. In addition to RF and K-nn methods, the Support
Vector Machine (SVM) was used in [40], the incremental SVM was used in [41], and the naïve Bayes
and decision trees were used in [42] to detect malicious network intrusions. An extensive review of the
applied data mining techniques in IDSs can be found in [18,29,43].

In addition to ML techniques for IDS, many hybrid IDSs have been proposed. Kim et al. [44]
proposed a two-stage hybrid IDS method that hierarchically integrates a misuse detection model
and an anomaly detection model. Firstly, the misuse detection model was developed based on the
C4.5 decision tree classifier. Then, several models of one-class SVM were used for the split subsets.
The results showed enhancements in terms of the detection rate and false positive rate comparing
to the conventional methods. In addition, Al-Yaseena et al. [45] proposed a multi-level hybrid IDS,
which employs both SVM and extreme learning machine to efficiently detect known and unknown
attacks. To improve the performance of the used classifiers, they also proposed a modified k-means
algorithm to produce a small and representative training dataset. The findings show that the approach
reduced the training time and improved the overall performance of IDS. The hybridization of k-means
and decision trees, namely C4.5, was also applied in [46] where the model was applied for classifying
anomalous and normal activities in a computer system. In addition, Thaseen and Kumar [47] applied
the chi-square feature selection to reduce the dimensionality and to find the optimal subset among
all the attributes. Then, the data with the selected attributes were used for training multi-class SVM.
In [29], the authors proposed a hybrid IDS based on the stacking ensemble of C5.0 and one-class
SVM. This model was evaluated using network security laboratory-knowledge discovery data mining
(NSL-KDD) and Australian Defence Force Academy datasets (ADFA) datasets. The results showed an
enhancement in terms of detection rate and false-alarm rates.

Recently, several works have been published related to ML for intrusion detection in VANET.
For instance, Shams et al. [48] proposed an approach combining the promiscuous mode for data
collection and SVM for IDS in VANET. They aimed to analyze data to create a trust value for vehicles
on the network as trust aware SVM-based IDS. The main idea was to guarantee that vehicles within
the network have a complete idea about activities of their next hop, which will help to maintain
high-performance in case of attacks. In [49], the authors designed an ML-based intrusion detection
approach to detect intruders globally and locally in VANETs. They used an ANN technique to secure
cluster heads, a light-weight SVM to identify malicious multi-point relays. Results depicted that
the used approach was more robust and trust-worthy compared to existing ML-based techniques.
In addition, Zhou et al. [50] designed a distributed collaborative IDS based on invariant to detect
betray attacks in VANET. This approach was based on four steps: (1) distributed framework to store
the collected big data; (2) reputation-based communication method to ensure reliable communication
using a global reputation state, traffic density, and link life; (3) analysis of dynamic behavior to discover
the normal driving characteristics of vehicles; and (4) stochastic petri net was used to design the system
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states and their evolution. Results depicted good performances in detecting attacks compared with
existing methods.

3. The Proposed MA-CIDs Model

In this section, the architecture of the proposed MA-CIDS model is described. Figure 1 illustrates
the components of the proposed model. As shown in Figure 1, the MA-CIDS encompasses four
main phases, namely the individual IDS construction phase, neighboring IDS classifiers and metadata
exchanging phase, misbehavior evaluation phase, and collaborative classifier construction phase.
The output of each phase is used as input to the next phase. The detailed description of each phase is
presented in the following subsections.
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Figure 1. Architecture of the misbehavior-aware on-demand collaborative intrusion detection system
(MA-CIDS) model.

