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Abstract: We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an

ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia.

The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar

Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect,

elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized

difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature,

stream power index, and topographic wetness index). We carried out the validation process

using the area under the receiver operating characteristic curve (AUC) and several parametric and

non-parametric performance metrics, including positive predictive value, negative predictive value,

sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests.

The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94)

and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility.

Our findings provide insights into the development of more efficient and accurate landslide predictive

models that can be used by decision makers and land-use managers to mitigate landslide hazards.

Int. J. Environ. Res. Public Health 2020, 17, 4933; doi:10.3390/ijerph17144933 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-1812-950X
https://orcid.org/0000-0001-8848-8917
https://orcid.org/0000-0001-5091-6947
https://orcid.org/0000-0002-6790-2653
https://orcid.org/0000-0001-9668-8687
https://orcid.org/0000-0002-3441-6560
https://orcid.org/0000-0001-6122-8314
http://dx.doi.org/10.3390/ijerph17144933
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/14/4933?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 4933 2 of 22

Keywords: machine learning; AdaBoost; alternating decision tree; ensemble model; Cameron

Highlands; Malaysia

1. Introduction

Landslides are the slow to rapid downslope movement of Earth materials triggered by a wide

variety of natural processes, as well as by land surface disturbances due to human activities [1–6].

Whether triggered naturally or by human activities, landslides are responsible for much economic

damage and loss of life each year [7–9]. Notably, recurrent landslides along roads and on other cut

slopes in mountainous regions pose a great threat to the people living in these areas [3,5,10–12].

In Malaysia, landslides pose a constant threat to infrastructure, agriculture, other natural resources,

and tourism, and local and central governments are strained financially and logistically in dealing

with them [8,13]. Most landslides in Malaysia are triggered by heavy rainfall [9,13]. One area in the

country that is particularly impacted by landslides, due in part to increased urbanization and expanded

plantation agriculture, is the Cameron Highlands in the central part of peninsular Malaysia [6,8].

During the past two decades, major advances in computing power, remote sensing, and geographic

information systems have facilitated the preparation of landslide susceptibility maps. These maps

can be used by policy and decision makers to mitigate social and economic losses from landslides.

A wide variety of models and methods for landslide susceptibility mapping have been proposed over

this period, including: (1) knowledge-based approaches such as analytical hierarchy process [14];

(2) empirical approaches (statistical bivariate and multivariate methods) [15] such as frequency ratio [16],

certainty factor [17], index of entropy [18], geographically weighted principal component analysis [2],

regression analysis [19], and the conditional analysis method [20]; and (3) machine learning methods

such as artificial neural network (ANN) [21], support vector machine (SVM) [22], adaptive neuro fuzzy

inference system (ANFIS) [23], decision trees [24–27], support vector regression (SVR) [28], and deep

learning neural networks [29].

Given the complexity of landslide prediction, many researchers have turned their attention

to using hybrid ensemble approaches that combine machine learning methods with metaheuristic

algorithms [30,31] or ensemble learning techniques [32,33]. Examples of recent proposed and hybrid

ensemble models for predicting landslides include ANN, SVM, SVR, and ANFIS integrated with genetic

algorithm, particle swarm optimization, and gray wolf optimizer [30,34–36]; alternative decision tree

(ADTree) combined with ensemble techniques such as AdaBoost (AB), Random Subspace, MultiBoost,

Bagging, and Dagging [24,37]; SVM combined with ensemble techniques [38,39], Naïve Bayes tree

coupled with Random Subspace [40], radial basis function ANN combined with Rotation Forest [41],

best first decision tree combined with Rotation Forest [42], and Bayesian logistic regression combined

with AB, MultiBoost, and Bagging [43]. Hybrid ensemble models also have been successfully used

in studies of other hazards, including flooding [44–48], wildfire [34,49], sinkhole formation [50],

dust storm [51], drought [52], gully erosion [53–55], and land subsidence [56], as well as in other

environmental studies, such as land-use planning [57] and groundwater potential mapping [54,58–62].

This study applies AB, ADTree, and their combination in an ensemble model (AB-ADTree) to

spatially predict landslide susceptibility in a part of the Cameron Highlands. Our paper provides

insights into the development of more efficient and accurate landslide predictive models to aid decision

makers and land-use managers in mitigating landslide hazards. The modeling process and visualization

of landslide susceptibility maps were hosted in WEKA 3.7.12 and ArcGIS 10.2, respectively.

