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 An inverted pendulum is a multivariable, unstable, nonlinear system that is used  

as a yardstick in control engineering laboratories to study, verify and confirm 

innovative control techniques. To implement a simple control algorithm, 

achieve upright stabilization and precise tracking control under external 

disturbances constitutes a serious challenge. Observer-based linear quadratic 

regulator (LQR) controller and linear matrix inequality (LMI) are proposed 

for the upright stabilization of the system. Simulation studies are performed 

using step input magnitude, and the results are analyzed. Time response 

specifications, integral square error (ISE), integral absolute error (IAE) and mean 

absolute error (MAE) were employed to investigate the performances of  

the proposed controllers. Based on the comparative analysis, the upright 

stabilization of the pendulum was achieved within the shortest possible time 

with both controllers however, the LMI controller exhibits better performances  

in both stabilization and robustness. Moreover, the LMI control scheme  

is effective and simple. 
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1. INTRODUCTION 

Control of an inverted pendulum using various control strategies has become a topic of interest for 

many years owing to being an under-actuated, unstable, multivariable and non-linear. Based on the literature, 

the following are some of the control strategies employed for stabilization and tracking control of an inverted 

pendulum system; a variable speed control moment gyroscope (VSCMG) actuator was employed to control  

a typical pendulum configuration [1]. Coupled state-dependent Riccati equation (SDRE) method for 

scientifically designing nonlinear quadratic regulator (NLQR) and H infinity control of an under-actuated 

Furuta rotary pendulum was developed [2]. The main control objectives of a rotary inverted pendulum as 

swing-up control, stabilization control, switching control and trajectory tracking control was described in [3, 4] 

proposed RBF-ARX (state-dependent auto-regressive model with exogenous input and radial basis function 

network type coefficients) model-based efficient robust predictive control method for systematic inverted 
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pendulum design. According to [5] the output feedback laws with a minimum switching rule for saturated 

switched linear systems were developed, and it provided control synthesis conditions of a spherical inverted 

pendulum. Improvement of Polekhin's theorem by lowering the regularity motion and a periodic solution for 

the carriage moving periodically on the plane was obtained in [6]. An open-source online laboratory 

experiment was offered by [7] for the Furuta pendulum, a system that has helped researchers to study 

nonlinear dynamics and control theory. An automatic self-tuning control system were proposed for inverted 

pendulum system via LQR controller, precise optimal stabilization was achieved [8]. A feedback 

linearization and sliding mode control approach were established to stabilize a class of fourth-order nonlinear 

systems where design parameters of the sliding surface were modified using the adaptation laws, based on 

the gradient descent technique [9].  

However, another approach by [10], stabilized a wheeled inverted pendulum using one accelerometer 

with a modified mechanical structure. Similarly, approximate feedback linearization and sliding mode 

methods were employed to control a cart-type inverted pendulum, where stability was achieved by using an 

optimized hybrid algorithm based on the particle swarm optimization and genetic algorithm [11]. Linear 

control of the flywheel inverted pendulum was proposed in [12], in which high performances were achieved. 

In a different control approach, [13] controlled reaction wheel oscillation using a proportional-integral 

controller (PID), while A linear tracking controller was developed for velocity control of a two-wheeled 

inverted pendulum (TWIP) mobile robot based on its Takagi-Sugino (T-S) fuzzy model [14]. An investigation 

was carried out by [15] where the inverted pendulum is used and a real interpolation method is employed. 

The adaptive neuro-fuzzy inference system (ANFIS) was introduced to control an inverted pendulum system, 

where the desire position was tracked [16]. A comparison between an LQR and pole placement was 

presented for the stabilizing cart pendulum [17]. An algorithm in [18] was developed for single input multi 

output with under-actuated systems with mismatched uncertainties. In the pole-placement method,  

the closed-loop pole location must be determined. But the researcher may know where they are located.  

The optimal control method ignores finding the desired pole location, the control law of the optimal control 

method always optimizes the performance of the system to avoid drawbacks.   

This paper presents a comparison of observer-based LQR and LMI controllers for stabilization 

control of an inverted pendulum system. The major problem is the pendulum Stabilization in an upright 

position and stoppage of cart movement at the desired location within a short time. Assessment of LMI  

and LQR control algorithms shows several advantages that improved closed-loop stability. Section 2 presents 

system describe, section 3 presents the system dynamic model and control schemes. Sections 4 present 

results and discussion while section 5 conclusions and future recommendation 

 

 

2. SYSTEM DESCRIPTION 

The system model is 33-000-V73 which consists of dual pendula, cart, D.C motor, and a rail.  

For the pendula to rotate freely through 360
0
, the two are hinged at the cart’s centre [19]. The D.C motor 

moves the cart horizontally on the rail, freely. Figure 1 shows the mechanical system and the system  

is unstable whenever the pendula are positioned vertically but downright stable when positioned 

downwardly. Any slight deviation from the equilibrium point would render the pendulum unstable.  

