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Selection of CMIP5 general circulation model outputs

of precipitation for peninsular Malaysia

Saleem A. Salman, Mohamed Salem Nashwan, Tarmizi Ismail

and Shamsuddin Shahid
ABSTRACT
Reduction of uncertainty in climate change projections is a major challenge in impact assessment

and adaptation planning. General circulation models (GCMs) along with projection scenarios are the

major sources of uncertainty in climate change projections. Therefore, the selection of appropriate

GCMs for a region can significantly reduce uncertainty in climate projections. In this study, 20 GCMs

were statistically evaluated in replicating the spatial pattern of monsoon propagation towards

Peninsular Malaysia at annual and seasonal time frames against the 20th Century Reanalysis dataset.

The performance evaluation metrics of the GCMs for different time frames were compromised using

a state-of-art multi-criteria decision-making approach, compromise programming, for the selection

of GCMs. Finally, the selected GCMs were interpolated to 0.25� × 0.25� spatial resolution and bias-

corrected using the Asian Precipitation – Highly-Resolved Observational Integration Towards

Evaluation (APHRODITE) rainfall as reference data. The results revealed the better performance of

BCC-CSM1-1 and HadGEM2-ES in replicating the historical rainfall in Peninsular Malaysia. The bias-

corrected projections of selected GCMs revealed a large variation of the mean, standard deviation

and 95% percentile of daily rainfall in the study area for two futures, 2020–2059 and 2060–2099

compared to base climate.
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INTRODUCTION
The uncertainties in climate projections heavily influence the

quantification of impacts (Deser et al. ). A slight variation

in the changes in climate projection can significantly change

the return period of hydrological disasters such as flood,

droughts, etc. (Camici et al. ; Qin & Lu ; Nashwan

et al. b). The reduction of uncertainty in climate change

projection is considered as the major challenge in climate

change studies (Shiogama et al. ; Lehner et al. ). A

number of approaches have been proposed in the literature

for quantification and reduction of uncertainty arising from
general circulation models (GCMs) and emission scenarios

(Shiogama et al. ; Hosseinzadehtalaei et al. ; Mateus

& Tullos ; Kaczmarska et al. ; Satoh et al. ;

Lehner et al. ). Most of the methods are based on the

departure of the GCMs from their ensemble mean. The

major disadvantage of existing approaches is that they under-

or over-estimate the uncertainty in projection, particularly

uncertainty in extreme weather events. The return period of

extreme events heavily depends on climate variability rather

than climatic mean and therefore, uncertainty in climate pro-

jections heavily under- or overestimate the return periods of

extremes (Harris et al. ; Hewitt et al. ). Consequently,

development and planning activities based on projected cli-

mate suffers from a high risk of failure. This emphasizes the
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need for more study on the reduction of uncertainty in climate

projections. A number of studies have been conducted for the

reduction of uncertainty in climate projections in different cli-

matic and geographical regions (Mateus & Tullos ;

Kaczmarska et al. ).

Uncertainty in climate change projections arises from

different sources including GCMs, climate change scen-

arios, and downscaling techniques (Ahmed et al. ;

Sachindra et al. ). However, errors in the model struc-

ture, adopted initial conditions, calibration procedure,

calibration data and representation of the atmospheric and

other processes in GCM development are the main sources

of uncertainties (Pour et al. ; Sachindra et al. ;

Ahmed et al. ). Therefore, selection of credible GCMs

is considered as one of the effective ways in reducing the

uncertainty in climate change projections (Salman et al.

; Sa’adi et al. ; Shiru et al. ).

GCMs are generally selected according to their ability to

simulate historical climate (Lutz et al. ). Mostly, time

series of monthly or annual observed and GCM simulated

climate are compared to assess the performance of GCMs.

Selection of GCMs by conventional approach provides

emphasis on their ability to simulate temporal variability

in rainfall (Ahmed et al. ; Noor et al. b). The ability

of GCMs in simulating spatial variability in climate is often

ignored although it has similar importance. Besides, GCMs

are also selected based on their capability to simulate large-

scale ocean-atmospheric phenomena responsible for climate

variation of a region. For example, the ability of GCMs to

simulate monsoon is very important to show its capability

to project rainfall in a monsoon-dominated rainfall region.

This emphasizes the need for selection of GCMs for a

region according to their ability to simulate the propagation

of large-scale ocean-atmospheric phenomena that determine

the climate of the region.

Various statistics have been used in previous studies for

the evaluation of the performance of GCMs such as corre-

lation, root mean square error (RMSE), mean absolute

error (MAE), standard deviation ratio, etc. (Lutz et al.