3.1. Phase 1: Individual IDS Construction

In this phase, each vehicle (subject vehicle) constructs its local IDS classifier using local data
collected by monitoring and auditing its network activities as well as the neighboring vehicles’ activities.
The data contains attributes extracted from packets’ headers and the communication protocols used
through the communication. Because the data is collected in a harsh communication environment and
contains both categorical and numerical data, the preprocessing is needed. The data is preprocessed by
removing incomplete records, encoding categorical data, and then standardization. Then, each vehicle
uses a feature selection algorithm to select the more important features. Then, each vehicle split the
collected and preprocessed data into two sets, one for local model training and the other for testing.
Next, a machine learning algorithm, namely the random forest algorithm, is used to construct an
ensemble of local classifiers. Random forest (RF) was selected among many algorithms due to its
robustness to noisy data and good fit with even non-linear data such as VANET data. In addition,
RF showed its superior performance compared to other classifiers for VANET data as reported by
many researchers [2,7,14,21]. Finally, the performance of the trained local classifiers, also called the
individual IDS classifier, was evaluated using the testing datasets. The performance evaluation metrics
such as accuracy, precision, recall, and F1 score are used as the metadata for the locally trained classifier.
A vehicle decides to use or share its locally trained classifier based on the achieved performance on the
testing dataset. Figure 2 shows the methods used to construct the IDS classifier.
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3.2. Phase 2: Neighboring Classifiers and Metadata Exchanging

In this phase, the collaboration among neighboring vehicles is established. A vehicle communicates
with the vehicles in their vicinity in one-hope communication. Each vehicle shares the trained classifier as
well as the metadata with the vehicles in its vicinity. To avoid communication overhead, an on-demand
sharing strategy is proposed. Algorithm 1 shows the proposed on-demand IDS classifier sharing
algorithm, which is used to exchange the locally trained IDS classifiers and their metadata among
one-hop communication vehicles. The symbols that are present in Algorithm 1 are described in
Table 1. It is on-demand because vehicles send a request for collaboration if the performance of their
classifiers fall under a specific threshold. The algorithm suppresses the misbehaving vehicle that
sends too many sharing requests in a small period of time. Each vehicle decides whether it needs to
collaborate and update its IDS classifiers or not. The decision of updating the IDS model is taken based
on the performance of the collaborative IDS classifier that is constructed in phase 4. If it is needed,
then the vehicle sends a message asking for the collaboration. Each vehicle in the vicinity receives the
collaboration request that is issued by the subject vehicle and uses Algorithm 1 to decides whether to
respond by sharing its locally trained IDS classifier and its metadata or not.
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Algorithm 1: On-Demand IDS Classifier Sharing Algorithm

Input: IDSlocal(s), Nreq, Telabsed, Ncoll, TNcoll, Fscore, TFscore
Output: Dlocal(s).
Sender Vehicle
1: if Ncoll < TNcoll and Fscore < TFscore do
2: broadcast (collaboration request message)
Receiver Vehicle
1: Dlocal(s) = False
2: if request f or colobration is recieved do
3: A(vi)

← audit(reqid ++, vehicleid, time)
4: t(vi)

← get_time_elabsed(A(vi)
, vehicleid): vi ε V

5: reqcount ← get_request_count(A(vi)
)

6: if reqcount < Nreq and ti < Telabsed Then
7: Dlocal(s) = True
20: return Dlocal(s)

Table 1. Symbols description.

Symbol Description

IDSlocal The local trained classifier
Telabsed Time threshold for resending the local classifier
Nreq Threshold of number of sharing requests per area
ti Elapsed time since last approved sharing
reqcount number of sharing requests per area
A(vi) Set of the number sharing requests
Dlocal(s) Sharing decision true or false