2. Study Area

The study area covers approximately 81 km2 of the southwestern Cameron Highlands and ranges

from 953 to 1944 m above sea level [63] (Figure 1). The area is undergoing rapid land clearing that

has exacerbated erosion and landslides [9]. Felsic intrusive rocks underlie most of the study area
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(61 km2), but Silurian–Ordovician metamorphic rocks (schist, phyllite, and slate) and minor sandstone

and limestone are also present [6].

–

–

 

Figure 1. Geographical location of the study area and landslide and non-landslide locations used in

the study.

Malaysia is a tropical country that experiences heavy precipitation throughout the year [8].

About 3800–4200 mm of rainfall were recorded by the Tropical Rainfall Measuring Mission (TRMM)

sensor in the study area in 2017 [6]. The country experiences wet seasons from September to December

and from February to May. Peak rainfall in the Cameron Highlands occurs from March to May and from

November to December. During these periods, rivers overflow their banks, causing extensive flooding.

3. Methodology

The first step in this study was to detect historical landslide locations and to identify a set of

landslide conditioning factors. Using the InSAR technique and Google Earth images, and conducting

multiple field surveys, we detected 152 landslides in the study area. In order to generate the training and

validation datasets required for the modeling process, we randomly divided the landslide locations into

two subsets: 122 landslides (80%) were selected for model training, and 30 landslides (20%) were used

for model validation (20%). Since our modeling approach is based on a binary classification in which

we develop a predictive model to distinguish between landslides and non-landslides, we randomly

sampled 152 non-landslide locations in the study area (Figure 1). The end result is training and

validation datasets that comprise, respectively, 244 and 60 samples.

We selected 17 landslide conditioning factors for this study based on the landslide literature,

expert knowledge, and general characteristics of the study area. We developed three machine learning

models (i.e., AB, ADTree, and AB-ADTree) to perform the landslide susceptibility mapping. The results

were compared and validated using the Receiver Operating Characteristics (ROC) curve, statistical

measurements, and the Friedman and Wilcoxon methods. The next subsections describe the steps in

the research methodology in more detail.
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3.1. Data Collection

Table 1 lists the landslide conditioning factors used in this study, together with their sources and

scales. We produced a 10 m resolution Digital Elevation Model (DEM) from Sentinel-1 satellite imagery

acquired on 20 February 2017 and 2 March 2017, with a perpendicular baseline of 97 m. The DEM was

created using an InSAR technique and Sentinel Application Platform (SNAP) software. Geographic

Information System (GIS) layers extracted from the DEM include slope, aspect, elevation (Figure 2a–c);

curvature, profile curvature, Stream Power Index (SPI) (Figure 3a–c); and Topographic Wetness Index

(TWI) (Figure 4a). Rivers and streams were mapped on the DEM using the hydrology toolbox in

ArcGIS, and that map was used to create the distance-to-river and river density layers (Figure 4b,c).

Table 1. Source and scales for the landslide conditioning factors used in this study. DEM: Digital

Elevation Model, NDVI: Normalized Difference Vegetation Index, SPI: Stream Power Index, TRMM:

Tropical Rainfall Measuring Mission, TWI: Topographic Wetness Index.

Conditioning Factor Source Scale Classification Method

Slope angle

DEM generated from Sentinel-1
satellite imagery

10 × 10 m

Manual

Aspect Manual

Elevation (m) Equal interval

Distance to river (m) Manual

River density (km/km2) Natural breaks

Curvature Manual

Profile curvature Manual

SPI Natural breaks

TWI Natural breaks

Lithology Mineral and Geoscience
Department, Malaysia

1:100,000
Lithological units

Distance to fault (m) Natural breaks

Soil layer
Department of Agriculture,

Malaysia
1:100,000 Natural breaks

NDVI Sentinel-2 10 × 10 m Natural breaks

Land cover Sentinel-1 and Landsat-8 images 10 × 10 m Land cover unit

Rainfall (mm) TRMM data 10 × 10 m Natural breaks

Distance to road (m)
Open street map

Natural breaks

Road density (km/km2) Natural breaks

Unconsolidated sediments are prone to shallow slope failures because of their low cohesion and

relatively high porosity, which leads to rapid water infiltration [64]. Bedrock near faults is commonly

highly fractured and weathered, and thus it has much lower strength than non-faulted rock [65,66].