; Nashwan & Shahid ; Noor et al. a). Evalu-

ation and selection of credible GCMs based on single

statistical metrics are questionable and not common

(Raju et al. ). This is because each metric measures

only a certain characteristic of the GCMs time series
om http://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
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compared to the reference time series (Weigel et al. ;

McSweeney et al. ). Thus, a bundle of statistics is com-

monly used to evaluate the performance of GCMs in a

region (Johnson & Sharma ). Nevertheless, the pro-

blem of contradictory results often arises when different

metrics are used (Raju et al. ; Nashwan et al. b).

For example, two pairs of time series can have high R2 indi-

cating high correlation even if the error between them is

high. Furthermore, the RMSE can have a near-optimal

value even if a pair of time series does not follow the same

variability. In such a case, the compromise programming

(CP), developed by Zeleny (), can be helpful in determin-

ing the most credible subset of GCMs by judicious

compromising different objectives of which some may be

contradicting or conflicting (Rezaei et al. ; Salman et al.

). CP is a technique for estimating the minimum distance

between the efficient frontier and the ideal point based on the

level of importance assigned to each criterion (Muhammad

et al. ). By applying CP, a subset of GCMs can be ident-

ified which can achieve the considered objectives in a

compromised manner. CP has been used previously for the

selection of GCMs (Raju et al. ; Salman et al. ) and

was found efficient compared to the conventional multi-cri-

teria decision-making methods in other fields of study

(Chen et al. ; Gorantiwar & Smout ).

Although a large number of studies have been conducted

for selection of GCMs in different parts of the world using

different approaches for reliable projections of climate, there

is almost no study in Peninsular Malaysia. The only attempt

taken for selection of GCMs in Peninsular Malaysia was by

Noor et al. (b). They compared the GCM historical simu-

lated rainfall with the Asian Precipitation – Highly-Resolved

Observational Integration Towards Evaluation (APHRO-

DITE) rainfall for the period 1961–2005 using five statistical

metrics for the ranking of GCMs according to their ability to

simulate the APHRODITE rainfall. They selected four

GCMs, BCC-CSM1.1(M), CCSM4, CSIRO-Mk3.6.0, and

HadGEM2-ES as the most suitable GCMs for the projection

of daily rainfall of Peninsular Malaysia. However, the ability

of GCMs not only depends on their ability to simulate the tem-

poral variability of rainfall, but mainly according to their ability

to simulate large-scale phenomena like the propagation of

monsoons, which was ignored in the study of Noor et al.

(b).
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The objective of the present study is to select the most

credible set of GCMs based on their ability in the simulation

of monsoon in the region for the projection of rainfall in

Peninsular Malaysia. Six statistical metrics were used in

CP for the selection of GCMs based on their ability to repli-

cate the spatial variability of monsoon rainfall pattern in the

region. The daily rainfall projections of the selected GCMs

for different radiative concentration pathway (RCP) scen-

arios were downscaled and compared to base period

rainfall (1971–2000) to show the possible future changes

in two futures, 2020–2059 and 2060–2099.
STUDY AREA AND DATA

Study area

Peninsular Malaysia (latitude 1�150–6�450N and longitude

100�–104�300E) (Figure 1) has an equatorial climate
Figure 1 | Peninsula Malaysia location and topography.

://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
characterized by uniform temperature, high humidity, and

copious rainfall (Sa’adi et al. ; Nashwan et al. a).

Daily temperature ranges from 23 �C in the early morning

to 32 �C at noon. Humidity is constantly high and usually

exceeds 68% throughout the year (Muhammad et al. ).

The peninsula experiences two monsoons which are influ-

enced by seasonal wind flow, namely, northeast (NEM)

and southwest (SWM) and two short inter-monsoon seasons

in April and October (Noor et al. ). The NEM is more

prominent because of the sudden surge in the rainfall

amounts while the SWM is associated with a relatively dry

period during the active monsoon months May to August

(Pour et al. ; Mayowa et al. ; Shahid et al. ;

Nashwan et al. a).

Data used

Two groups of datasets were used in this study. The first

group includes the 20th Century Reanalysis (20CR)

version 2 and the Asian Precipitation – Highly-Resolved

Observational Data Integration Towards Evaluation (APH-

RODITE), and the second includes 20 CMIP5 GCMs. The

20CR dataset provides monthly average estimations of rain-

fall in spatial coverage of 2� × 2� over both land and ocean,

thus it can represent large-scale monsoon propagation

towards the study area. Therefore, 20CR was used as a

reference dataset to assess the capabilities of different

GCMs in simulating rainfall in three time frames, annual,

NEM and SWM. The 20CR data were extracted for a

study domain (latitude: �12.5 to �21.0� and longitude:

80.0–121.5�) centred on the Malaysian Peninsula. This

study domain was selected to reflect the propagation of

both NEM and SWM in the study area. Figure 2 presents

the spatial distribution of monsoon rainfall estimated by

20CR data during 1961–2005 over the study domain. The

NEM rainfall in the Southeast Asia region varies between

0 mm in the east and north and 350 mm in Borneo and

some parts of the China Sea. The SWM varies between

the maximum rainfall of 400 mm in the north of the

region and 0 mm in the south. A distinct pattern in the

propagation of NEM and SWM can be found in Peninsular

Malaysia.