3.3. Phase 3: Neighboring Misbehavior Evaluation

In this phase, each vehicle evaluates the received local IDS classifiers from neighboring vehicles
using its local testing dataset. The precision ptest(i), and the recall rtest(i), obtained by testing the
neighboring classifier IDSi on the local testing dataset of the subject vehicle are used as penalty value of
the neighboring classifier. Meanwhile, F1 score ftest(i) resulted from evaluating the neighboring classifier
IDSi using the local testing dataset is used as misbehavior indication. The precision ptest(i) is used as the
penalty if the instance tested negative by the neighboring classifier of vehicle i, while the recall rtest(i) is
used as the penalty if the instance tested positive. Then, each vehicle ranks the neighboring classifiers
by multiplying the claimed performance, namely the precision pneighbor(i) and the recall rneighbor(i),
that are reported by the neighboring vehicle, by the penalty factor, namely the precision ptest(i), and the
recall rtest(i), that are resulted from applying the neighboring classifier on the local testing dataset.
Finally, the box-and-whisker plot is computed to detect the misbehaving vehicles. The box-plot is a
non-parametric statistical tool that can summarize a statistical variable without the need to know its
underline distribution. If the data point is located outside the box plot boundaries, it is considered
inconsistent with neighboring values. Thus, a classifier with an F1 score of the local testing dataset that
fall under the lower adjacent value of the box-and-whisker plot is considered a misleading classifier
and should be removed from the set of collaborators Cneighbors. However, the lower adjacent value (LL)
of the box-and-whisker plot decreases as the number of intruders increases, yielding to their inclusion
in the set of celebrators. Nevertheless, their impact on the overall decision is low due to their low
F1 scores, which are used as weights in the final decision. Algorithm 2 illustrates the neighboring
misbehavior evaluation algorithm. The symbols that are presented in Algorithm 2 are described in
Table 2.
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Algorithm 2: Misbehavior Evaluation Algorithm

Input: IDSneighbors, Pneighbors, Rneighbors
Output: Cneighbors.
1: ∀ IDSi ε IDSneighbors do
2: ptest(i), rtest(i), ftest(i)← test(IDSi)

3: pneighbor(i) ← get
(

IDSi,, Pneighbors
)

: pneighbor(i) ε Pneighbors

4: rneighbor(i) ← get
(

IDSi,, Rneighbors
)

: rneighbor(i) ε Rneighbors
5: pi = ptest(i)∗ pneighbor(i) f or normal class
6: ri = rtest(i)∗ rneighbor(i) f or abnormal class
7: wi ← (pi, ri)

8: Cneighbors
append
←

(
IDSi, wi, ftest(i)

)
9: Box− Plot

(
Ftest : Ftest ε Tneighbors

)
=


µ = (Q1 + Q3)/2
IQR = (Q3 −Q1)

UL = Q3 + 1.5 IQR
LL = Q3 − 1.5 IQR

10: ∀ IDSi ε Cneighbors do
11: if ftest(i) < LL Then

Cneighbors
remove
←

(
IDSi, pi, ri, ftest(i)

)
12: return Cneighbors

Table 2. Symbols description.

Symbol Description

IDSneighbors Set of all received classifiers

Pneighbors
The corresponding set of all precisions of the IDSneighbors as reported by
collaborative vehicles

Rneighbors The corresponding set of all recalls as reported by collaborative vehicles
IDSi The classifier shared by vehicle i
ptest(i), rtest(i), ftest(i) The precision, recall, and F1 score of the IDSi, respectively.

Ftest
The corresponding set of F1 scores of the IDSneighbors as tested by receiver
vehicle

Cneighbors Set of all evaluated IDSneighbors with their ranks
(
IDSi, pi, ri, ftest(i)

)
µ The mean of the box-and-whisker plot

UL, LL The upper adjacent value, and lower upper adjacent value of the
box-and-whisker plot

Q1, Q3,IQR Q1, Q3, are the first and third quartile, and IQR is the entire quartile range

3.4. Phase 4: Collaborative IDS Construction

In this phase, the construction of the collaborative IDS classifier is described. The construction
is achieved into two steps. Firstly, each vehicle uses the set of collaborators Cneighbors obtained from
the previous phase to construct an ensemble-based classifier. Secondly, each classifier is given a pair
of weights wi (pi, ri) calculated in the previous phase (see lines 5–7 in Algorithm 2), pi is used as a
weight if the instance tested negative (normal), and ri is used if the instance tested positive (intruder).
The final classification output of the ensemble classifier is expressed as follows:

D f =

 0
∑
(pi×(1−di))∑

pi
>

∑
(ri×di)∑

ri

1
∑
(pi×(1−di))∑

pi
≤

∑
(ri×di)∑

ri

(1)

where D f is the final decision by the ensemble MA_CIDS, di is the decision made by the classifier
received from the neighboring vehicle i, pi is the weight of the classier sent by vehicle i when the output
is negative (di = 0), and ri is the weight of the classier sent by the vehicle i when the output is positive
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(di = 1). Initially, when there are no collaborators to construct the ensemble of classifiers, vehicles use
their own locally trained classifiers to detect the intruders.

4. The Experimental Design and Results

This section describes the setup of the experimental environment in which the implementation
of the proposed model and techniques was conducted. Then, the experiments and dataset used in
this study were described in detail. The performance metrics were also explained. The experimental
results of each technique were presented, including the comparison with the previous studies.

4.1. The Experimental Environment Setup

In this study, the simulation of urban mobility (SUMO) was used to simulate vehicle mobility.
SUMO is computer software that is used to generate vehicular traffic, and by which vehicles’ speed,
types, and behavior and density can be configured. Five traffic scenarios with different density were
created. In each scenario, different traffic density in terms of vehicles per kilometer was used, which was
selected from the following list {10, 20, 30, 40, and 50}. Random vehicle types, speed, and behavior
were used in each scenario to simulate vehicle mobility along 5 km road length with two lanes and
maximum vehicle speed set to 80 km/h. The generated vehicle trajectories were replayed under the
Python programming environment. The NSL-KDD was used to represent vehicle network-traffic.
The NSL-KDD is currently the best available dataset for benchmarking of different network based
IDSs in VANET [51–55]. Table 3 illustrates the types of attacks that were presented in the datasets.
The NSL-KDD dataset was divided into small chunks and distributed among vehicles. Each vehicle
divided its local dataset into a training set and testing set, 60% for training and 40% for testing. Then,
each vehicle extracted the importance features and used them to train the machine learning-based
classifier (this study used RF, XGBboost, and SVM algorithms). Vehicles exchanged their trained
classifiers and the models’ metadata using a simulated network protocol, namely 802.11p [56,57].
The transmission range was set to 1000 m in an omnidirectional [56].

Table 3. Symbols description.

Attacks in Dataset Attack Type

Denial of Service (DoS) Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Processtable,
Udpstorm, Apache2, Worm

Probe Satan, IPsweep, Nmap, Portsweep, Mscan, Saint

R2L Guess_password, Ftp_write, Imap, Phf, Multi, hop, Warezmaster, Xlock,
Xsnoop, Snmpguess, Snmpgetattack, Httptunnel, Sendmail, Named

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps

4.2. The Performance Measures

To evaluate the performance of the proposed collaborative IDS model (MA-CIDS), six performance
measures were used, namely, classification accuracy, precision, recall (the detection rate), F1 score,
false positive rate (FPR), and false negative rate (FNR). These measures are commonly used by
researchers to evaluate the intrusion detection systems in VANET [50]. The classification accuracy
is the percentage of the truly classified instances of the testing datasets. The precision measures the
correctly classified normal instances over the total normal instances in the testing datasets, while the
recall metric measures the correctly classified intruders over the total number of the intruders in the
testing dataset. The F1 score measures the overall performance of the model in terms of trade-off

between precision and recall. If both precision and recall are high, the F1 score is high. False positive
rate (FPR) measures the percentage of normal instances that are incorrectly classified, while the false
negative rate (FNR) is the percentage of the intruders that are incorrectly classified.
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4.3. Experimental Results