Accordingly, we digitized lithology and faults from a 1:100,000-scale geologic map acquired from the

Malaysia Mineral and Geoscience Department (Figure 5a,b).

Vegetation absorbs soil moisture and reduces erosion, and plant roots increase soil strength and

may reduce the incidence of landslides [67]. Thus, slope failures are generally less common in areas

with dense vegetation than in sparsely vegetated areas or on bare ground [68]. A map layer of the

Normalized Difference Vegetation Index (NDVI) was created from Sentinel-2 satellite imagery acquired

on 11 October 2017 using the formula Float (NIR − Red)/(NIR + Red). High amounts of chlorophyll

result in low reflectance in the red band and high reflectance in the near-infrared band [69–71]. A high

NDVI value indicates green vegetation, whereas a low value indicates sparse vegetation or bare

ground [67] (Figure 6a).

A land-use map was extracted using Sentinel-1 and Landsat-8 images downloaded from the

Copernicus and US Geological Survey websites (scihub.copernicus.eu and earthexplorer.usgs.gov).

scihub.copernicus.eu
earthexplorer.usgs.gov
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Five land-cover classes (forest, cleared forest, florification, water bodies, and township) were mapped

and used for landslide susceptibility zonation (Figure 6b).

 

Figure 2. Landslide conditioning factors: (a) slope, (b) aspect, and (c) elevation.

 

Figure 3. Landslide conditioning factors: (a) curvature, (b) profile curvature, and (c) SPI.
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Figure 4. Landslide conditioning factors: (a) TWI, (b) distance to river, and (c) river density.

 

Figure 5. Landslide conditioning factors: (a) lithology and (b) distance to fault.
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Figure 6. Landslide conditioning factors: (a) NDVI and (b) land cover.

Roads are common locations of landslides, especially in mountainous areas [8,72]. The 32 km-long

road network in the study area was taken from the Open Street Map. This layer was used to create

distance-to-road and road density layers (Figure 7a,b).

Figure 7. Landslide conditioning factors: (a) distance to road and (b) road density.
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Many researchers consider soil to be an important contributor to slope failures [68,73,74]. Whether

a landslide is shallow or deep-seated depends greatly on the Earth materials and the thickness of soil

on a slope [75,76]. In this study, the soil layer was digitized from a soil map acquired from the Malaysia

Department of Agriculture. In the study area, there are two different groups of soil, namely the Serong

Series and soils on alluvium and colluvium (Figure 8a).

Figure 8. Landslide conditioning factors: (a) soil and (b) rainfall.

A rainfall map of the study area (Figure 8b) was extracted from the TRMM dataset.

Natural vegetation cover is conditioned by precipitation and temperature, and in turn, it affects

evapotranspiration, rainfall interception, infiltration, and soil characteristics [68,77].

Before we could proceed with the landslide modeling, we defined classes for each of the

conditioning factors using ArcGIS. To do this, we first considered potential classes for our conditioning

factors based on previous work [78–81]. Then, we established classes to capture the ranges of factor

values characteristic of our study area [29,82,83].

3.2. Methods Used

3.2.1. One Rule (One-R) Feature Selection Technique

We used the One-R feature selection technique to measure the effectiveness of each conditioning

factor for landslide prediction, as it is a straightforward and effective method for evaluating features

based on error rates [79]. In this algorithm, the weight (average merit (AM)) for each factor was

obtained based on a few rules and computing error ratios. One-R boosts the quality of input data,

leading to more precise modeling output.

3.2.2. Altering Decision Tree (ADTree)

ADTree combines a decision tree with a boosting algorithm [72,84] to increase the prediction

quality in binary classification modeling [47,85]. The decision tree in the ADTree model is grown

using a boosting algorithm for numeric prediction, in which a decision node and its two prediction



Int. J. Environ. Res. Public Health 2020, 17, 4933 9 of 22

nodes are constructed at each boosting iteration step [37,47]. The contribution of the node to the

final prediction is computed by a weight that is assigned to each of the prediction nodes. The final

prediction probability is based on the summation of all the weighted nodes. This procedure differs

from other decision tree-based classifiers such as C4.5 or classification and regression tree (CART),

in which a sample follows only one path through the tree [24]. In this study, we tuned the parameters

with a trial-and-error procedure: debug = false, number of boosting iterations = 10; random seed = 1,

and search path = expand all paths.