The moving region of the inverted pendulum in which control is achievable has been shown in Figure 2. 

 

 

 
 

  

Figure 1. The 33-000-V73 laboratory-based 

inverted Pendulum 

Figure 2. Schematic diagram of an inverted 

Pendulum 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 6, December 2020 :  2244 – 2252 

2246 

2.1. System modelling  

Figure 3 shows the system representations, where x, f (t), and θ are the cart displacement,  

the applied force (N) and the pendulum angle respectively. I is the moment of inertia (kgm
2
) of the rod from 

the centre of mass, M is the cart’s mass (kg) and l is the length (m) of the pendulum. The constants, b, and c 

are the cart’s viscous and translation damping (Ns/m) respectively. The system parameters are as recorded in 

Table 1 [19]. 

 

 

 

Table 1. System parameters [19] 
Parameter Value 

Mass of the cart (M) 2.4 Kg 
Mass of pole (m) 0.23 Kg 

Length of pole (l) 0.38 m 

Moment of inertia of the pol (l) 0.099 Kg/m2 
Coefficient of friction of cart (b) 0.05 

Damping coefficient of pendulum (d) 0.005 Nms/rad 

Gravity (g) 9.8m/s2 
 

 

Figure 3. Schemetic diagram 

 

 

 

Based on Figure 3, the system’s overall dynamic equations are obtained as: 

 

{
(   ) ̈    ̇         ̈         ̇   ( )

(     ) ̈     ̈               ̇   
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The dynamic equation can, however, be represented in a state-space form as: 

 

 ̇        (2) 
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and the states vector of the system expressed as: 
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where  ,   ̇          ̇ are the pendulum angle, angular velocity, cart displacement and velocity of the cart 

respectively. The system matrix was obtained as [19]; 
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3. CONTROL SYSTEM DESIGN 

3.1. LQR control 

In the LQR control system, a control law is selected to regulate the state x and to get the performance 

index minimized: 

 

 
(5) 

 

where J is the performance index,             are the weight matrices for the control variable  ( ) and 

state variable  ( ) respectively. Figure 4 shows a typical LQR control system. 

0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t
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Figure 4. Typical LQR control system 
 

 

 R and Q are positive definite and the semi-positive definite matrices respectively. Thus, K can be 

obtained to satisfy the feedback control law [20-22]; 
 

               (6) 
 

where; P is the solution of the Riccati equation: 
 

                    (7) 
 

         (8) 
 

The closed-loop controller gains were found as K = [20.9777; 8.3690; -3.9528; -4.1689]. 

 

3.2. Observer feedback control design 

The estimator poles were chosen ten times as faster as the system poles and the control law with  

the observer design is combined to get a compensator as shown in Figure 5 [23, 24]. The observer gain L  

was obtained using MATLAB routine called “place”. The observer pole was assigned as P. Therefore,  

the observer gain is obtained using equation (12) as: 
 

L = place (A', C’, P)' (9) 
 

This generated an observer gain that placed the poles in the desired position. The following parameters were 

used in the design of the observer in MATLAB. The weight due to angle and position values are Qdiag.  

[25, 0, 250, 0] and R=1.6. Thus, the observer gain and the closed-loop system gain was obtained as;  

K = [55.5439; 22.2266; -12.5000; -12.0038] and  
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Figure 5. Observer feedback control system 
 

 

3.3. Proposed LMI controller design 

Stability and transient response of linear systems depend on the locations of the poles in the complex 

plane. Consider a linear dynamic system; 
 

 ̇      (10) 
 

The Lyapunov theorem states that the system in equation (10) is said to be asymptotically stable once a real 

symmetric matrix P satisfying the following LMIs exists [25, 26]: 
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                     (11) 

 

The LMIs in (11) provides the conditions for the stability of the system in (10). The left half plane 

and LMI region is as presented in Figures 6 and7.  
 

 

  
  

Figure 6. Left half-plane Figure 7. LMI region 
 

 

All the poles of the system in (10) will be lying in the LMI region of Figure 7 if and only if there exists 

asymmetrical positive definite matrix P such that: 
 

       
         (12) 

 

       
         (13) 

 

[
         

 

         
]               (14) 

 

The LMIs in (12) and (13) represent the vertical strip, while the LMI in (14) represents the circle centred at 

(   ) with radius    . The controller gains K and the reference input scaling factor N were found as 

[20.9777; 8.3690; -3.9528; -4.1689] and [-461.5637 -178.3047 155.2348 104.0856] respectably by using 

MATLAB codes. 