On the other hand, APHRODITE provides daily esti-

mates of rainfall on a 0.25� × 0.25� spatial grid over land



Figure 2 | The (a) NEM and (b) SWM rainfall variation estimated by the 20CR precipitation dataset for the period 1961–2005.
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only. It has been developed using nearly 12,000 gauges cov-

ering Asia (Yatagai et al. ). Owing to its fine spatial and

temporal resolution, APHRODITE was used as a reference

dataset to statistically downscale the selected subset of

GCMs at fine resolution. APHRODITE has been widely

used to represent rainfall in Malaysia and nearby countries

(Yen et al. ; Chen et al. ; Le Loh et al. ). Studies

have also reported good performance of APHRODITE in

estimating the spatial and the temporal variability of rainfall

in the study area (Noor et al. b; Pour et al. ). Tan

et al. () evaluated the performance of APHRODITE

against numerous gauge data and found that it can estimate

NEM and SWM rainfall amount more accurately than five

other satellite precipitation products. Furthermore, Tan

et al. () found that APHRODITE rainfall estimates can

accurately generate streamflow simulations in Malaysia.

Noor et al. (b) used APHRODITE as a reference dataset

to select a multi-model ensemble for the projection of rain-

fall in Peninsular Malaysia.

Out of more than 45 GCMs available in CMIP5, 20

GCMs were initially selected in this study as they have

daily historical data (1961–2005) and future projections

(2020–2099) for the four RCPs (i.e., 2.6, 4.5, 6.0 and 8.5)

to cover a wide range of possible future changes. The

GCM name, modelling centre and spatial resolution are pro-

vided in Table 1.
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METHODOLOGY

Procedure

The procedure of selecting and bias-correcting a subset of

GCMs for reduction of uncertainty in rainfall projection

for Peninsular Malaysia is outlined below:

1. The CMIP5 GCMs’ rainfall simulations were interpolated

onto a common resolution of 2.00� × 2.00� using bilinear

interpolation.

2. The performances of GCMs in simulating the spatial

variability of rainfall at the annual, NEM and SWM

time frames over the study domain were assessed using

statistical metrics against 20CR estimates as reference

dataset during 1961–2005.

3. The CP was used to rank the GCMs based on the statisti-

cal metrics results of different GCMs for each time frame

separately.

4. The GCMs ranked above 50th percentile (i.e., ranks 1–

10) for each time frame were selected considering that

they are capable to simulate the spatial variability of

each time frame rainfall over the study domain.

5. The selectedGCMs’ simulations of rainfallwere interpolated

to 0.25� × 0.25�, the same as the resolution of APHRODITE,

using bilinear interpolation over Peninsular Malaysia.



Table 1 | List of CMIP5 GCMs used in the study

Model Modelling centre Resolution (Long. × Lat.)

BCC-CSM1.1(m) Beijing Climate Center, China 2.80� × 2.80�

BCC-CSM1� 1 2.80� × 2.80�

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.80� × 2.80�

CCSM4 National Center for Atmospheric Research, USA 1.25� × 0.94�

CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 0.75� × 0.75�

CMCC-CMS 3.75� × 3.71�

CNRM-CM5 Centre National de Recherches Météorologiques, Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique, France

1.40� × 1.40�

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change
Centre of Excellence, Australia

1.86� × 1.87�

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.50� × 2.01�

GISS-E2-H NASA/GISS (Goddard Institute for Space Studies), USA 2.50� × 2.50�

HadGEM2-AO Met Office Hadley Centre, UK 1.25� × 1.87�

HadGEM2-ES 1.87� × 1.25�

INMCM4.0 Russian Academy of Sciences, Institute of Numerical Mathematics, Russia 2.00� × 1.50�

MIROC5 Atmosphere and Ocean Research Institute, The University of Tokyo, Japan 1.40� × 1.40�

MIROC-ESM 2.80� × 2.80�

MIROC-ESM-
CHEM

2.80� × 2.80�

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.87� × 1.86�

MPI-ESM-MR 1.87� × 1.86�

NorESM1-M Bjerknes Centre for Climate Research, Norwegian Meteorological Institute, Norway 2.50� × 1.90�

NorESM1-M 2.50� × 1.90�
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6. The biases in the selected GCMs’ simulations were cor-

rected using linear scaling method by using APHRODITE

as a reference dataset for the historical period.