3.2.3. AdaBoost (AB)

AdaBoost is an ensemble learning technique proposed by Freund and Shapire [86]. It constructs

a strong classifier from a set of weak classifiers and reduces the sensitivity to noisy data. It assigns

a weight to each parameter in the training dataset in a repetitive manner. The process is terminated

when the pre-defined stopping criteria (e.g., lowest error) are reached [87]. AB works on an adaptive

re-sampling technique as follows: (a) a training subset, the data of which are assigned equal weights

is randomly generated from the original training dataset; (b) the misclassified cases receive greater

weights, whereas the weights of the correctly classified cases remain the same; and (c) the first step is

repeated, followed by a normalization process, and a new training subset is generated. AB has several

parameters that must be tuned for the best performance. In this study, we tuned the parameters using

a trial-and-error process: debug = false, number of boosting iterations = 15, number of seeds = 3,

and weight threshold = 100.

3.2.4. Ensemble AB-ADTree Model

In this study, we combined the AB technique with ADTree to create the AB-ADTree ensemble

model. The main four steps in using AB-ADTree for landslide susceptibility modeling areas follows:

(1) selection of the most important conditioning factors using the One-R technique, (2) training the

AB-ADTree ensemble model, (3) validation and comparison of the models, and (4) development of

landslide susceptibility maps (Figure 9).

 

Figure 9. Research methodology for landslide susceptibility mapping in the Cameron Highlands, 
Figure 9. Research methodology for landslide susceptibility mapping in the Cameron

Highlands, Malaysia.
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3.3. Comparison and Evaluation Metrics

When a new machine learning method is introduced, its performance must be evaluated

quantitatively using a real-world database (in our case, the data are the validation dataset of 30 landslides

and 30 non-landslides) to determine its predictive power and applicability [88]. Below, we summarize

the comparison and evaluation statistical metrics that we use to accomplish this objective, specifically

positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, accuracy,

root mean square error (RMSE), sensitivity, specificity, accuracy, ROC curve, and the Friedman and

Wilcoxon tests.

3.3.1. Statistical Metrics

We computed statistical metrics based on the confusion matrix shown in Table 2. In this matrix,

true positive (TP) refers to the number of pixels that are correctly classified as landslide, whereas true

negative (TN) is the number of pixels that are correctly classified as non-landslides. False positive (FP)

and false negative (FN) are the number of pixels that are incorrectly classified, respectively, as landslides

and non-landslides.

Table 2. Technical attributes of the confusion matrix.

Predicted

X′1(landslide) X′0(non-landslide) Sum

Observed
X′1(landslide) TP FN P

X′0(non-landslide) FP TN N

Sensitivity, specificity, and accuracy are calculated from the confusion matrices derived from the

models as follows:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Accuracy (Efficiency) =
TP + TN

TP + TN + FP + FN
. (3)

Sensitivity is defined as the ratio of correctly classified landslides to all predicted landslides.

Specificity is the ratio of incorrectly classified landslides to all predicted non-landslides. Accuracy is

the ratio of correctly classified landslide pixels to correctly classified non-landslides pixels [89].

In addition, we computed root mean square error (RMSE) (Equation (4)), which is a measure of

the size of the error between the model outputs and observations. The smaller RMSE, the higher model

performance [89–91].

RMSE =

√

1

n

n
∑

i=1

(Xpredicted −Xactual)
2 (4)

where n is the number of values in the training dataset, ′X predicted′ are the predicted values in the

training dataset, and ′X actual′ are the observed values.