In this section, the performance of the proposed misbehavior-aware collaborative IDS model
(MA-CIDS) in terms of the classification accuracy, FPR, FNR, and F1 score is presented. MA-CIDS
encompassed ensemble IDS classifiers that were trained with local datasets and shared by neighboring
vehicles. Each vehicle divided its local dataset into a training set and testing set, 60% for training and
40% for testing. Then, each vehicle extracted the importance features and used them to train machine
learning-based classifiers. Each vehicle used the testing set to measure the classification performance of
each classifier based on the extracted features. The testing dataset was used for two purposes. The first
was to evaluate the performance of the locally trained classifier and the second was to evaluate the
performance of the neighboring shared classifiers. The classification outputs of all classifiers were
aggregated using a weighted average function. The performance of each classifier on the local testing
data, namely the precision and recall, were used as weights for both the normal and anomaly class,
respectively. The weights of the shared classifiers were penalized by multiplying them by the precision
and recall that were obtained by testing those classifiers on the host testing dataset.

Figure 3 and Table 4 shows the comparison results between the proposed misbehavior-aware
collaborative IDS model (MA-CIDS) and traditional cooperative IDS model (CIDS) [51–55] in the
presence of misbehaving vehicles which shared a misleading IDS classifier. It was assumed that 10%
of the participants were misbehaving vehicles. The random forest algorithm, the gradient boosting
algorithm (XGBoost), and support vector machines were tested as the base classifiers for the MA-CIDS
and also used to compare with the traditional CIDS model. It was observed that the classification
accuracy, FPR, FNR, and F1 score of the proposed MA-CIDS were higher than the traditional CIDS
for RF, XGBoost, and SVM classifiers. The MA-CIDS (RF), which used the RF algorithm as the base
classifier, outperformed both MA-CIDS (XGBoost) and the MA-CIDS (SVM), in which the XGBoost
and SVM algorithms were used as the base classifiers, respectively. Although the MA-CIDS (SVM)
had lower FNR (0%), its FPR was high (11%) compared with the MA-CIDS (RF) that achieved low
FNR (2%) and FPR (4%). Although both ensemble learning-based algorithms, i.e., MA-CIDS(RF) and
MA-CIDS (XGBoost), had similar false positive rates (FPR; 4%), MA-CIDS (RF) achieved lower false
negative rate FNR (2%) as compared to the MA-CIDS (XGBoost).

Figure 4 shows a detailed comparison of the impact of the number of collaborators on the
performance of all tested models. It could be observed that the classification accuracy (in Figure 4a),
FPR (in Figure 4b), FNR (in Figure 4c), and F1 score (in Figure 4d), of the proposed MA-CIDS were
higher than the traditional CIDS for both RF and SVM classifiers. The performance of all tested models
improved as the number of collaborators increased. The MA-CIDS (RF) beat all other tested IDS
models. The performance in terms of F1 score of CIDS model that was built using the RF algorithm
CIDS (RF) and CIDS (SVM) rapidly increased as more participants were collaborating in the IDS model,
while the performance of CIDS model built using the gradient boosting algorithm CIDS (XGboost)
slightly increased when the number of participants increased.
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Table 4. Details of the detection performance.

Tested Model Precision Recall F1 Score FPR FNR

MA-CIDS (RF) 0.97 0.97 0.98 0.97 0.04 0.02
MA-CIDS (SVM) 0.94 0.92 0.90 0.95 0.11 0.00
MA-CIDS (XGBoost) 0.96 0.96 0.95 0.95 0.04 0.05