 

 

4. RESULTS AND DISCUSSION 

In this section, using the step input in MATLAB software the proposed control schemes were 

implemented.  Figure 8 shows the open-loop response and Table 2 recorded the frequency, eigenvalues,  

and the damping ratio of the open-loop system which confirms the system is completely unstable. The system 

is completely stable after applying the observer-based LQR controller as shown in Figure 9, whereby all 

poles of the system were located in the negative half-plane. This can also be confirmed based on the recorded 

data of the eigenvalues, damping and frequency as in Table 3.  
 

 

 

Table 2. Open-loop simulation data 
Frequency (rad/s) Eigenvalue Damping ratio 
0.00e+000 0.00e+000 -1.00e+000 
0.00e+000 0.00e+000 -1.00e+000 
2.52e+000 2.52e+000 -1.00e+000 
2.52e+000 2.52e+000 -1.00e+000 

 

  

Figure 8. Open loop response of the system  
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Table 3. Closed-loop simulation data 
Frequency 
(rad/s) 

Eigenvalue Damping 
ratio 

1.00e+001 -7.15e+000 + 7.01e+000i 7.14e-001 
1.00e+001 -7.15e+000 + 7.01e+000i 7.14e-001 
2.28e+000 -2.18e+000 + 6.56e-001i 9.58e-001 
2.28e+000 -2.18e+000 + 6.56e-001i 9.58e-001 
1.00e+002 -7.15e+000 + 7.01e+001i 7.14e-001 
1.00e+002 -7.15e+000 + 7.01e+001i 7.14e-001 
2.28e+001 -2.18e+001 + 6.56e-001i 9.58e-001 
2.28e+001 -2.18e+001 + 6.56e-001i 9.58e-001 

 

 

Figure 9. Observer close loop poles and zeros map 

 

 

 

The cart position and swing angle of the system were as shown in Figure 10, simulated with  

an initial condition of 0.1rad. The systems stabilized at 2.4 sec with 0.262 undershoot of cart position  

and 0.07 of the swing angles. Moreover, observer-based state feedback was designed to estimate the system 

output and generate the control signal that yields the desired closed-loop performance. The tick poles are  

the observer poles while the star-like poles are the system poles. This implies that the observer poles are 

more negative away from system poles. Thus, the closed-loop poles of the observed states' feedback system 

have system poles and the observer poles. They were designed separately and combined to form an observer 

feedback control system. Therefore, the observer poles are chosen in such a way that the observer response is 

much faster than the system response so that the observer has less effect on the system. 

Besides, the LMI controller was designed and compared with observer-based LQR. In this control 

schemes, the closed-loop poles need to be placed in the LMI region of the complex left-half plane to achieve  

a stabilized system and good transient response. In designing LMI based controller, the transient parameters 

were selected as; r=200 which is the radio of the circle, c=100 which is the centre of the circle and a=3 and 

b=200 which are two points on the circle. The best value of t should be negative for feasibility, thus obtained 

as -3.669348e-05 and f-radius saturation is 0.000% of R which is equal to 1.00e+09, and Table 4 recorded  

the simulation data of the LMI control algorithms. 
 

 

 

Table 4. LMI closed-loop simulation data 
Frequency (rad/s) Eigenvalue Damping ratio 
5.46e+00 -3.88e+00 + 3.84e+00i 7.11e-01 
5.46e+00 -3.88e+00 - 3.84e+00i 7.11e-01 
1.76e+00 -1.73e+00 + 2.82e-01i 9.87e-01 
1.76e+00 -1.73e+00 - 2.82e-01i 9.87e-01 

 

 

Figure 10. Closed loop response of the system 

 

 

 

 The observer-based LQR controller does its job of maintaining the pendulum angle in an upright 

position, but its response is sluggish as compared to the LMI based controller. The controller's performances 

as in Figures 10, 11, and Table 5 show clearly that LMI controller is superior over observer-based LQR 

controller. Also, integral square error, integral absolute error and mean absolute error were used as  

the performance indexes, and based on the recorded data as shown in Table 5, both controller performances 

excellently as they recorded less error. However, LMI based controller shows a better performance. 
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Figure11. Comparing the performances of the controllers 

 

 

Table 5. Performance indexes 
Controllers Max. undershoot (%) Settling time(s) ISE IAE MAE (%) 

Observer-based LQR 0.07 2.4 7.82x10-6 6.95x10-6 83.60 

LMI 0.082 1.7 5.45x10-6 4.79.x10-6 87.01 

 

 

5. CONCLUSION 

In this paper, the performances of the observer-based LQR and LMI controllers were investigated 

for upright stabilization control of nonlinear inverted pendulum. Observer-based LQR and LMI controllers 

were designed to stabilize the pendula. Time response specifications, Integral absolute error, integral square 

error and mean absolute error were employed to investigate the performances of the proposed controllers. 

Based on simulation results and performance index analysis, a better performance was achieved using  

the LMI controller. To further reduce the amplitude and frequencies of the oscillation, frictional coefficients 

should be taking into consideration. 
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