3.3.2. Receiver Operating Characteristics (ROC) Curve

The ROC curve is a widely used method for evaluating the performance of empirical learning

systems. The graphical plot of the ROC curve includes a sensitivity y-axis and a false-positive rate

x-axis (1-specificty). The ROC curve can be used in conjunction with machine learning methods to

evaluate the performance of a classifier [92]. Performance is quantitatively defined using the area

under the ROC curve (AUC) [93,94]. An optimal classifier has an AUC value equal to 1, whereas the

AUC value of a random classifier is ≤0.5 [95,96].
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3.3.3. Friedman and Wilcoxon Tests

We employed the Friedman and Wilcoxon tests to compare the predictive capabilities of the

models used in this study. The Freidman test shows overall statistical differences between the models

and is used for two-way analysis of variance of non-parametric data [97]. The Wilcoxon test [98] is

used for comparing the performance of two or more samples from the same community [33]. The tests

are judged based on two possible hypotheses [9]: first, there is no significant difference between the

predictive capabilities of the models (H0); second, there is a statistical difference between the predictive

capabilities of the models (H1). The Friedman test judges whether there is a statistical difference

between two models if the H0 hypothesis is true (p-value < 0.05), whereas the Wilcoxon test determines

p- and z-values to perform a pairwise test between the models. The models are statistically different if

the p-value < 0.05 and if +1.96 > z-value > −1.96 [34,93,99].

4. Results

4.1. Factor Importance

The prediction capability (merit) of the conditioning factors used in this study is shown in Figure 10.

The results, which were obtained using the One-R technique with 10-fold cross-validation, indicate that

the distance to fault has the highest merit (66.529) among the landslide conditioning factors, followed

by elevation (65.290), distance to road (65.428), road density (64.463), river density (63.270), land use

(59.551), rainfall (57.576), NDVI (57.393), TWI (56.750), curvature (55.372), profile curvature (55.001),

distance to river (54.821), SPI (54.132), aspect (53.994), slope angle (53.304), lithology (48.705), and soil

(47.705).

 

Figure 10. Factor importance measured using the One-R method.
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4.2. Performance Analysis

Results of the goodness-of-fit and prediction accuracy of the models based on the training

and validation datasets, respectively, are shown in Table 3. For the training dataset, the sensitivity,

specificity, accuracy, and RMSE of the ADTree algorithm are, respectively, 79.5%, 75%, 77%, and 0.443.

Corresponding values for AB are 86.9%, 84.4%, 85.7%, and 0.301, and those for the AB-ADTree ensemble

algorithm are 83.6%, 82%, 82.8%, and 0.315. In the case of the validation dataset, the AB ensemble

model has higher sensitivity (86.2%), specificity (83.9%), and accuracy (85%), and a lower RMSE (0.212)

than the AB-ADTree (79.3%, 77.4%, 78.3%, and 0.289) and ADTree (76.9%, 70.6%, 73.3%, and 0.366)

models. Based on these performance metrics, we conclude that the AB ensemble model is more accurate

than the AB-ADTree and ADTree models in predicting landslide susceptibility in our study area.

Table 3. Goodness-of-fit and prediction accuracy of the models for the training and validation datasets.

Factors
ADTree AB AB-ADTree

T * V * T V T V

TP 89 20 106 25 102 23

TN 99 24 103 26 100 24

FP 33 10 19 5 22 7

FN 23 6 16 4 20 6

Sensitivity (%) 79.5 76.9 86.9 86.2 83.6 79.3

Specificity (%) 75.0 70.6 84.4 83.9 82.0 77.4

Accuracy (%) 77.0 73.3 85.7 85.0 82.8 78.3

RMSE 0.443 0.366 0.301 0.212 0.315 0.289

T *: training dataset, V *: validation dataset, AB: AdaBoost, ADTree: alternating decision tree, AB-ADTree:
a combination of AdaBoost and alternating decision tree, TP: true positive, TN: true negative, FP: false positive, FN:
false negative, RMSE: root mean square error.

4.3. Landslide Susceptibility Maps

After the modeling process and selecting the most reasonable results based on the parameter

tuning of each model, we ran the ADTree, AB, and AB-ADTree algorithms on the training dataset.

We calculated landslide susceptibility indexes (ISIs) based on the probability distribution functions of

the algorithms and prepared landslide susceptibility maps based on these indexes as follows:

4.3.1. ADTree Landslide Susceptibility Map

The validation results showed that the ADTree model performed very poorly, indicating that

this model is unsuitable for landslide susceptibility mapping in our study area. However, we still

produced a landslide susceptibility map with four susceptibility classes (low, moderate, high, and very

high susceptibility) using the ADTree model (Figure 11a).

The low susceptibility class covers about half of the study area (40.459 km2), in comparison to the

very high susceptibility class, which covers only 6% of the area (5.220 km2). The areas of the moderate

and the high susceptibility classes are 32% (25.634 km2) and 12% (9.935 km2), respectively.
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Figure 11. Landslide susceptibility maps: (a) ADTree; (b) AB; and (c) AB-ADTree.