7. The bias-correction factors were then applied to correct

the bias in the projected estimates of the selected

GCMs for the four RCPs.

The bias-corrected rainfall estimated by the selected

GCMs were used to show the spatial and temporal changes

in the mean, standard deviation and 95th percentile of the

daily rainfall during the near and far futures (2020–2059

and 2060–2099, respectively) compared to a base period

(1971–2000). Details of the methods are discussed below.

Statistical evaluation of GCM outputs

Six statistical metrics were used to evaluate the performance

of the GCMs in simulating spatial variability of rainfall at
://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
three time frames (i.e., annual, NEM and SEM), separately,

against the 20CR rainfall for the historical period 1961–

2005. First, GCM data were interpolated to 20CR spatial res-

olution using the bilinear interpolation method. The bilinear

interpolationmethod was used as it can smoothly interpolate

GCMs without changing the climate signal. The interpolated

GCM and 20CR rainfall data for the period 1961–2005 at

each grid point were then averaged to show the spatial varia-

bility of GCM and 20CR rainfall. The average values of GCM

and 20CR rainfall at different grid points were compared

using six statistical metrics, percentage of bias (Pbias), nor-

malized root mean square error (NRMSE), Nash–Sutcliffe

efficiency (NSE), modified index of agreement (md), the coef-

ficient of determination (R2) and the ratio of standard

deviation (rSD). The Pbias measures the tendency of model

data to over- or under-estimate the observed data. The

NRMSE summarizes the magnitudes of the errors in
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predictions for various times and is, therefore, considered a

good measure of accuracy (Willmott ). The NSE is a nor-

malized statistic that determines the relativemagnitude of the

residual variance compared to the reference data variance

(Nash & Sutcliffe ). The md can detect additive and pro-

portional differences in the reference and estimated means

and variances. The R2 measures the correlation and rSD

measure the ratio of standard deviations between the

simulated and reference time series. Table 2 presents each

metric equation and its optimal value. Here, the GCMs and

20CR estimation is indicated by xsim,i and xobs,i, respectively,

of data pair i and n is the total number of data pairs.

Compromise programming for ranking the GCMs

Ranking the GCMs of different statistical evaluation results

for different time frames is a challenging task due to the fact

that a GCM may show various degrees of under/overestima-

tions of a climatic variable for different time frames

(Nashwan & Shahid ). Thus, CP was used to integrate

the historical evaluation results of GCMs to enable their
Table 2 | Statistical metrics used for evaluation of GCMs

Equation Optimal value

Pbias ¼ 100 ×

Pn
i¼1 xsim;i � xobs;i

� �
Pn

i¼1 xsim;i

� � (1) 0

NRMSE ¼
1
n

Xn

i¼1
(xsim,i � xobs,i)

2
� �1

2

1
n

Xn

i¼1
(xsim,i)

(2) 0

NSE ¼ 1�
Pn

i¼1 (xsim,i � xobs,i)
2

Pn
i¼1 (xobs,i � xobs)

2

(3) 1

md ¼ 1�
Pn

i¼1 (xobs,i � xsim,i)
j

Pn
i¼1 (jxsim,i � xobsj þ jxobs,i � x0bsj)j

(4) 1

R2 ¼
Pn

i¼1 (xobs,i � xobs)(xsim,i � xsim)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xsim,i � xsim)

2
q

(xobs,i � xobs)
2

(5) 1

rSD ¼ SD (xsim)
SD (xobs)

(6) 1
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ranking for each time frame. The CP measures the distance

(Lcp) of each GCM from an ideal value or frontier (Zeleny

; Gorantiwar & Smout ) and uses this distance to

rank the GCMs. The Lcp is estimated as follows:

Lcp ¼
Xz
j¼1

jxj � xj�jp
2
4

3
5
1=p

(7)

where z is the number of evaluation metrics used, xj is the

normalized value of metric j obtained for a certain GCM,

xj
* is the normalized ideal value of the metric j, and p is

the parameter (1 for linear, and 2 for squared Euclidean dis-

tance measure). In the present study, the linear measure was

used and, therefore, the value of p was considered equal to

1. The Lcp can have any positive value whereas the low

Lcp as zero indicates the closeness of a GCM simulation

of rainfall to the 20CR simulation. This study gave equal

importance to all GCMs and metrics, therefore no weight

was given as proposed by Zeleny (). The Lcp results

were used to rank the GCMs in estimating the seasonal

and annual rainfall where the GCMs which scored the

lowest Lp were given the first rank and vice versa.