CIDS (RF) 0.92 0.91 0.95 0.93 0.11 0.05
CIDS (SVM) 0.86 0.80 0.99 0.89 0.29 0.00
CIDS (XGBoost) 0.93 0.93 0.93 0.93 0.08 0.07
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To evaluate the impact of increasing the percentage of misbehaving vehicles on the performance of
the proposed MA-CIDS(RF) model, experiments with four scenarios were conducted. In each scenario,
the number of collaborators was set to one of four numbers (10, 20, 30, 40), and the percentage of
misbehaving vehicles was increased from 10% to 40%, with a 10% increment in each run. Figure 5
illustrates the impact of the percentage of misbehaving vehicles on the performance. The X-axis of all
sub-figures represents the percentage of misbehaving vehicles, while the Y-axis is the corresponding
performance measure, namely the classification accuracy (in Figure 5a), FPR (in Figure 5b), FNR (in
Figure 5c), and F1 score (in Figure 5d). It can be observed in Figure 5 that as the percentage of the
misbehaving vehicles increased, the performance of the model decreased. However, the model became
more robust to the misbehaving vehicles as the number of collaborators increased. For example, in the
scenario with 50 collaborators, the overall performance in terms of F1 score was highest among all
tested number of collaborators. Nevertheless, the performance slightly decreased when the percentage
of misbehaving vehicles increased. The overall performance in terms of F1 score decreased from 99%
to 98% when the percentage of misbehaving vehicles were gradually increased from 10% to 40%.
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5. Analysis and Discussion

In this section, the performance of the proposed misbehavior-aware collaborative IDS model
(MA-CIDS) is discussed, and the robustness and the reliability under a dynamic environment is
analyzed. In terms of model design, the proposed collaborative IDS model shares its local trained
classifier as well as its metadata, namely the precision and recall, with vehicles in the vicinity.
The metadata (the precision and recall) are obtained from the evaluation of the classifier on the testing
dataset in the subject vehicle. As opposed to the existing cooperative IDS models that exchange
their classification outputs with the neighboring vehicles, the neighboring vehicle shares their trained
classifiers. Exchanging the classifiers is more efficient than frequently sharing the classification output
in terms of communication overhead. Given that VANET works in a harsh and dynamic environment,
exchanging much data leads to congestions and communication overhead which severely impacts the
detection performance. The proposed MDS design is also effective in terms of detection performance
as the concept of ensemble classifiers whose decisions are aggregated by a voting mechanism. To make
the IDS robust to misbehaving vehicles who share malfunction classifiers or manipulated information
(e.g., in case of botnets attacks and colluding attacks), the voting that is proposed in the MA-CIDS
model mechanism was designed to penalize the weights of the shared classifiers and reduce their
contribution in the final decision. Moreover, the classifiers that have a high contradiction between the
reported and tested performance are excluded from the final decision. Figure 3 and Table 4 present the
performance gained by the proposed MA-CIDS and the traditional CIDS model.

As shown in Figure 3 and Table 4, the performance of the proposed MA-CIDS model outperforms
the traditional CIDS model. The main drawback of the conventional CIDS is that it is vulnerable to the
misbehaving vehicles that perform colluding attacks, potent attacks, and Sybil attacks, which share
manipulated classification outputs and misleading experiences. Thus, in the presence of 10 percent
of misbehaving vehicles, the conventional CIDS models produce high false alarms (11% and 23%)
for the RF and SVM classification algorithms, respectively. The overall performance in terms of the
F1 score of the conventional CIDS models is 93% for RF and 89% for SVM, which are relatively low
compared to the proposed MA-CIDS models that are 97% for RF and 95% for SVM. This is because the
proposed model independently evaluates the collaborators using weighted and misbehaving-aware
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voting systems, while the CIDS relies on simple voting-based decision making (the majority win voting
scheme), which is vulnerable to many types of attacks.