4.3.2. AB landslide Susceptibility Map

The AB model assigned 29% (23.264 km2) of the study area in the high susceptibility class; values for

the low, moderate, and very high susceptibility classes are 28% (22.934 km2), 22% (18.081 km2), and 21%

(16.968 km2), respectively (Figure 11b).

4.3.3. AB-ADTree Landslide Susceptibility Map

The ensemble AB-ADTree model performed better than the ADTree model, but it was outperformed

by the AB model. The high and very high susceptibility classes cover 53% (42.729 km2) of the study

area (Figure 11c). The low and moderate susceptibility classes have areas of 31% (25.229 km2) and 16%

(13.282 km2), respectively.

4.3.4. Validation and Comparison of Landslide Susceptibility Maps

We used the AUC metric to determine the prediction accuracy of the models. Figure 12 shows

the ROC curves and related AUC values for the three models. The AB and AB-ADTree models have

similar performances, with AUC values of 0.96 and 0.94, respectively. In contrast, the ADTree model,

with an AUC value of 0.59, performed poorly as a landslide predictive model.

Table 4 shows the results of the Friedman test. The mean ranks for the AB, AB-ADTree, and ADTree

models are, respectively, 2.72, 2.20, and 1.08. The results indicate that there is a large difference between

ADTree and the other two models in terms of their abilities to predict future landslides. Further,

the high chi-square value (83.633) and low significance (0.000) of AB suggest that there is a large

difference among the models. When one of the tested models has a low mean rank (in this case ADTree),



Int. J. Environ. Res. Public Health 2020, 17, 4933 14 of 22

the Friedman test assigns a high chi-square value and a low significance to one of the other models to

indicate that there is a large difference among them.

− −

− − −

Figure 12. Receiver Operating Characteristic (ROC) curve and area under the receiver operating

characteristic curve (AUC) values of the models using validation dataset.

Table 4. Friedman test statistics results for this study.

Models Mean Ranks Chi-Square Significance

ADTree 1.08

83.633 0.000AB 2.72

AB-ADTree 2.20

The Wilcoxon test was used to assess pairwise differences among the models. Table 5 shows there

are statistical differences between ADTree and the other two models, with a p-value of 0.000 and z-value

of −6.737 when compared to AB, and −6.472 and 0.000 when compared to AB-ADTree. The results also

show that there is a significant difference between the AB and AB-ADTree models (p-value = 0.041).

Table 5. Wilcoxon signed ranks test statistics.

AB vs. ADTree AB-ADTree vs. ADTree AB-ADTree vs. AB

z value −6.737 −6.472 −2.084

p value 0.000 0.000 0.041

5. Discussion

All 17 landslide conditioning factors used in this study are deemed to be important, because they

have positive values of average merit based on the One-R technique. We found that fault distance is

the most important conditioning factor for landslide occurrence in our study area, suggesting that the

nearer a location is to a fault, the higher the probability of landslide occurrence. Fault movements

deform and fracture rock, decreasing its strength and facilitating landslides on steep slopes along
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roads, rivers, and streams [100,101]. Although the effect of fault distance cannot be directly analyzed

and observed through field surveys, our results indicate that it is an important factor. This finding is

not in accord with the relation between fault distance and landslide occurrence reported by Cevik and

Topal [102], but many other researchers have argued that fault distance is one of the most important

factors for landslide occurrence worldwide [41,103–106]. Field observations confirmed our modeling

results that anthropogenic factors such as road construction and hydrology factors such as rainfall

have a significant role in landslide occurrence in the study area.

Landslide researchers have applied a variety of machine learning approaches to different regions

and have achieved different results. Even within a single region, different models, such as logistic

regression and support vector machine, may yield different results due to weighting differences,

which, in turn, relate to their probability distribution functions. These differences stem, in part,

from epistemic uncertainties in model selection and input data. A consequence of the different methods

used during the modeling process is that there is no agreed-upon framework for landslide susceptibility

mapping. To reduce epistemic uncertainty, we require comprehensive trial-and-error studies of

landslide conditioning factors and landslide susceptibility mapping methods. Newer machine learning

models have overcome the over-fitting and noise challenges that previously arose during the modeling

process, and their goodness-of-fit and performance have improved in comparison to more conventional

models [32,33,61,62,107]. Recently, researchers have developed promising new ensemble models that

are more powerful than individual models [105]. In this study, we improved and enhanced the ADTree

algorithm by creating, using, and testing the ensemble AB-ADTree model. We show that this model

provided higher prediction accuracy than the ADTree as an individual algorithm.