Selection of GCMs

Ahmed et al. () evaluated the performance of multi-

model ensemble (MME) developed with different combi-

nations of GCMs ranked based on their performance and

the determination of the optimum number of GCMs to be

included in an MME. They introduced as a rule of thumb

that the optimum performance of MMEs can be achieved

when about 50% of the top-ranked GCMs are used in the

MME as its performance did not achieve significant

improvements with the addition of more GCMs. Nashwan

& Shahid () used this rule of thumb for the selection

of GCMs in estimating three climate variables for Egypt.

In this study, the same rule of thumb was adopted.

As both rainfall seasons are equally important for Peninsu-

lar Malaysia, the GCMs which are capable of accurately

simulating both seasons as well as annual are favourable.

The final selection of GCMs is expected to perform well in

reproducing the rainfall time series for the three time frames.

Therefore, following Khan et al. (), Ahmed et al. ()

and Nashwan & Shahid (), the rule of thumb ‘a GCM
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having a rank lower than the 50th percentile (i.e., rank� 10) in

simulating either annual and seasonal rainfall is not suitable

for rainfall projections of Peninsular Malaysian’ was applied.
Bias correction of GCMs and future projection of daily

rainfall

Selected GCMs were re-gridded to a resolution of 0.25� ×

0.25� which complies with the resolution of APHRODITE.

The linear scaling method was used to correct the bias in

GCM simulated daily rainfall based on APHRODITE rainfall

for the period 1961–2005 at each grid point. Linear scaling is

one of the most widely used methods to correct the bias in

GCM outputs because of its simplicity and accuracy (Aqilah

Tukimat ). It has been found effective compared to

many other methods in a number of studies (Noor et al.

b; Shiru et al. ). The linear scaling method aims to

match the monthly mean of GCM rainfall with the monthly

mean of observed rainfall perfectly (Lenderink et al. ;

Fang et al. ) through the use of the following equation:

Rcor,m,d ¼ Rraw,m,d ×
μ(Robs,m)
μ(Rraw,m)

� �
(8)

where Rcor,m,d is the corrected rainfall data of the d-th day of

the m-th month, is the raw GCM interpolated data for the

same day, and μ Robs;m
� �

and μ Rraw;m
� �

are the monthly

mean of observed and raw GCM data of the m-th month,

respectively.

Then, the bias correction factors were used to correct the

bias of the projected rainfall of the selectedGCMs.Afterwards,

the bias-corrected future dataof the selectedGCMs for the four

RCPs were compared to the base period (1971–2000) to ana-

lyse the change in the mean, standard deviation and 95th

percentile of the daily rainfall during two futures (near

future: 2020–2059 and far future: 2060–2099). ArcGIS v.10.3

was used to plot the maps of projected changes.
RESULTS AND DISCUSSION

Monsoon simulations by GCMs

Figures 3 and 4 show the spatial pattern of the simulated

NEM and SWM mean rainfall, respectively, by 20 GCMs
://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
for the historical period 1961–2005 over the study domain.

Overall, the GCMs were able to capture the spatial distri-

bution of rainfall during the two main rainy seasons,

however, with under- or overestimation compared to the

reference 20CR data. The observed NEM mean rainfall

pattern, including the elongated rain belt along the

Intertropical Convergence Zone near 20�N, the South

Pacific Convergence Zone over the western Pacific and

the rain associated with the convergence zone over the cen-

tral and eastern equatorial Indian Ocean were reasonably

represented by most GCMs. A common positive rainfall

bias over the southwest Indian Ocean was present in most

of these GCM simulations.

Statistical evaluation of GCMs’ outputs

The statistical evaluation results of the 20 GCMs against the

reference data of 20CR for annual, NEM and SWM time

frames using the six metrics are presented in Figure 5 as

box and whiskers plots. At each time frame, the GCMs

showed a distinct performance as evidenced by the

median value of the corresponding metric and the spread

of the results. Overall, the GCMs’ historical estimates of

the NEM rainfall were more accurate than SWM and

annual rainfall in term of medians of NRMSE%, NSE, md

and R2 (i.e., 75%, 0.45, 0.66 and 0.52, respectively). How-

ever, the GCMs underestimated the NEM rainfall by a

median of 9.00% bias, as shown in Figure 5(a). The

median rSD at the annual time frame was closer to the opti-

mal one than at NEM and SWM.

Compromise programming and models ranking

In order to decide and select the near-optimum GCMs based

on the statistical metrics results, CP was used to estimate

the distance of each GCM from the ideal point. In this

study, the nearest to the optimal value of a statistical

matric (i.e., the lowest NRMSE%, the highest NSE, md

and R2, the nearest rSD to 1, and the nearest Pbias to 0)

was used as the ideal value of the corresponding metric.