It can also be observed from Figure 3 and Table 4 that the performance of the RF-based models is
better than that of SVM models. This is because RF is an ensemble-based method that is robust to
complex data. Moreover, RF encompasses several independent decision trees and not one complex
decision tree. Furthermore, the SVM algorithm is complex, and many parameters need to be carefully
tuned, such as the selection of the appropriate kernel, regularization, and hyper-parameters to fit the
dataset in hand. As can be noticed from Figure 4 that SVM works better than RF with small datasets
when the number of participants is less than 30. Moreover, the RF-based model is more sensitive to the
amount of training data. As can be seen in Figure 4a,d, the overall performance (Figure 4d) and the
classification accuracy (Figure 4a) achieved by the SVM is higher than that of RF when the training
dataset is small. However, the RF-based model outperforms the SVM when the number of collaborator
vehicles increases. The random forest algorithm works based on the concept of the power of crowds, so
when the number of the independent classifiers increases, better performance is achieved. Even in the
absence of misbehaving vehicles, as can be seen in Figure 5, when the number of misbehaving vehicles
is set to zero (see the corresponding values of the X-axis is 0 in Figure 5), the overall performance is
improved as the number of collaborators increases.

In the presence of misbehaving vehicles, the decision making of the ensemble model is slightly
affected by the percentage of misbehaving vehicles. As can be observed in Figure 5, in all studied
scenarios, when the number of misbehaving vehicles increases, the overall performance slightly declines.
Moreover, the performance of the conventional CIDS is sensitive to the number of misbehaving vehicles.
Even 10% of misbehaving vehicles can severely impact the performance, as can be observed in Figure 3
and Table 4. Accordingly, the proposed MA-CIDS model is more robust to misbehaving vehicles and
well protected from the colluding attacks.

Figure 6a shows the performance of the proposed MA-CIDS under different traffic scenarios,
while Figure 6b illustrates the corresponding time needed to construct the ensemble classifiers. As can
be seen in Figure 6a, the performance in terms of F1 score slightly improves as the traffic density
increases. The MA-CIDS with gradient boosting algorithm MA-CIDS (XGBoost) tends to have a
fluctuant behavior, while the other studied classifiers, RF and SVM, are more stable. The MA-CIDS
(RF) achieves the best performance under all studied scenarios. As can be observed in Figure 6b,
the time needed to construct the collaborative model exponentially increases as the traffic density
increases. However, this will not violate the detection time requirement as the performance of the
proposed model is not affected much by the traffic density (see Figure 6a). Thus, in the case of
high traffic density, a vehicle can construct the model with a lower number of collaborators. That is,
not all neighboring vehicles need to be included in the construction of the collaborative model as the
performance will not be significantly improved. In contrast to the case of low traffic density or in the
absence of collaborators, a vehicle uses its last constructed collaborative model or the locally trained
model to detect the intruders. To sum up, the proposed MA-CIDS (RF) achieves the best accuracy and
it is the most robust for the VANET environment among all the studied classifiers.
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6. Conclusions

In this paper, a misbehavior-aware collaborative intrusion detection system (MA-CIDS) is proposed
using distributed ensemble learning to improve the efficacy of the VANET CIDS models. An efficient
sharing scheme is presented to improve the shared knowledge and reduce communication overhead.
Vehicles on-demand share their locally trained classifiers using a random forest algorithm associated
with the classifier performance measures. The performance of the shared classifiers is evaluated using
a local testing dataset in the received vehicle and is used as the trustworthiness factor. The classifiers
that deviate much from the box-and-whisker plot lower boundary are excluded from the set of
the collaborators. Finally, vehicles construct ensembles of weighted random forest-based classifiers
encompassing both the locally and remotely trained classifiers. The outputs of the classifiers are
aggregated using a robust weighted voting scheme. Extensive simulations were conducted by utilizing
the network security laboratory-knowledge discovery data mining (NSL-KDD) dataset to evaluate the
performance of the proposed MA-CIDS model. The overall performance in terms of F1 score was 97%
with a 4% false positive rate compared to the existing CIDS model, which achieved a 93% F1 score with
an 11% false positive rate. The obtained results show that MA-CIDS performs better than the other
existing models in terms of effectiveness and efficiency for VANET. In the future, the collaborative IDS
model will be investigated with both supervised and unsupervised machine learning techniques.
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