The performance of the machine learning models used in this study was evaluated using statistical

parametric and non-parametric methods. The results show that outperformed the AB-ADTree and

ADTree models. The new model successfully distinguished landslide-prone areas in the study area

based on the training and validation datasets. Our findings support previous studies that indicated

that the AB ensemble technique and its derived ensemble models can significantly decrease over-fitting

and the noise problems of the modeling process [55,87,88,90,105,108,109].

There are several published papers that report on the capability of the AB ensemble technique

for improving the performance of the base models. Hong et al. [72] achieved promising results by

combining the AB ensemble technique with J48 to predict landslides in the Guangchang area, China;

and Bui et al. [110] improved the predictive performance of the functional tree model using the

AB ensemble technique to predict landslides along a national road in Vietnam. Abedini et al. [43]

combined the Bayesian logistic regression (BLR) with the AB ensemble technique and reported on the

improved prediction accuracy for landslide susceptibility in Kamyaran, Iran. Wu et al. [24] improved

the capability of the ADTree model with the AB ensemble technique in a study of landslides in Longxian

County, China. Finally, in a recent study, Tran et al. [32] showed that the AB ensemble model performed

better than Bagging, Dagging, Decorate, and Real AdaBoost for improving the performance of the

Hyperpipes algorithm in predicting landslide susceptibility in the Nam Dam Commune, Vietnam.

Researchers have also used this modeling approach in flood and gully erosion prediction and

groundwater potential mapping. In a recent study, Pham et al. [111] combined the AB ensemble

technique with the Credal decision tree to predict floods in the Markazi Province of Iran. They showed

that this technique performed better than Bagging, Dagging, and MultiBoost. Nhu et al. [55] coupled

a reduced pruning error tree model with AB, Bagging, and Random Subspace techniques for gully

erosion susceptibility mapping using in the Shoor River watershed of Iran. Nguyen et al. [61,62]

proposed ensemble modeling based on the ANN and logistic regression for groundwater potential

mapping in two different regions of Vietnam.

6. Conclusions

Landslides are common in the Cameron Highlands, Malaysia, and they cause much damage to

roads, buildings, and other infrastructure. Losses are likely to increase in the future due to increased
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urbanization and land clearing. Local governments, as well as the Malaysian federal government,

are concerned about the possibility of loss of life due to landslides, especially during heavy rainfall,

which is common in the country. To manage this problem, Malaysian policy- and decision-makers

require a better understanding of where landslides are likely to occur. Accurate landslide susceptibility

maps help them select suitable locations for infrastructure development.

We employed the InSAR technique, Google Earth images, and field investigation to inventory

landslides in our study area. From a dataset of 152 landslides; 20% (30 landslides) were used for

validation purposes, and the remainder (122 landslides) were used to train ADTree, AB, and AB-ADTree

machine learning algorithms. The 17 landslide conditioning factors (slope, aspect, elevation, distance

to road, distance to river, proximity to fault, road density, river density, NDVI, rainfall, land cover,

lithology, soil types, curvature, profile curvature, SPI, and TWI) used in this study were obtained from a

variety of sources, including a DEM, geological map, soil map, the Tropical Rainfall Measuring Mission

sensor, satellite imagery, and Open Street Map. We created landslide susceptibility maps using the

ADTree, AB, and AB-ADTree algorithms, and we validated the models using AUC and the statistical

metrics PPV, NPV, sensitivity, specificity, accuracy, and RMSE. The ADTree, AB, and AB-ADTree

models have AUC values of, respectively, 59%, 96%, and 94%. The Friedman and Wilcoxon statistical

tests were used to assess model performance. These tests showed that the ADTree model performed

much more poorly than the other two models. Further, the single AB model performed better than

the ensemble AB-ADTree model in predicting landslide susceptibility in the study area. This study

provides insights into the development of more efficient and accurate landslide predictive models that

can be used to mitigate landslide hazards.
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