Table 3 shows the results of the statistical metrics of each

GCM for the NEM evaluation. The bottom row of the

table shows the ideal value of each metrics. Following the

methodology described earlier, the Lcps were calculated



Figure 3 | Mean of daily rainfall of NEM during the historical period of 1961–2005 simulated by different GCMs.
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Figure 4 | Mean of daily rainfall of SWM during the historical period of 1961–2005 simulated by different GCMs.
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Figure 5 | The statistical evaluation results of the 20 GCMs against the 20CR rainfall estimates of the NEM, SWM and annual rainfall.
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for each GCM and are presented in Table 3. The following

equation presents an example of the CP calculation for

BCC-CSM1.1(m):

Lcp ¼ j0:08� 0:00j þ j0:73� 0:64j þ j0:47� 0:59j
þ j0:66� 0:72j þ j0:52� 0:67j þ j0:91� 0:97j ¼ 0:55 (9)

The Lcps of the NEM time frame range between 0.27 and

1.41. The CNRM-CM5 had the lowest Lcp of 0.27, indicating

it as the closest GCM to 20CR estimates of historical NEM

rainfall. On the contrary, the CMCC-CMS had the highest

Lcp of 1.41, indicating it as the worst GCM in terms of simu-

lating NEM rainfall. Based on the Lcp values, the GCMs

were ranked ascendingly as shown in Table 3.

The same procedure was carried out for ranking GCMs

in simulating rainfall for the SWM and annual time frames.

Table 4 shows the final rank of GCMs in simulating spatial

variability of NEM, SWM and annual rainfall in Peninsular

Malaysia. As shown in the table, CMCC-CMS was ranked

last for NEM, while it achieved the first position in simulat-

ing both SWM and annual rainfalls. This means, that the

CMCC-CMS was able to simulate the annual and SWM
om http://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
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rainfall spatial pattern very well, but completely failed in

simulating NEM rainfall. Therefore, following the rule of

thumb suggested by Ahmed et al. (), CMCC-CMS was

discarded. A similar procedure was followed for all the

GCMs and only the GCMs that achieved a rank between 1

and 10 for the three time frames were selected for the

ensemble. This means that the final subset of GCMs

should be able to simulate the annual and both monsoon

rainfalls adequately. As shown in Table 4, two GCMs –

BCC-CSM1-1 and HadGEM2-ES – showed acceptable per-

formance for all the three time frames and were selected

in the final subset of GCMs, although their individual

ranks were not the highest. Therefore, those two GCMs

were selected for future projection of rainfall in Peninsular

Malaysia.

Bias correction of the selected GCMs

The selected GCMs, BCC-CSM1-1 and HadGEM2-ES, were

bias-corrected using linear scaling method for the study

area. Figure 6 shows scatter plots of the monthly raw and

bias-corrected rainfall (presented by cross and circle



Table 3 | Results obtained using statistical metrics for assessment of the performance of GCMs in simulating NEM rainfall and the ranking of GCMs using compromised programming

Model PBIAS NRMSE NSE md R2 rSD Lcp Rank

BCC-CSM1.1(m) 0.08 0.73 0.47 0.66 0.52 0.91 0.55 8

BCC-CSM1� 1 0.20 0.77 0.40 0.66 0.51 0.91 0.80 9

CanESM2 � 0.15 0.68 0.54 0.68 0.61 0.83 0.48 6

CCSM4 � 0.09 0.65 0.57 0.70 0.61 0.88 0.29 2

CMCC-CM 0.18 0.84 0.30 0.64 0.45 0.97 0.97 13

CMCC-CMS 0.17 0.92 0.14 0.59 0.41 1.08 1.41 20

CNRM-CM5 � 0.05 0.68 0.54 0.72 0.63 1.07 0.27 1

CSIRO-Mk3.6.0 � 0.20 0.76 0.43 0.61 0.52 0.5 1.20 17

GFDL-CM3 � 0.06 0.70 0.51 0.67 0.54 0.85 0.50 7

GISS-E2-H � 0.25 0.75 0.44 0.63 0.58 0.54 1.11 16

HadGEM2-AO � 0.13 0.73 0.47 0.66 0.50 0.71 0.83 12

HadGEM2-ES � 0.09 0.74 0.46 0.66 0.47 0.73 0.81 11

INMCM4.0 � 0.18 0.64 0.59 0.70 0.67 0.76 0.41 4

MIROC5 � 0.18 0.85 0.28 0.58 0.39 0.78 1.30 19

MIROC-ESM � 0.25 0.82 0.32 0.59 0.5 0.74 1.23 18

MIROC-ESM-CHEM � 0.20 0.78 0.39 0.61 0.5 0.74 1.05 15

MPI-ESM-LR � 0.11 0.79 0.37 0.63 0.42 0.81 0.98 14

MPI-ESM-MR � 0.07 0.77 0.40 0.64 0.45 0.84 0.82 11

NorESM1-M 0.00 0.66 0.56 0.68 0.56 0.79 0.38 3

NorESM1-ME � 0.03 0.67 0.55 0.68 0.55 0.79 0.44 5

Ideal value 0.00 0.64 0.59 0.72 0.67 0.97 – –

Table 4 | The final rank of CGMs in estimating the rainfall amount at the NEM, SWM and annual time frames in Peninsular Malaysia

Model NEM SWM Annual Model NEM SWM Annual

BCC-CSM1.1(m) 8 11 20 HadGEM2-AO 12 3 9

BCC-CSM1� 1 9 6 8 HadGEM2-ES 10 5 6

CanESM2 6 12 4 INMCM4.0 4 18 11

CCSM4 2 10 15 MIROC5 19 8 14

CMCC-CM 13 2 3 MIROC-ESM 18 20 19

CMCC-CMS 20 1 1 MIROC-ESM-CHEM 15 19 18

CNRM-CM5 1 15 2 MPI-ESM-LR 14 7 12

CSIRO-Mk3.6.0 17 9 16 MPI-ESM-MR 11 4 5

GFDL-CM3 7 13 13 NorESM1-M 3 14 10

GISS-E2-H 16 17 17 NorESM1-ME 5 16 7
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symbols, respectively) of the two GCMs against APHRO-

DITE rainfall for the period 1961–2005. The figure clearly

shows that the bias-corrected estimates having solid simple

linear regression lines of the two GCMs are more aligned
://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
with the 1:1 diagonal line indicating the capability of

linear scaling to bias correct the GCM raw rainfall.

However, the bias-corrected rainfall was found to underesti-

mate the higher rainfall and overestimate the lower rainfall



Figure 6 | Scatter plots of the monthly estimates of the raw (cross) and bias-corrected (circle) of the two selected GCMs, BCC-CSM1-1 (left panel) and HadGEM2-ES (right panel), against

APHRODITE estimates for the historical period 1961–2005.
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values. This is very common in bias correction of GCMs

using any method (Ahmed et al. ). The bias correction

factors obtained for the historical period (1961–2005) were

used to correct the bias of the projected rainfall of the

selected GCM for the period 2020–2099.

Spatial pattern of changes in the future rainfall in

Peninsular Malaysia

The spatial distribution of the changes in daily rainfall can

be helpful for better understanding of future rainfall vari-

ations in Peninsular Malaysia. Therefore, the changes in

the mean, standard deviation and 95th percentile of daily

rainfall for two future periods (near future: 2020–2059 and

far future: 2060–2099) were calculated by comparing the

future projections of the selected GCMs (i.e., BCC-CSM1-1

and HadGEM2-ES) for four RCPs with the historical simu-

lation for the base period, 1971–2000. Then, maps were

prepared to represent future changes in mean, variability

and extreme rainfall.

Figure 7 presents the changes in the mean daily rainfall

projected by the bias-corrected models, BCC-CSM1-1 and

HadGEM2-ES, for the near and far futures under the four

RCPs. The BCC-CSM1-1 projected an increase in the

mean daily rainfall in the central region of the peninsular

for the four RCPs during both future periods. This increase
om http://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
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was as high as 10 mm in the central region during the far

future for RCPs 2.6, 4.5 and 8.5. Furthermore, it projected

a decrease in the mean daily rainfall in the far north and

south of the peninsular during the two futures. The selected

GCMs projected a decrease in rainfall by 10 mm in most of

the peninsular for all the RCPs, with the highest decrease of

�20 mm in the northwest for RCP 6.0.

The HadGEM2-ES model also projected an increase in

the mean of the daily rainfall in the central regions under the

four RCPs. However, HadGEM2-ES projected a decrease in

the mean rainfall by 20 mm for the near and far futures in

the south as well as the north of the peninsular. As shown

in Figure 7, HadGEM2-ES showed contradictory projec-

tions of BCC-CSM1-1 in the north-west region as the

former projected an increase in the mean rainfall by 20 mm.

Figure 8 shows the spatial variation of the standard devi-

ation of annual rainfall projected by the bias-corrected

GCMs, BCC-CSM1-1 and HadGEM2-ES, for the near and

far future for the four RCPs. The BCC-CSM1-1 projected

an increase in the rainfall standard deviation for entire

Peninsular Malaysia under all RCPs. The highest increase

was observed in the north of the peninsula at a rate of

40 mm during 2060–2099 for all the RCPs except RCP 6.0.

On the other hand, the HadGEM2-ES estimated a decreas-

ing pattern in the standard deviation of rainfall in the east

of the peninsular. The maximum decrease was projected



Figure 7 | Spatial distribution of the projected change in the annual mean rainfall in the near and far futures estimated by the bias-corrected GCMs, BCC-CSM1-1 and HadGEM2-ES, for

different RCPs.
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to reach up to �40 mm in the far south of the peninsular for

all the four RCPs for both the near and the far futures. Fur-

thermore, the HadGEM2-ES projected an increase in the

standard deviation of the daily rainfall in the central and

west regions which was also observed for BCC-CSM1-1

projections.

Figure 9 shows the spatial variation of changes in the 95th

percentile rainfall amount projected by BCC-CSM1-1 and
://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
HadGEM2-ES for the near and far futures under different

RCPs. The BCC-CSM1-1 projected an increase in the 95th

percentile rainfall amount for the entire peninsular for all

the RCPs. However, a slight decrease (�5 mm) in the far

north-west and south-east was also projected. The highest

projected increase in the 95th percentile rainfall amount

was in the central region of the peninsular, by 25 mm

during 2060–2099 for all RCPs. However, the HadGEM2-



Figure 8 | Spatial distribution of the projected change in the standard deviation of annual rainfall in the near and far futures estimated by the bias-corrected GCMs, BCC-CSM1-1 and

HadGEM2-ES, for different RCPs.

794 S. A. Salman et al. | Selection of CMIP5 general circulation model for Peninsular Malaysia Hydrology Research | 51.4 | 2020

Downloaded fr
by guest
on 15 Novemb
ESprojected a decrease in the 95th percentile rainfall amount

in the central and eastern regions of the Peninsular. The high-

est decrease was projected by �40 mm in the southwest tip.

Furthermore, the HadGEM2-ES projected an increase in

the north-west of the Peninsular by 25–35 mm. Overall, the

extreme rainfall amount was found to change less in the

south and north compared to central Peninsula Malaysia

under BCC-CSM1-1, while there was an increase in the
om http://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
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northwest and decrease in the central and east of Peninsular

Malaysia for HadGEM2-ES.
CONCLUSION

An attempt has been made to reduce uncertainty in the

projection of rainfall of Peninsular Malaysia through the



Figure 9 | Spatial distribution of the projected change in 95th percentile daily rainfall amount in the near and far futures estimated by the bias-corrected GCMs, BCC-CSM1-1 and

HadGEM2-ES, for different RCPs.
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selection of a credible subset of GCMs. The selection of

GCMs was based on the hypothesis that the GCMs able to

simulate the historical large-scale ocean-atmospheric

phenomena responsible for climate variability of a region

can be considered as more suitable for the projection of

rainfall for the study area. Twenty GCMs’ outputs of

precipitation were evaluated using different statistical

metrics and at three time frames during 1971–2005. Based
://iwaponline.com/hr/article-pdf/51/4/781/730910/nh0510781.pdf
on a compromise made among the evaluation metrics, this

study found that two GCMs, namely, BCC-CSM1-1 and

HadGEM2-ES, were the most credible for the projection

of rainfall in Peninsular Malaysia. This finding agrees with

the results of Noor et al. (b), where HadGEM2-ES was

identified as one of the best four GCMs for the projection

of daily rainfall in Peninsular Malaysia. The rainfall simu-

lations of the two selected GCMs were then interpolated
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to 0.25� × 0.25� and bias-corrected using APHRODITE as a

reference dataset. Overall, the study revealed a projected

increase in rainfall in the region where rainfall is usually

less and a decrease in rainfall in the region where rainfall

is usually high. This indicates more homogeneity in the

spatial distribution of rainfall in the peninsula. BCC-

CSM1-1 projected relatively less change in the south and

north of the peninsular compared to the central region,

while HadGEM2-ES projected an increase in rainfall in

the northwest and a decrease in the central and eastern

regions. The difference in projected rainfalls by the two

GCMs indicates uncertainty in future rainfall. The uncer-

tainty in projected rainfall was found higher in the region

where annual rainfall is the highest (northern region) and

lower where the annual rainfall is the lowest (central

region). This is justifiable as higher uncertainty is usually

associated with higher rainfall and vice versa. The study

indicates that the selection of GCMs based on their consist-

ency in simulating historical rainfall with observed rainfall

does not guarantee their consistent future projections. This

may be due to uncertainty in future climate in tropics

under climate change scenarios. The large uncertainty in

projections indicates more challenges in decision-making

for adaptation to climate change in Peninsular Malaysia.
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